
Information page for written
examinations at Linköping
University

Examination date 2015-08-24

Room (1) TER2
Time 14-18
Course code TDDC90
Exam code TEN1
Course name
Exam name

Software Security (Software Security)
Written examination (Skriftlig tentamen)

Department IDA
Number of questions in
the examination 7

Teacher
responsible/contact
person during the exam
time

Ulf Kargén

Contact number during
the exam time 013-285876

Visit to the examination
room approximately 15:00, 17:00

Name and contact details
to the course
administrator
(name + phone nr + mail)

Madeleine Häger Dahlqvist,
013-282360,
madeleine.hager.dahlqvist@liu.se

Equipment permitted Dictionary (printed, NOT electronic)
Other important
information
Number of exams in the
bag

LiTH, Linköpings tekniska högskola

IDA, Institutionen för datavetenskap

Nahid Shahmehri

Written exam

TDDC90 Software Security

2015-08-24

Permissible aids

Dictionary (printed, NOT electronic)

Teacher on duty

Ulf Kargén, 013-285876

Instructions and grading

You may answer in Swedish or English.

There are 7 questions on the exam. Your grade will depend on the total points you

score. The maximum number of points is 40. The following grading scale is

preliminary and might be adjusted during grading.

Grade 3 4 5

Points required 20 29 35

Question 1: Secure software development (4 points)

During the design phase of SDL, the goal is to describe how to securely implement all

functionality provided by a given feature or function. In this course we discussed two

specific tasks that should be completed as part of this phase. Name and briefly

describe these two tasks (the descriptions shall be no longer than 30 words each).

Question 2: Exploits and mitigations (5 points)

For each of the two exploit techniques below, give a high-level explanation of how it

works. Also explain which exploit mitigation it was specifically designed to

overcome, and why it is able to do so.

a) Heap spraying

b) Return-oriented programming (ROP)

Question 3: Design patterns (5 points)

Explain the following two design patterns: secure chain of responsibility and secure

logger. For each pattern your answer should include a diagram, pseudo-code, and an

explanation of why and when the pattern should be used.

Question 4: Web security (6 points)

For the two (web)vulnerabilities: cross-site request forgery and file inclusion, address

the following (in the context of web security). Use pseudo-code and/or English when

appropriate.

a) Give a brief example of a possible consequence if an attacker is successful in

exploiting the vulnerability.

b) Give an example of a flaw that causes this vulnerability.

c) Give an example of a request to the server-side code that would exploit the

vulnerability (i.e. an attack).

d) Give an example of how changes to the code can mitigate the vulnerability so

that the attack is no longer effective (explain why the code works).

Question 5: Static analysis (7 points)

Consider the following foo function, where int denotes integers with an absolute
value that can be arbitrarily large (i.e., do not consider possibilities of integer
overflows).

1 int foo(int x){
2 int y=1;
3 while (x < 100){
4 x = x + y;
5 y = y + 1;
6 }
7 y = x + y;
8 assert(y != 0);
9 ...

We aim to check the assertion (y != 0) at line 8. We consider the following
two different methods:

• symbolic execution by checking the path formula obtained when unrolling
the loop k times and violating the assertion

• abstract interpretation using the abstract values depicted in the lattice
above. Intuitively, the abstract values are used to over-approximate, in an
as precise manner as possible, the information of whether a variable is 0,
positive, negative, or some combinations of these.

Questions:

a) Which method is sound? give a drawback and an advantage. (2pt)

b) Which method is complete? give a drawback and an advantage. (2pt)

c) Give a path formula that corresponds to violating the assertion after one
iteration of the loop. Is the formula satisfiable? (1pt)

d) Can the assertion be violated? use your own arguments. (2pt)

1

Question 6: Security testing (7 points)

a) Describe the main components in a typical fuzzing framework. Use one or

two sentences per component. Overly long answers may lead to a reduction of

points!

b) Imagine that you are tasked with creating a fuzzer for a JavaScript interpreter.

Which fuzzing strategy (mutation or generation) would be most appropriate?

Clearly motivate your answer!

c) What is the path-explosion problem in concolic testing?

Question 7: Vulnerabilities in C/C++ programs (6 points)

The code on the next page demonstrates a simplified version of a security bug found

in a well-known web browser last year. The vulnerable piece of code takes an array of

C strings and concatenates them into one string, with each substring separated by a

comma. (For example, if the input array is {"aaa", "bbb", "ccc"}, the output

string would be "aaa,bbb,ccc".)

a) Identify the vulnerability, and explain what the input should look like in order

to trigger the bug. You don’t need to explain how to exploit the vulnerability

for e.g. arbitrary code execution.

b) Explain how to fix the bug.

Hint: The compiler used to compile the code uses the following sizes for built-in data

types:

Data type Number of bits Maximum size

size_t 64 SIZE_MAX

long 64 LONG_MAX

unsigned long 64 ULONG_MAX

int 32 INT_MAX

unsigned int 32 UINT_MAX

short 16 SHRT_MAX

unsigned short 16 USHRT_MAX

char 8 SCHAR_MAX

unsigned char 8 UCHAR_MAX

// Joins all strings in the array 'strings' separated by commas and returns

// a pointer to a malloc-allocated buffer with the result. In case of error,

// NULL is returned.

// 'strings' is guaranteed to always hold exactly 'n_strings' strings,

// and all string pointers are guaranteed to be valid (e.g. not NULL).

// However, both the number of strings and string contents are user

// controllable.

char* join_strings(char* strings[], unsigned int n_strings)

{

 size_t total_strings_size = 0;

 size_t total_separators_size = (n_strings-1);

 size_t total_size = 0;

 unsigned int i;

 for(i = 0; i < n_strings; i++) {

 size_t size = strlen(strings[i]);

 if(total_strings_size > SIZE_MAX - size)

 return NULL; // Error

 total_strings_size = total_strings_size + size;

 }

 if(total_strings_size > SIZE_MAX - total_separators_size)

 return NULL; // Error

 total_size = total_strings_size + total_separators_size;

 return do_join(strings, n_strings, total_size);

}

char* do_join(char* strings[],

 unsigned int n_strings,

 unsigned int total_size)

{

 char* buffer;

 unsigned int i;

 // Allocate buffer, add 1 for NULL-terminator

 if(total_size > UINT_MAX - 1)

 return NULL; // Error

 buffer = malloc(total_size + 1);

 buffer[0] = 0; // Contains empty string initially

 // Concatenate strings and commas into 'buffer'

 for(i = 0; i < n_strings; i++) {

 strcat(buffer, strings[i]);

 if(i != n_strings-1)

 strcat(buffer, ",");

 }

 return buffer;

}

