LiTH, Link6pings tekniska hogskola
IDA, Institutionen for datavetenskap
Ulf Kargén

Written exam
TDDC90 Software Security
2025-08-27

Permissible aids

Dictionary (printed, NOT electronic)

Teacher on duty
Ulf Kargén, 013-285876

Instructions and grading

There are 7 questions on the exam. Your grade will depend on the total points you score. The
maximum number of points is 38. The following grading scale is preliminary and might be
adjusted during grading. You may answer in Swedish or English.

Grade 3 4 5
Points required 19 27 32

Question 1: Secure software development (4 points)

Name phases 2 and 3 of Microsoft’s SDL and briefly explain the activities prescribed in each
of these phases.

Question 2: Memory safety (5 points)

Consider the two attack methods below, each designed to overcome a specific exploit
mitigation. For each of the two methods, give a high-level explanation of the exploit
mitigation technique it was designed to circumvent, and how the attack is able to circumvent
that mitigation

a) Return-to-libc
a) Heap spraying

Question 3: Design patterns (4 points)
a) Come up with a (realistic) example of a vulnerability and corresponding attack that is
made possible by failing to adhere to the secure logger pattern.

b) Explain the design pattern secure factory, including an explanation of why and when
the pattern should be used.

Question 4: Web security (6 points)
a) Explain using examples how (1) SOL injection and (2) command injection attacks
work.

b) Both of the above attacks are made possible by a similar implementation flaw. Clearly
describe it.

Question 5: Static analysis (7 points)

Assume int denotes integers with an absolute value that can be arbitrarily large (i.e., no integer over-
flows). Consider the following procedure.

1

N

int foo(int n){

}

int rslt = 0;

int i = n; il
while(i !'= 0){ R N
if (n > 0){ e g
rslt = rslt + 2; ° .
i= i - 1 Y S
Yelsed 20 g e
rslt = rslt - 2; ;\, /\ / \ \ o
i=i+ 1 [=2,-1] [<10] [o1] (1.2]
} NN NS
} svs [=2:=2] -1,=1] [00] [1,1] [2,2]

assert(i == 0); \ ,
assert (rslt == 2%n); \[l]//

return rslt;

Questions:

1. Symbolic execution:

e How many possible (i.e. feasible) paths does the method foo have if the variable n can assume

any one of the 11 values in [-5,5]7 (1pt)

e Give, without discussing its possible satisfiability, the SSA formula for the path condition

that executes executes once rslt = rslt + 2 (i.e., passes once through line 6), does not
execute rst = rslt - 2 (i.e., does not pass through line 9), respects the assertion at line
13 (i.e., i == 0) and violates the assertion at line 14 (i.e., rslt == 2*n). Observe there is
one path condition following this description. It might not be satisfiable, but it should follow
the control flow of the program. (2 pts)

2. Abstract interpretation: Annotate, after convergence of a most precise analysis, the start of each

line in foo with an abstract element associated to each one of the defined variables (including the
unknown value passed as parameter to foo). For each line, and for each variable or parameter,
give the interval domain obtained at the end of the analysis. Interval domains are elements of the
lattice to the right of foo. Observe this is not the sign domain discussed in the course. (2pt)

Give, without justification, the weakest condition P such that executing the sequence of three
assignments z= x + 2*%y; x= z - x; y= 2*(z - x); (where x, y and z are integer variables with
no integer overflows) from a configuration satisfying P will always result in values satisfying the
condition (@ : x =y and z <). In other words, give the weakest (i.e., most general) predicate P
such that the Hoare triple {P}z= x + 2%y; x= z - x; y= 2x(z - x);{Q} holds (i.e., is always
true or valid). (2pt).

Question 6: Security testing (6 points)

a)

b)

Imagine that you are tasked with creating a black box fuzzer for a JavaScript
interpreter. Which fuzzing strategy (mutation or generation) would be most
appropriate? Clearly motivate your answer.

Explain what in-memory fuzzing is, and why it is used.

Give pseudocode for a small program with a bug that would be found (relatively)
quickly using greybox fuzzing, but would take a long time to find using black-box
mutational fuzzing. Clearly explain why your code has this property.

Question 7: Vulnerabilities in C/C++ programs (6 points)

The code on the next page shows a function Togin for handling password checks as part of a
login system. The function first queries for the user name, and then gives the user the option
to either type in the password, cancel the login, or request that a password reset link be sent to
a provided email address (given that the provided email address matches with the one
associated with the username). The code contains a serious security bug. (We here ignore the
other glaring security issue that passwords are stored in plain text.)

a)
b)

c)

Identify the bug in the code.

Clearly explain with an example how an attacker could exploit the bug, and what the
consequences of a successful exploit would be. State any (reasonable) assumptions
you make about, e.g., memory layout.

Explain how to fix the bug.

You can assume that all code comments are truthful and correct.

#define USR_LEN 16
#define PWD_LEN 16
#define EMAIL_LEN 32

// Fetches password for given username and stores it into 'destination'’
// Passwords are never longer than 15 characters.

// Returns 0 on success and 1 on error.

int get_pwd_from_user_db(const char* username, char* destination);

// Sends a password-reset 1ink to given email, provided that the email is
// registered with the given username. Returns 0 on success and 1 on error.
int request_email(const char* username, const char* email);

// Performs credentials check. Returns 0 on successful login and 1 on
// failed login or error.
}nt Togin()

char username[USR_LEN];

char given_password[PWD_LEN];
char email[USR_LEN];

char stored_password[PWD_LEN];
int choice;

printf("User name: ");

/ Read string from standard input. Given format specifier "%Ns" fscanf will
// read at most N characters into destination buffer ('username' here), or
// until whitespace (e.g. newline) is encountered. A null terminator is
// always appended after the Tast read character in the destination buffer.
fscanf(stdin, "%15s", username);

if(get_pwd_from_user_db(username, stored_password) != 0) {
printf("Error accessing user database\n");
return 1;

// Loop until explicitly terminated with return statement
while(1) {

printf(""Choose action:\n");

printf(" 1: Proceed to type password\n");

printf(" 2: Cancel Togin\n");

printf(" 3: Request password reset email\n");

// Read one integer from standard input into 'choice'

fscanf(stdin, "%d", &choice);

if(choice == 1) {
printf("pPassword: ");
fscanf(stdin, "%15s", given_password);
// strcmp returns 0 i1f strings are equal

if(strcmp(given_password, stored_password) == 0) {
printf("Login successful!\n");
return 0O;

} else {
printf("Incorrect password!\n");
return 1;

} else if(choice == 2) {
return 1;

} else if(choice == 3) {
printf("Email address: ");
fscanf(stdin, "%31s", email);

if(request_email(username, email) != 0) {
printf("Error sending email\n");
return 1;
} else {
printf("A password reset 1link has been sent!\n");
} else {

printf("Invalid choice, please try again.\n");

