
Försättsblad till skriftlig
tentamen vid Linköpings Universitet

Datum för tentamen 2015-01-14

Sal

TER4/TERE

Tid

8-12

Kurskod

TDDC90

Provkod

TEN1

Kursnamn/benämning

Software Security

Institution IDA

Antal uppgifter som

ingår i tentamen

7

Antal sidor på tentamen (inkl.

försättsbladet)

5

Jour/Kursansvarig Ulf Kargén

Telefon under skrivtid 013-285876

Besöker salen ca kl. 9:00, 11:00

Kursadministratör

(namn + tfnnr + mailadress)

Madeleine Häger Dahlqvist,

013-282360,

madeleine.hager.dahlqvist@liu.se

Tillåtna hjälpmedel

Dictionary (printed, NOT electronic)

LiTH, Linköpings tekniska högskola

IDA, Institutionen för datavetenskap

Nahid Shahmehri

Written exam

TDDC90 Software Security

2015-01-14

Permissible aids

Dictionary (printed, NOT electronic)

Teacher on duty

Ulf Kargén, 013-285876

Instructions and grading

You may answer in Swedish or English.

There are 7 questions on the exam. Your grade will depend on the total points you

score. The maximum number of points is 40. The following grading scale is

preliminary and might be adjusted during grading.

Grade 3 4 5

Points required 20 29 35

Question 1: Secure software development (4 points)

a) Consider the general software development lifecycle. In order to secure the

lifecycle we can introduce security touch points. Draw the lifecycle and

annotate where in the cycle you would use: misuse cases, static analysis and

penetration testing.

b) In Security Development Lifecycle (SDL), how are bug bars and quality gates

different?

Question 2: Exploits and mitigations (5 points)

Consider two different exploits for a stack-based buffer overflow vulnerability:

a) Buffer overflow leading to return pointer overwrite, using a NOP-sled and

shellcode on the stack.

b) Buffer overflow leading to return pointer overwrite, using a ROP chain.

For each of the following mitigations, explain whether it would be effective at

preventing the exploit from working, and why. You may need to make assumptions

about the system and the particular implementation of a mitigation. Clearly state all

such assumptions, and motivate your answers! Simple yes/no answers will give no

points.

- Address space layout randomization (ASLR)

- Data execution prevention (DEP/W^X)

- Stack cookies

Question 3: Design patterns (5 points)

Explain the following two design patterns: secure chain of responsibility and clear

sensitive information. For each pattern your answer should include a diagram, pseudo-

code and an explanation of why and when the pattern should be used.

Question 4: Web security (6 points)

The developers of a website are considering adding functionality that would allow

users to upload files to the server, that later will be downloaded and used by other

users. There are several vulnerabilities that could be introduced by allowing this.

Please explain five of these. Your answer should include an explanation of the

vulnerabilities, the possible consequences, and how they can be mitigated.

Question 5: Static analysis (7 points)

a) Splint is a static analyser. Is it sound, complete, or neither? Explain in one or

two sentences.

b) Can a static analyser that is sound for some properties have false alarms about

those properties? Explain in one or two sentences.

c) Explain in a sentence or two the problem with having false alarms.

d) Can symbolic executions have false negatives? If not, explain in one or two

sentences, otherwise give a small example.

Question 6: Security testing (7 points)

a) Assume that you have been tasked with performing fuzz-testing of the two

programs described below. For each program, explain if mutation-based

fuzzing or generation-based fuzzing would be most appropriate.

A. An FTP server. FTP is a well-known text-based protocol for

transferring files, standardized in RFC 959. The FTP protocol has a

complex state machine with many different message types for setting

up a connection, requesting file transfers, etc.

B. An image viewer and editor. The program uses a proprietary binary

format for pictures, which is not officially documented by the vendor.

b) Explain why a simple depth-first search strategy for concolic testing may not

find many bugs. Clearly explain your reasoning, possibly with a figure!

Question 7: Vulnerabilities in C/C++ programs (6 points)

The small C++ function shown below reads text from a file, one line at a time, and

concatenates all lines into one string before proceeding to process the concatenated

text. (The nature of that processing is not relevant here.) The code contains at least

one serious vulnerability, which could potentially be exploited to allow arbitrary code

execution.

a) Identify the vulnerability, and explain what the input file should look like in

order to trigger the bug. (You don’t need to explain in detail how to exploit the

vulnerability.)

b) Propose, in words or pseudocode, how to fix the bug.

You can assume that the comments in the code correctly describe the behaviour of

library functions, etc. You don’t need any additional knowledge about the library

functions used than what is given in the comments.

void read_and_process(istream& in_file)

{

 const size_t MAX_DATA = 1000000;

 const size_t BUFSIZE = 1000;

 char concatenated[MAX_DATA];

 // 'concatenated' should initially contain an empty string.

 concatenated[0] = 0;

 size_t total_read = 0;

 // Allocate a buffer on the heap with BUFSIZE bytes.

 char* buffer = new char[BUFSIZE];

 // 'getline' reads one line of text (until a line delimiter is reached)

 // from 'in_file' into 'buffer'.

 // A maximum of 'BUFSIZE' bytes is written to 'buffer', including the

 // null terminator.

 // If end-of-file is reached, or the current line contains more than

 // 'BUFSIZE' characters, the call to 'getline' will evaluate to false,

 // and the loop will be terminated.

 while(in_file.getline(buffer, BUFSIZE))

 {

 size_t len = strlen(buffer) + 1;

 // SIZE_MAX is the largest number that can be represented by 'size_t'

 if(total_read + len > MAX_DATA ||

 total_read > SIZE_MAX - len)

 {

 printf("Error: Too much data");

 exit(1); // Quit program

 }

 // Append string in 'buffer' to existing string in 'concatenated',

 // starting from the position of the old null terminator in

 // 'concatenated'.

 // A maximum of 'MAX_DATA' characters will be copied from 'buffer'

 // into 'concatenated'.

 strncat(concatenated, buffer, MAX_DATA);

 concatenated[MAX_DATA-1] = 0;

 }

 // Complete string read. Process it...

 process(concatenated);

}

