
Information page for written
examinations at Linköping University

Examination date 2017-08-23

Room (1) TER2(14)
Time 8-12
Course code TDDC90
Exam code TEN1
Course name
Exam name

Software Security (Software Security)
Written examination (Skriftlig tentamen)

Department IDA
Number of questions in
the examination 7

Teacher
responsible/contact
person during the exam
time

Marcus Bendtsen

Contact number during
the exam time 0733-140708

Visit to the examination
room approximately 09:00, 11:00

Name and contact details
to the course
administrator
(name + phone nr + mail)

Madeleine Häger Dahlqvist,
013-282360,
madeleine.hager.dahlqvist@liu.se

Equipment permitted Dictionary (printed, NOT electronic)
Other important
information
Number of exams in the
bag

LiTH, Linköpings tekniska högskola

IDA, Institutionen för datavetenskap

Nahid Shahmehri

Written exam

TDDC90 Software Security

2017-08-23

Permissible aids

Dictionary (printed, NOT electronic)

Teacher on duty

Marcus Bendtsen, 0733-140708

Instructions and grading

You may answer in Swedish or English.

There are 7 questions on the exam. Your grade will depend on the total points you score. The

maximum number of points is 40. The following grading scale is preliminary and might be

adjusted during grading.

Grade 3 4 5

Points required 20 29 35

Question 1: Secure software development (4 points)

a) Explain by example how attack trees are created (come up with a scenario on your

own, and make sure that you explain all the details of attack trees).

b) In this course we mentioned three additional activities that can be requested by

security advisors for projects using SDL, name two of these.

Question 2: Exploits and mitigations (5 points)

a) Name one benefit of using a register trampoline over a NOP-sled when exploiting a

stack-based buffer overflow. Motivate your answer!

b) Why may the register trampoline method not always be applicable?

c) What kinds of benefits, if any, would a register-trampoline attack offer over using a

NOP-sled if the vulnerable program is compiled with stack cookies? Motivate your

answer.

Question 3: Design patterns (5 points)

Explain the following two design patterns: secure factory and privilege separation. For each

pattern your answer should include a diagram, pseudo-code and an explanation of why and

when the pattern should be used.

Question 4: Web security (6 points)

a) Using pseudo-code, write server-side code that contains a vulnerability that allows for

SQL injections. Your code should be detailed enough that it is clear how SQL

injections can be made. Explain your code in English. Give an example of a client side

request that would exploit the vulnerability in your code. Finally, suggest a

modification of your code such that the vulnerability is removed. Explain why your

mitigation strategy works

b) Describe two different vulnerabilities that can result from allowing users to upload

files, and explain how these vulnerabilities can be mitigated.

Question 5: Static analysis (7 points)

The following function computes the nth power of 2. Here, int denotes integers with an absolute value
that can be arbitrarily large (i.e., no integer overflows).

1 int exp(int n){
2 if(n < 0)
3 return -1;
4 int rstl = 1;
5 int i = n;
6 while (i != 0){
7 rslt = 2 * rslt;
8 i = i - 1;
9 }

10 assert(i == 0);
11 assert(rslt == 2n);
12 return rslt;
13 }

We aim to check the assertions (i == 0) at line 10 and (rslt == 2n) at line 11. In the first part,
we consider the following two approaches for checking a given assertion:

• Symbolic execution: builds a path formula obtained by violating the assertion after following a
path through conditional statements (such as the one at line 2) and loops (such as the one at line
6) by choosing some outcome for the involved conditions.

• Abstract interpretation: here using the abstract values depicted in the lattice above. Intuitively, the
abstract values are used to over-approximate, in an as precise manner as possible, the information
of whether a variable is 0, positive, negative, or some combinations of these.

Questions:

1. Consider the assertion (i == 0) at line 10:

(a) Give a path formulas that would correspond to taking the else outcome of the if statement
(line 2), entering the loop once (i.e., one iteration of the loop), exiting the loop to get to line
10 and violating the assertion there (i.e. violating the (i == 0) assertion). (2 pt)

(b) Can abstract interpretation, based on the sign abstract domain mentioned above, establish
that the assertion (i == 0) is never violated? explain by annotating each line with the
abstract element obtained at the end of such an analysis. (2pt)

2. Consider the assertion (rslt == 2n) at line 11:

(a) Give the predicate P7 defined as the weakest precondition of the predicate Inv = ((rslt

== 3* 2n−i) && (0 ≤ i) && (i ≤ n)) with respect to the assignment i= i - 1 at line
8; then give P6 defined as the weakest precondition of the predicate P7 with respect to the
assignment rslt= 2 * rslt at line 7? (2pt)

(b) Inv is in fact an invariant of the loop (lines 6-9). Using this fact, can you argue why the
assertion (rslt == 2n) at line 11 holds? (1pt)

Question 6: Security testing (7 points)

a) Briefly explain the difference between black-box and white-box testing techniques.

b) Consider cross-site scripting (XSS) vulnerabilities. Which of the two vulnerability

types Stored XSS and Reflected XSS is generally easier to detect using a black-box web

application fuzzer? Clearly motivate your answer.

c) A generation based fuzzer generally requires two components to work: A grammar

and a set of fuzzing heuristics. Explain the purpose of both these components.

Question 7: Vulnerabilities in C/C++ programs (6 points)

The code on the next page shows a function that prepends a prefix to each entry in a list of

strings, before sending each string to a function write_to_file, the details of which are

unimportant here. The function takes three parameters, a prefix, an array of strings (str), and

the number of strings in the array (n_strings). It can be assumed that the number of strings in

the array is always the same as the stated n_strings, but the contents of the prefix and the

strings in str, as well as the number of strings in str, is user-controllable.

The function contains at least one serious bug that can lead to a potentially exploitable

condition. Explain what the bug is, and how to fix it. Clearly explain what the consequence

would be of triggering the bug.

/* Writes 'size' bytes from 'data' to a predetermined file.
 Details not important here */
void write_to_file(const char* data, size_t size);

/* Takes an array of strings and a prefix, and prepends the prefix to
 each string before sending the resulting string to 'write_to_file'.
 Returns 1 on success, and 0 on failure. */
int append_prefix(const char* prefix, const char* str[], size_t n_strings)
{
 char buffer[256];
 char prefix_buffer[32];

 size_t prefix_len = strlen(prefix);

 strncpy(prefix_buffer, prefix, sizeof(prefix_buffer));
 prefix_buffer[sizeof(prefix_buffer)-1] = 0;

 // Replace all special (non-alphanumeric) letters in prefix with underscores
 for(size_t i = 0; i < prefix_len; i++) {
 if((prefix_buffer[i] < '0' || prefix_buffer[i] > '9') &&
 (prefix_buffer[i] < 'A' || prefix_buffer[i] > 'Z') &&
 (prefix_buffer[i] < 'a' || prefix_buffer[i] > 'z'))
 {
 prefix_buffer[i] = '_';
 }
 }

 for(size_t j = 0; j < n_strings; j++) {
 size_t str_len = strlen(str[j]);
 if(prefix_len > SIZE_MAX - str_len || prefix_len + str_len > SIZE_MAX - 1)
 return 0; // Integer overflow
 if(prefix_len + str_len + 1 > sizeof(buffer))
 return 0; // Too long strings

 strcpy(buffer, prefix_buffer);
 strcat(buffer, str[j]);
 write_to_file(buffer, prefix_len + str_len + 1);
 }

 return 1;
}

