
Försättsblad till skriftlig
tentamen vid Linköpings Universitet

Datum för tentamen 2012-04-13

Sal

T2

Tid

8-12

Kurskod

TDDC90

Provkod

TEN1

Kursnamn/benämning

Programvarusäkerhet

Institution IDA

Antal uppgifter som

ingår i tentamen

10

Antal sidor på tentamen (inkl.

försättsbladet)

7

Jour/Kursansvarig David Byers

Telefon under skrivtid 013-282821

Besöker salen ca kl. 9:30, 11:00

Kursadministratör

(namn + tfnnr + mailadress)

Madeleine Häger

282360, madha@ida.liu.se

Tillåtna hjälpmedel

Inga

Övrigt

(exempel när resultat kan ses

på webben, betygsgränser,

visning, övriga salar tentan

går i m.m.)

LiTH, Linköpings tekniska högskola

IDA, Institutionen för datavetenskap

Nahid Shahmehri

Written exam

TDDC90 Software Security

2012-04-13

Permissible aids

Dictionary (printed, NOT electronic)

Teacher on duty

David Byers, 013-282821

Instructions

The exam is divided into two parts with a total of ten questions. You should answer

all questions in all parts. In order to get the highest grade you will need sufficient

points in the second part.

You may answer in Swedish or English.

Grading

Your grade will depend on the total points you score on the exam. The following

grading scale is preliminary and might be adjusted during grading.

Grade 3 4 5

Points required 20 27 35

Question 1: Software security (4 points)

State and briefly explain the two principles and/or practices that you think contribute

the most to good software security. Rank these principles in order of importance, and

motivate your ranking.

You will be graded in part on your priorities and ranking and in part on your

explanations and motivation.

Question 2: Vulnerabilities (3 points)

Briefly explain how the use of a canary can prevent stack-based buffer overflows.

What properties does the canary need to have in order to work?

Question 3: Fuzz testing (2 points)

Give a concrete example of a security problem (code or pseudo-code) that a typical

fuzz testing tool would probably not detect, and suggest an activity (e.g. testing or

analysis) that would be appropriate for detecting that kind of problem. Motivate your

answer.

Question 4: Assurance (2 points)

Which two types of security requirements are used in Common Criteria?

Question 5: Vulnerabilities (2 points)

Explain how a race condition can result in a vulnerability and roughly how it can be

exploited. Give a concrete example (code or pseudocode) containing a race condition

that can (probably) be exploited.

Question 6: Security modeling (4 points)

Consider a typical format string vulnerability in printf.

a. Explain what a Vulnerability Cause Graph (VCG) is and what it is used for.

b. Draw a VCG of the above vulnerability.

c. Explain what a Security Activity Graph (SAG) is and what it is used for.

d. For one of the causes in your VCG, draw a corresponding SAG.

Question 7: Static analysis (8 points)

Assume that a static analyzer uses the following abstract values:

Abstract Denotes value

(?) the set of integers

(+) the set of positive integers

(0) the set {0}

(-) the set of negative integers

Note that 0 is neither positive, nor negative.

What can a sound static analyser find out about the value of x after executing the

following code fragment:

while (x >= 0) { ... } // Loop body is irrelevant

What can a sound static analyser find out about the value of x after executing the

following code fragment:

y = x+1;
if (y <= 0) x = –x–1;

when it is known that initially

- x = 0 (i.e. has abstract value (0))

- x is a positive integer (i.e. has abstract value (+))

- x is a negative integer (i.e. has abstract value (-))

Assume that new abstract values are added

Abstract Denotes value

(0+) the set of non-negative integers

(0-) The set of non-positive integers

Does it improve the analysis results in some of the above cases? In which of them,

and how?

Question 8: Secure design patterns (4 points)

Explain a secure design pattern of your choice, including its purpose, the pattern

itself, and what security benefits it provides.

Question 9: Risk analysis (2 points)

Name and briefly explain two parameters needed to calculate risk.

Question 10: Vulnerabilities (12 points)

The program, readlog, on the next page is used to allow regular users access to read

the last 40 lines of log files they would normally not have access to. The program is

run with a single argument, the name of a file in the /var/log directory that the user

wants to view.

Access is given to files only if the group of the file is logger and the group has read

permissions to the file. Since readlog is installed setuid root, the user executing the

program does not need to be a member of the logger group.

Additionally, the readlog program must log every access to a log file in its own log

file, /var/log/readlog.log; readlog.log must provide an accurate record of which users

have been granted access to which log file: under no circumstances may a user use

readlog to access a log file without this being recorded (however, if readlog does not

give access, then nothing needs to be recorded).

The program works well and compiles without warnings in gcc –W –Wall (this turns

on all relevant warnings). However, the code contains several vulnerabilities.

For at least two security vulnerabilities of different kinds:

- Indicate the code that contains the vulnerability.

- Explain what input might trigger the vulnerability and very roughly how the

vulnerability could be exploited.

- Propose corrections to the code that would eliminate the vulnerability. If you

are unable to write actual code, then write well-explained pseudocode. You

need to show that you understand how the problem could be fixed.

- Name and explain any mitigation techniques in the compiler, libraries or

operating system that could prevent at least one of the vulnerabilities from

being exploited.

Finally, the code violates one fundamental security design principle that is not

reflected in the vulnerabilities in the code. Name and explain that principle.

Code for question 10

#include <stdio.h>

#include <time.h>

#include <unistd.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/param.h>

#include <sys/stat.h>

#include <pwd.h>

#include <grp.h>

#define LOG_LOG "/var/log/readlog.log"

#define LOG_PREFIX "/var/log"

#define LOG_GROUP "logger"

int main(int argc, char **argv) {

 char path[MAXPATHLEN], cmd[MAXPATHLEN + 10];

 struct stat statbuf;

 struct passwd *pw;

 struct group *gr;

 FILE *fp;

 time_t now = time(NULL);

 if (!argv[1]) exit(1); /* No argument given to program */

 // Get information about the "logger" group

 if ((gr = getgrnam(LOG_GROUP)) == NULL)

 exit(1); /* Group didn't exist */

 // Build the path to the log file to show

 sprintf(path, "%s/%s", LOG_PREFIX, argv[1]);

 // Check if access to file is permitted

 if ((stat(path, &statbuf) != 0) || /* No access to file */

 (statbuf.st_gid != gr->gr_gid) || /* Wrong group for file */

 !(statbuf.st_mode & S_IRGRP)) /* Wrong permissions */

 exit(1);

 // Access to the file is permitted

 if ((pw = getpwuid(getuid())) != NULL)

 exit(1); /* Calling user doesn't exist */

 // Log access to the readlog log

 if ((fp = fopen(LOG_LOG, "ab")) == NULL)

 exit(1); /* Logger log didn't exist */

 if (fprintf(fp, "%s %s read %s\n", ctime(&now),

pw->pw_name, argv[1]) <= 0)

 exit(1); /* Failed to write to logger log */

 fclose(fp);

 // Show the file using the "cat" command

 sprintf(cmd, "tail -40 %s", path);

 system(cmd);

 exit(0);

}

Notes on the code for those not very familiar with C

In several places, the code uses a pattern similar to this:

if ((var = func(…)) == NULL)

This is shorthand for:

var = func(…)

if (var == NULL)

This is possible since assignments are simply expressions in C, and return the value that

was assigned. Naturally other comparisons than equals NULL are permitted (and used).

The code uses the following standard C library and Unix functions:

stat gets information about a file such as its owner, permissions and so forth. In the

returned structure, the field st_gid holds the group ID of the file and st_mode holds the

permissions. The bit S_IRGRP is set to 1 if the file is readable by the group (so

statbuf.st_mode & S_IRGRP yields 1 if the group read permission bit is set).

getpwuid(uid) gets information about the user with user ID uid. In this program, we only

use the user’s name. getgrnam(name) gets information about a group with name name.

In this program, we then use the group number, stored in the gr_gid field.

fopen(path, mode) opens the file path, returning a file pointer. The mode ab means open

the file for appending in binary mode. This is the correct mode for this program.

fprintf(fp, fmt, …) outputs a formatted string to the open file pointed to by fp. If the file

failed to open, the program will terminate. On failure, this function returns -1. Otherwise

it returns the number of characters printed. sprintf(buf, fmt, …) outputs a formatted

string into the buffer buf. This function can be assumed to never fail to write the

requested data to the buffer.

Both these functions output the format string (fmt), with the character sequence %s

replaced by the remaining arguments, one at a time. For example, fprintf(fp, "%s and

%s", "one", "two") will output the string “one and two”.

system(cmd) executes the command cmd in a shell (in practice, it starts /bin/sh and

executes the command in the resulting shell).

fclose(fp) closes the open file pointer fp. All open file pointers are also automatically

closed on program exit.

exit(status) closes all files and terminates the program with exit status status.

MAXPATHLEN is the longest a path name (i.e. a filename with complete specification

of directories) can be in Unix. File-related functions will not accept longer paths.

Strings in C are terminated by ASCII NUL (0), i.e. null terminated. Unless otherwise

specified, all functions will return or produce correctly terminated strings.

