
LiTH, Linköpings tekniska högskola

IDA, Institutionen för datavetenskap

Ulf Kargén

Written exam

TDDC90 Software Security

2025-03-20

Permissible aids

Dictionary (printed, NOT electronic)

Teacher on duty

Ulf Kargén, 013-285876

Instructions and grading

There are 7 questions on the exam. Your grade will depend on the total points you score. The

maximum number of points is 38. The following grading scale is preliminary and might be

adjusted during grading. You may answer in Swedish or English.

Grade 3 4 5

Points required 19 27 32

Question 1: Secure software development (4 points)

Consider the CORAS method for risk analysis. If you would want to integrate the other two

risk analysis methods discussed in the course – misuse cases and attack trees – into CORAS,

in which step of CORAS would each respective method fit best? For each of misuse cases and

attack trees, explain in which step of CORAS it would fit best, and clearly motivate how it

would contribute to the CORAS workflow in that step. Only answer with one CORAS step

per method.

Question 2: Memory safety (5 points)

a) Explain how stack pivoting works, and why it is used.

b) Consider an out-of-bounds read vulnerability, which allows an attacker to read some

data past the end of a stack buffer. For each of the following two mitigations, explain

whether or not it can mitigate this kind of attack, and why.

i. ASLR

ii. CFI

Question 3: Design patterns (3 points)

a) Come up with a (realistic) example of a vulnerability and corresponding attack that is

made possible by failing to adhere to the clear sensitive information pattern.

b) What is typically the cause of use-after-free (UAF) bugs? Name a design pattern that

can help reduce the risk of UAF.

Question 4: Web security (7 points)

a) Explain, using an example, how an XXE vulnerability could be exploited to perform

an SSRF attack. Your example should be detailed enough, so that it is possible to

understand every principal step of the attack.

b) Explain how a CSRF attack works.

c) Why can it be a good idea to use the HttpOnly flag when creating cookies in your web

app? Clearly motivate your answer.

Question 5: Static analysis (7 points)

Assume int denotes integers with an absolute value that can be arbitrarily large (i.e., no integer over-
flows). Consider the following procedure.

1 int foo(int a, int b){
2 int rslt = 0;
3 int i = 0;
4 while(i <= a){
5 if(b % 3 == 0){
6 rslt = rslt + 3;
7 }else if(b % 3 == 1){
8 rslt = rslt + 2;
9 }else{

10 rslt = rslt + 1;
11 }
12 i = i + 1;
13 b = b + 1;
14 }
15 assert(rslt >= a);
16 return rslt;
17 }

Questions:

1. Symbolic execution:

� Suppose the assertion at line 15 is removed (i.e., commented out). How many possible (i.e.
feasible) paths does the method foo have if the variable a can assume any value in [-5,5]?
(2 pt)

� Now suppose the assertion is put back at line 15 (i.e., it is not commented out anymore).
Give, without discussing its possible satisfiability, the SSA formula for the path condition
that passes once through line 10 (i.e., includes the execution of rslt = rslt + 1) and that
violates the assertion. Observe the path condition might not be satisfiable, but it should
follow the control flow of the program. (1 pt)

2. Abstract interpretation: Annotate, after convergence of a most precise analysis, the start of each
line in foo with an abstract element associated to each one of the defined variables (including
the parameters passed to foo). Use, for each variable or parameter, the interval domain, i.e., the
abstract elements depicted in the lattice to the right of foo. Observe this is not the sign domain
discussed in the course. (2 pt)

3. Give, without justification, the weakest condition P such that executing the sequence of three
assignments z= x + y; x= y; y= z - x; (where x, y and z are integer variables with no integer
overflows) from a configuration satisfying P will always result in a condition satisfying the condition
(Q : x+ y ≥ 0 and y ≤ x). In other words, give the weakest (i.e., most general) predicate P such
that the Hoare triple {P}z= x + y; x= y; y= z - x;{Q} holds (i.e., is always true or valid). (2
pt).

Question 6: Security testing (6 points)

a) Briefly explain two reasons why automated fuzzing of web applications is often harder

than fuzzing, e.g., a desktop program written in C.

b) Explain why a Heartbleed-like bug, where it is possible to read a few kB past the end

of a buffer, might be hard to find via fuzzing. Also explain how a sanitizer (such as

AddressSantizer) could help here.

c) Give pseudocode for a small program with a bug that would be easy to find using

concolic testing, but hard to find using mutation-based fuzzing. Explain your

reasoning.

Question 7: Vulnerabilities in C/C++ programs (6 points)

The code on the next page shows a function that takes a simple greyscale bitmap image as

input, and renders it as ASCII art. The code has a serious security bug.

It can be assumed that the input buffer (data) always contains exactly width*height bytes.

a) Identify the bug in the code, and state what kind of bug it is (out of the security bug

types discussed in the course).

b) Clearly explain, using an example, what an input to the function should look like in

order to trigger the bug, and what the consequences of a successful exploit could be

(i.e., what the bug allows the attacker to do).

c) Show using code/pseudocode (and a clear motivation) how the bug should be fixed.

// Returns a malloc-allocated string with the ASCII-art render of an 8-bit
// grayscale bitmap image. Returns a NULL-pointer in case of error.
char* render_ascii(unsigned int width,
 unsigned int height,
 const char* data)
{
 if((width+1) > UINT_MAX / height)
 return NULL;

 // Allocate memory for pixels + line breaks after rows + NULL terminator
 char* output = malloc((width+1) * height + 1);
 size_t out_pos = 0;

 for(unsigned int y = 0; y < height; y++) {
 for(unsigned int x = 0; x < width; x++) {
 unsigned char pixel = data[y*width + x];
 char character;

 if(pixel < 64)
 character = '#';
 else if (pixel < 128)
 character = '*';
 else if (pixel < 192)
 character = '-';
 else
 character = ' ';

 output[out_pos++] = character;
 }
 output[out_pos++] = '\n'; // Add line-break
 }

 // Add NULL-terminator to finish output
 output[out_pos] = 0;

 return output;
}

