LiTH, Link6pings tekniska hdgskola
IDA, Institutionen for datavetenskap
UIf Kargen

Written exam
TDDC90 Software Security
2025-01-18

Permissible aids
Dictionary (printed, NOT electronic)

Teacher on duty
UIf Kargén, 013-285876

Instructions and grading

There are 7 questions on the exam. Your grade will depend on the total points you score. The
maximum number of points is 38. The following grading scale is preliminary and might be
adjusted during grading. You may answer in Swedish or English.

Grade 3 4 5
Points required 19 27 32

Question 1: Secure software development (4 points)

a) For each of the following techniques or methods, state without motivation in which
phase of the software development lifecycle it would be most appropriate to apply the
technique/method. Only state one phase per item. Each correct answer gives 0.5
points, and each incorrect answer -0.5 points. The minimum amount of points is 0 and
the maximum 2.

i. Static analysis
i. Misuse cases
iii. Fuzzing

iv. Attack trees

b) In a few sentences, explain the following two concepts:

i. Attack surface reduction
ii. Defense in depth

Question 2: Memory safety (7 points)
a) Could ROP be used to exploit a use-after-free bug? If no, explain why it is impossible.
If yes, explain how.

b) Clearly explain why DEP and ASLR must always be used together in order to be
effective.

c) Under what circumstances is an integer overflow a security bug? Give a small
(pseudo)code example of an exploitable integer overflow vulnerability.

Question 3: Design patterns (2 points)

Explain the intent and motivation for the Privilege separation pattern.

Question 4: Web security (6 points)

a) Using pseudo-code, write server-side code that contains a vulnerability that allows for
reflected XSS. Your code should be detailed enough that it is clear how XSS attacks
can be made. Explain your code in English (or Swedish). Give a (realistic) example of
how an attacker could use the bug to attack a user of the affected site. Finally, show
how the code should be altered in order to mitigate the attack.

b) Explain what an Insecure Direct Object Reference vulnerability is and give an
example of this kind of vulnerability.

c) Explain why using salting is important when storing passwords for a web app and
explain how salting works.

Question 5: Static analysis (7 points)

Assume int denotes integers with an absolute value that can be arbitrarily large (i.e., no integer over-
flows). Consider the following procedure.

1

int foo(int a, int b){

2 int rslt = 0; [—o0,+oo]

3 int i = 0; - S

4 while(i < a){ o N

5 if(b % 2 == 0){ ’ ’

6 rslt = rslt + 2; s~ »

. Yelsed 0200 0212
8 rslt = rslt + 1; N N N
9 } [-2,-1] [-10] [o1] [1.2]
10 i=1+1; \/\/ \/

11 } e 22220 o021 (00) (L1 [22]
12 assert (rslt >= a); \ |

13 return rslt; \ []/

14 ¥ '

Questions:

1. Symbolic execution:

e Suppose the assertion at line 12 is removed (i.e., commented out). How many possible (i.e.
feasible) paths does the method foo have if the variable a can assume any value in [-10,10]7
(1 pt)

e Now suppose the assertion is put back at line 12 (i.e., it is not commented out anymore).
Give, without discussing its possible satisfiability, the SSA formula for one path condition
that violates the assertion. There might be several path conditions. Just give an SSA formula
for one of them. (2 pts)

2. Abstract interpretation: Annotate, after convergence of a most precise analysis, the start of each

line in foo with an abstract element associated to each one of the defined variables (including
the parameters passed to foo). Use, for each variable or parameter, the interval domain, i.e., the
abstract elements depicted in the lattice to the right of foo. Observe this is not the sign domain
discussed in the course. (2 pts)

Give, without justification, the weakest condition P such that executing the sequence of three
assignments z= x; x= y; y= z+z; (where %, y and z are integer variables with no integer over-
flows) from a configuration satisfying P will always result in a condition satisfying the condition
(Q:x+y>0andy < z). In other words, give the weakest (i.e., most general) predicate P such
that the Hoare triple {P}z= x; x= y; y= z + z;{Q} holds (i.e., is always true or valid). (2 pts).

Question 6: Security testing (6 points)

a) Mutation-based fuzzers typically do not work that well for fuzzing implementations of
stateful network protocols. Explain why and name a fuzzing technique more suited for
this use case.

b) What is the problem with magic constants in fuzzing? Which of blackbox, greybox, or
whitebox fuzzing is best suited to deal with this problem? Briefly motivate

c) In the context of mutation-based fuzzing, what is a seed input? Why would an empty
or random seed input probably not work that well for a black-box mutational fuzzer?

Question 7: Vulnerabilities in C/C++ programs (6 points)

The function add_record on the next page takes a name and a salary as arguments, and
outputs a formatted entry to file. For example, given the name “John Doe” and the salary
4000, the string “John Doe: $4000” will be written to file. The input parameter name can be
assumed to always point to a valid NULL-terminated string, but both the contents of the string
as well as the salary may originate from an untrusted source. The function contains at least

one serious vulnerability.

a) Identify the bug in the code, name the vulnerability type, and explain how the bug
could be triggered. Your answer should include an example of an input that triggers
the bug (but you don’t need to explain how to craft a full exploit).

b) Explain how to fix the bug.

/* Calculates the number of letters (i.e. digits) that are needed
to represent a decimal number as an ASCII string */
size_t count_digits(unsigned int number)

unsigned int left = number;
size_t n = 0;
while(left != 0) {
left = left / 10;
y n++;

return n;

void add_record(const char* name, unsigned int salary)
char buffer[256];

size_t len = strlen(name);
size_t num_digits = count_digits(salary);

/* 5 extra bytes required for colon and space after name +
dollar sign, endline and NULL-terminator */

if(len > SIZE_MAX - 5 || Ten + 5 > SIZE_MAX - num_digits) {
printf("Integer oferflow!\n");
exit(l); /* exit program with error */

len = Ten + num_digits + 5;

if(len > sizeof(buffer)) {
printf("Too Tong string!\n");
exit(l); /* exit program with error */

/* output formatted string to buffer (in the format string,
%s denotes a string, and %u denotes an unsigned int that is
printed as a decimal number) */

sprintf(buffer, "%s: $%u\n", name, salary);

// Write buffer to file
fputs(buffer, global_file_handle);

