
Grading Instructions to
Exam 2023-10-25
There are many different solutions possible. This is working
material. Misspellings and grammar errors do appear.
In almost reverse order

9. Scenario: Suppose that you’ve got the job to develop a software system for a
computerized examination room for Linköping University. The examinations are taken by
students in a specially equipped room as soon as they feel ready. Biological sensors
determine the identity of the students, and electronic sensors aim to ensure that no
communication equipment is brought into the room. Most exam exercises are graded
automatically. There is grading support for essay questions using topic and phrase
extraction from answers. The requirements on security and reliability are high.
You and your four team members start the development project on 8 January 2024 and
start alpha testing on 26 August 2024. You need to use formal procurement procedures
to buy the hardware. This includes publishing specifications, waiting three weeks for bids,
evaluating bids formally, publishing the evaluation result, providing an appeal period, and
writing a contract with the chosen vendor.
Since this project is supported by EU funding, you get payed in EUR and need to
outsource some of the development to another EU country.
Task: Make a list of five relevant risks that need to be monitored. Use your risks to
demonstrate how you can calculate the risk magnitude indicator. Moreover, make a plan
for each identified risk. Select your risks so that you can give examples of four different
types of risk planning: Risk avoidance, risk transfer, risk mitigation, and contingency plan
definition.
Hint: You don’t have to give examples of all types of risk planning for each risk. It is
sufficient if all types of risk planning occur in your entire solution. So Risk #1
demonstrates risk avoidance, Risk #2 highlights risk transfer, etc. (10)

9.

Sample solution:

1. You might lose money when paying staff in local currency. Plan, Avoidance: Pay all
people in EUR. Probalbility: 2 moderate. Impact: tolerable: 2. Risk Magnitude Indicator=4.

2. You might make a mistake in ordering the hardware. Plan, Transfer: Let a procurement
consultant handle the process. Probability: 2 moderate, Impact: 3 serious. RMI=6.

3. There will be communication problems with the team outside Sweden. Plan, mitigation:
Make study visits at both sites. Probability: 4 very high, Impact: 2 tolerable. RMI=8

4. The hardware might be delivered too late to be used in testing. Plan, contingency plan:
Use simulators during testing. Probability: 3 high. Impact: 2 tolerable. RMI=6

5. You might find that you have a too small data set to use topic recognition. Plan,
contingency plan: cooperate with more universities with similar courses. Probability: 1 low,
Impact: 2 tolerable: RMI=2

9. Grading:

2 p per sensible risk and plan

Probability and Impact are just examples and
can vary a lot

-2 p if not all four types of plans are covered.

8. In the list below you find the twelve principles of agile software development from the
Agile manifesto. Select five of them and write down how they can be realized in SCRUM or
eXtreme Programming (XP). For SCRUM, you define which artifacts, roles, or meetings that
are involved. For XP, you mention the practice (rule) that you are referring to. Your
motivations shall be thorough, 5-10 sentences per agile principle. (10)

The twelve principles behind agile software development from the Agile Manifesto

1.Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software.
2.Welcome changing requirements, even late in development. Agile processes harness change for the
customer's competitive advantage.
3.Deliver working software frequently, from a couple of weeks to a couple of months, with a preference
to the shorter timescale.
4.Business people and developers must work together daily throughout the project.
5.Build projects around motivated individuals. Give them the environment and support they need, and
trust them to get the job done.
6.The most efficient and effective method of conveying information to and within a development team is
face-to-face conversation.
7.Working software is the primary measure of progress.
8.Agile processes promote sustainable development. The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.
9.Continuous attention to technical excellence and good design enhances agility.
10.Simplicity--the art of maximizing the amount of work not done--is essential.
11.The best architectures, requirements, and designs emerge from self-organizing teams.
12.At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its
behavior accordingly

8. Sample solution

1. Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

In XP you use user stories, small releases and spike solutions. User stories are obtained
directly from the stakeholders. Spike solutions demonstrate the implementation of the
user story. These rules focus on things highly valued by the customer and postpone
generalizing the implemented functions. With small and frequent releases, the customer
doesn’t have to wait for long to start seeing valuable software and can confirm if you are
on the right track.

 2. Welcome changing requirements, even late in development. Agile processes harness
change for the customer's competitive advantage.

 In SCRUM we divide the work into sprints and each sprint starts with consulting the
continuously prioritized product backlog list. A sprint is typically 1-4 weeks long. This
ensures that the current focus is the top prioritized requirements. Selected items are
refined into a sprint backlog list. Unless there aren’t very large dependencies between
backlog items of many sprints, each sprint begins with a clean table, which means that
both new and old requirements can be handled throughout the process.

(cont’d)

8. Sample solution (cont’d)

3. Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

 In XP we have the rule to make frequent small releases and each release is divided
into iterations. As the names of the rules indicate, it fulfills the principle as regards
the size and frequency. Other rules, such as integrate often and run acceptance tests
assure that we have working software in a continuous flow of the development
project. XP does not mandate any length of releases and iteration but mentions a few
weeks as a recommended pace.

 4. Business people and developers must work together daily throughout the project

This principle is probably not selected. Maybe you can make something from the
implication of SCRUM that uses cross-functional teams, and business people might be
included. The Product owner is supposed to stay in contact with all stakeholders,
including business people. Maybe smart students can give us more material for this.

 (cont’d)

8. Sample solution (cont’d)

5. Build projects around motivated individuals. Give them the environment and support they
need, and trust them to get the job done.

 The idea of having the team as a role in SCRUM realizes this. The assumption in SCRUM is that
the same team members continue working together for many sprints, thus fostering good
cooperation and high group motivation. The team consists of people who have all the
knowledge needed and can thus become autonomous. The role of the SCRUM master is to
help the team to get resources, remove bottlenecks, and to work undisturbed during the
sprint. There is no guarantee that the individuals will become highly motivated by working
together; that is more a general experience.

 6. The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

 This is the core idea behind the term SCRUM and the daily SCRUM meeting. Making sure that
everyone gets at least a condensed version of first-hand information increases productivity by
removing misunderstandings in communication. A physical meeting captures unspoken things
as body language. It is also valuable that each team member recapitulates what was done and
makes a quick plan for the day. The SCRUM meeting puts special emphasis on perceived
problems so that people with the right competence can gather to solve them fast. Without the
daily SCRUM meeting, time will be spent in formulating problem descriptions that need to be
interpreted and can contain ambiguities.

 And so on…

8. Grading:
For each principle we give 2p for sensible motivations of how they are
realized.
The number of sentences is not a strict requirement as long as
descriptions are complete
We withdraw 1p if no references to rules of XP or SCRUM concepts are
referred to.
We withdraw 1p if the student mixes concepts both from XP and
SCRUM
We ignore superfluous information unless it’s a directly false statement,
such as, there is no limit of team size in SCRUM

Section 7
Consider the following block diagram representing the architecture and dependencies of a

multi-tier software system (where an arrow from component A to component B means
that A calls / uses B).

Task: Propose and briefly explain an integration strategy which (a) minimizes the number
of stubs and (b) postpones integration of external services to a later stage integration.

For each integration stage, specify clearly what components are tested together at the
given stage, what stubs are needed. Moreover, define what is the integration order
between the stages! (Each component is uniquely identified by a number next to it, feel
free to use those numbers as abbreviations to help describe your strategy in a more
compact way)

Key considerations and principles:

• The number of stubs is minimized by a bottom-up integration strategy,

• But as the integration of external services needs to be postponed, we need to
design a sandwich integration strategy.

• At each step, we need to integrate one new component

• We should not integrate a component until all its dependent components (other
than the external ones 9 and 10) have already been integrated.

• The dependency graph defines a partial order between components, the correct
solutions should satisfy this partial order.

• At most two stubs are needed, a solution should not introduce more than 2
stubs

Step #1: {6, 8}
Step #2: {5, 6, 8}
Step #3: {3, 5, 6, 8}
Step #4: {2, 3, 5, 6, 8}
Step #5: {1, 2, 3, 5, 6, 8} - Stub: 9
Step #6: {1, 2, 3, 5, 6, 7, 8} - Stub: 9, 10
Step #7: {1, 2, 3, 4, 5, 6, 7, 8} - Stub: 9, 10
Step #8: {1, 2, 3, 4, 5, 6, 7, 8, 9} - Stub: 10
Step #9: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

A sandwich strategy is designed and named (1p: sandwich strategy, 0.5p:
bottom-up strategy) [1/1]
The proposed integration strategy is explained [1/1]
The integration plan is precisely defined and meaningful steps [1/1]
Integration plan integrates all components [1/1]
Stubs are consistently specified in integration strategy (even if not minimal
number) [1/1]
The integration strategy uses the minimal number of stubs (2 stubs, not
more, not less) [1/1]
One new component is integrated at each step (1p: always, 0.5p:
sometimes, 0p: rarely) [1/1]
Components are only integrated after all their dependent components
(except for externals) [2/2]
Integration of external components 9 and 10 is sufficiently delayed [1/1]

Section 6 (a)
Scenario: A graduate student application management system (GRADS)

helps collect and review applications from prospective graduate students
from all around the world to graduate programs offered on different levels
(MSc vs. PhD), in different curricula (e.g., Computer Science, Software
Engineering) and at a given starting time (e.g. Fall 2023). Prospective
graduate students (MSc or PhD students) create a personal profile (with
their name and citizenship) and then upload their application, which must
contain (a) their language exam score and (b) their official transcripts
including their aggregated score. When submitting their application,
students specify their preferred supervisors. GRADS checks if all minimum
criteria of graduate admission are fulfilled and sends automated emails to
prospective students to complete missing information. Professors then
rank applications of those students in GRADS who meet the minimum
criteria and who selected them as a preferred supervisor by assigning a
numeric score. A student may be admitted to the graduate program if he
or she is selected by at least one professor, otherwise his/her application
is rejected.

Task: Draw a domain model in the form of a UML Class Diagram for the
GRADS system showing the domain concepts and their relationships as
well as potential generalizations. Specify multiplicities for your
associations and compositions, and give them meaningful names. Provide
a total of 5 key attributes mentioned in the description above together
with their type. (10)

Solution (Section 6.a)

Section 6 (b)
Scenario: A graduate student application management system (GRADS)

helps collect and review applications from prospective graduate students
from all around the world to graduate programs offered on different levels
(MSc vs. PhD), in different curricula (e.g., Computer Science, Software
Engineering) and at a given starting time (e.g. Fall 2023). Prospective
graduate students (MSc or PhD students) create a personal profile (with
their name and citizenship) and then upload their application, which must
contain (a) their language exam score and (b) their official transcripts
including their aggregated score. When submitting their application,
students specify their preferred supervisors. GRADS checks if all minimum
criteria of graduate admission are fulfilled and sends automated emails to
prospective students to complete missing information. Professors then
rank applications of those students in GRADS who meet the minimum
criteria and who selected them as a preferred supervisor by assigning a
numeric score. A student may be admitted to the graduate program if he
or she is selected by at least one professor, otherwise his/her application
is rejected.

Task: Describe the state-based behavior of the GraduateApplication class by
a UML Statechart diagram. (The GraduateApplication class of the GRADS
system represents the application created or submitted by a graduate
student.) (10)

Admitted Rejected

Evaluated/
Ranked

Submitted

uploadTranscript

submitAppl[langScoreExists &&
transcriptExists] / selectSupervisor

submitAppl
[!langScoreExists || !transcriptExists]/
sendEmail

Supervisor selection
can be a condition
(but then a related
trigger is also needed)

uploadLangScore

A state for a
complete
application can be
introduced

rankAppl

notifyStudent
[selected]

notifyStudent
[!selected]

Triggers:
createAppl
uploadAppl / uploadTranscript /
uploadLangScore
submitAppl
sendEmail
rankAppl
notifyStudent

6 b) Feedback:
UML statemachine syntax is valid (2/2)
States are appropriately named (1/1)
Triggers and actions have proper names (1/1)
Triggers are consistent and complete (1/1)
States are consistent and complete (1/1)
Guards are consistent and complete (1/1)
Transitions are consistent and complete (1/1)
Behavior is compliant with spec (2/2)

Application
Created

createAppl

Solution (Section 6.b)

Section 1.a

Which of the following statements are true? Answer with the statement(s) letter
only, no motivation is needed. (2)

a. A key difference between a functional and non-functional requirement is that
the latter cannot be attributed to a single component, but to the system as a
whole.

b. As user requirements do not contain technical details, but describe what
services the system is expected to provide, user requirements only include
functional requirements but exclude non-functional requirements.

c. Workflow models used in requirements engineering describe how the system
operates in a business context, e.g. within the business processes at a
company.

d. Interviews during the requirement elicitation process help to formally capture
the true needs of the customer hence eliminating all potential fuzziness in
requirements.

Section 1.b
Scenario:

A web-based library management system (LMS) allows library members
to take books on loan. A member can register for the library by
providing his/her address and personal number. Then (s)he can search
for a book with a given title or from designated authors. The library
keeps a limited number of copies for each book. The librarians may
order new books by the end of each month. If a copy of the designated
book is available for a target period, then it can be taken for loan by a
member, and the system records the loan date and return date. One
week before the return date, the system sends an automated reminder
to the member. If the book is returned by the member after the return
date, then the librarian sets a late-return penalty.

Task: Create a UML Use Case diagram for the LMS with key actors and use
cases. Give appropriate names for these actors and use cases, but no
detailed descriptions are needed. (Logging in and logging out are basic
functions, not to be considered as individual use-cases.)

Append a diagram of the use-cases and write in the text which appendix
that contains the answer to this question. (4)

Loan
Book

Register for
Library

Search
Book

Order
Book

Record
Loan Date

Set Late-
return Penalty

Member

Librarian

<<include>
>

Send
Reminder

<<include>
>Return

Book

Grading instructions:
• Correct UML syntax (0.5),
• Naming conventions are kept (0.5)
• 2 Actors (0.5)
• System boundary but no System actor (0.5)
• 4 (grey) UCs for Member (0.25 each)
• 2 UCs for Librarian (0.5)
• 1-2 UCs for System - at least 1 include (0.5)
Partial score can be assigned to each item

Solution (Section 1.b)

Section 1.c)
Scenario: Same as in Problem 1b) above
Task: Write two user stories of the system described above.
Write one non-functional requirement for the system together
with a short recommendation (1-2 sentences) on which level of
testing can it be verified. (4)
• I) As a member, I want to loan a book from the library so that I can read more literature.

II) As a librarian, I want to order books for the library so that our library has a wide
selection of books.

• 1p each if the general template is followed: “As a (role) I want (something) so that
(benefit)”

• The Library Management System shall allow the members to obtain the list of all books
they loaned in less than 1 second for 99.9% of attempts. (1p if it is a NF requirement,
and the recommended contents are there – defines the system, use modal verbs,
defines positive outcome, measurable)

• Non-functional requirements are typically tested on system-level. As NF requirements
are properties of the entire system, hence the entire system needs to be integrated
(cannot be integration test). Moreover, NF requirements are typically system
requirements and not user requirements, so they are not typically part of an acceptance
test suite. (1p)

Section 2.a)

a. The system architecture already contains all decisions on which
functional component needs to be deployed on what platform element.

b. For modern web-based systems, the model-view-controller architecture
is often combined with a layered architecture.

c. The performance of a system can be scaled up by creating a large
number of subsystems with redundant functionality.

d. By introducing a unified interface, the Façade design pattern promotes
high coupling between subsystems.

Section 2.b
Carry out a thorough design review of the following domain

model captured by a UML Class Diagram (5)

Write down your recommendations how the design should be
improved in constructive way as you would propose as a
reviewer as part of a design review.

Member

type: MemberType

Library

name: String

Author Book

copies: Integer
title: String

Loan

loanDate: Date
returnDate: Date

members0..*

1

1

0..*

1

authors0..* books0..*

loansmember

1

books

0..*

0..*

Person
firstName: String
lastName: String

<<enum>>
MemberType

STANDARD
EXCLUSIVE

Solution (Section 2.b)

Section 2.C)

Which non-functional system characteristics can be
enhanced by redundancy and diversity? Give two
examples of a software system where the respective non-
functional characteristic is important. (3)
• Typically, safety is enhanced by redundancy and

diversity. The same functionality is implemented and
deployed by multiple components (redundancy) by
different teams (diversity), the output may be
calculated by voting.

• (1p for naming safety and explaining at least
redundancy or diversity)

• Examples of safety-critical systems: Civil avionics,
modern cars, nuclear plants (1p for each example)

Section 3.a)
Which of the following statements are true? There are exactly
two correct answers, wrong answers give negative score.(2)
a. White box testing can only reveal extra functionality but not

missing functionality.
b. Tests for non-functional requirements are carried out as part

of unit testing.
c. The role of a stub is to call the function under test and pass

test data to it.
d. A test suite that ensures full branch coverage also ensures

full statement coverage.

Section 3.b)

Scenario: A company is paying bonuses to their
employees if they work more than a year and the
company made a profit in the given year. Moreover,
an employee (with at least one year of employment)
receives individual bonus if he or she worked in a
project that was successfully completed.

Task: Create a test table to test a business
functionality that controls the paying of (company
and individual) bonuses. (5)

Solution 3.B)
Inputs Outputs

Worked
for

>1 year

Compan
y

profit?

Project
completed?

Compan
y

Bonus
Indiv
Bonus

F DC DC F F
DC: don't care, any
value

DC F DC F F T: true

T T F T F F: false

T F T F T Underspecified

T T T T T

It is totally acceptable to have a table with 8 rows,
one for each combination of truth values of inputs.
The exercise can be understood in two different
ways concerning when individual bonus is paid (one
possible interpretation is highlighted above)
1p for correctly identifying the three input
conditions, and the two outputs
1p for each of the four semantically different cases
(which may be covered by multiple test cases).
Lines 4 and 5 are treated as a single case.

Section 3.C)
What is the difference between Continuous Integration and
Continuous Delivery? Explain it in 1-2 sentences.
Name two expected benefits and two main challenges for each of
them. (3)
• Continuous integration is a developer practice where developers integrate their work

frequently.
• Continuous delivery is a development practice where every change is treated as a potential

release candidate to deploy and/or to release (1p for defining this difference)
• CI benefits: improved quality, improved predictability, efficiency, speed, easier

troubleshooting, transparency and feedback,enabling continuous deployment, it feels good
(0.5p for naming at least two)

• CI challenges: scalability (with increasing team size), some constant pain, team-internal
integration, manufacturability (0.5p for naming at least two)

• CD benefits: improved quality, improved predictability, efficiency, speed, easier
troubleshooting, transparency and feedback,enabling continuous deployment, it feels good
(0.5p for naming at least two)

• CD challenges: last 1% is 90% of effort, limited time and capacity to test, test flakiness,
establishing trust (0.5p for naming at least two)

4 a) Which of the following statements are true? There are exactly two correct answers,
wrong answers give negative score.(2)

 The definition of an iterative life-cycle model is that components are developed and
integrated with a fully working sub-system.

 A potential drawback of an iterative life-cycle model is that extra administrative
overhead for planning and coordination is added.

 The classical Waterfall life-cycle model can be a good alternative for fixed-priced
contracts.

 An agile method constantly adapts the requirements to fit the system being
developed.

4 b) Describe the following properties of
Kanban in 1-2 sentences: Kanban board, lead
time, and work in progress. Give one
expected advantage of using Kanban. (4)

4 b) Sample solution:

A Kanban board consists of columns describing the state of work items. Each work item
is represented with a yellow sticker card. When an item has fulfilled all criteria for a
state, the card is moved to the next column. Typical columns can be backlog, selected,
under development, deployed, delivered.

Lead time is the time it takes on average to process an item from customer order to
delivery.

Work in progress is the number of items that are simultaneously in a state other than
backlog or delivered. The work in progress is limited to a predefined number for each
state to avoid multitasking.

(cont’d)

4 b) (cont’d)

Advantages with Kanban are:

• Eliminate over-production, the #1 waste

• Produce only what is ordered, when ordered, & quantity ordered

• Increase flexibility to meet customer demand

• Competitive advantage by sequencing shipments to customers (what they want,
when they want it, in the order they want it!)

• The Kanban board gives a good overview of the status of the project

 Grading:

1p per correct and understandable description of concepts

1p for an advantage

4 c) Suppose you are developing software in
time-boxed iterations. Name each of the four
dependent project parameters and describe if it
is locked or free to change. Give two examples of
what you can do if one of the (free) parameters
changes. (4)

4 c)
Sample solution:
For time-boxed iterations the four dependent project parameters are:
• Calender time – locked
• Resources – free
• Features – free
• Quality – free

Example 1: Change: Resources – a person leaves the team. Solution: Features – cut some
features for the delivery.

Example 2: Change: Quality – the customer wants the software to run on more
platforms. Solution: Resources – add people with knowledge about the new platforms.

Grading:
2p for all parameters correctly named and classifies
1p per sensible example
Adding more people late to a project will lead to further delays (Brooks law). We still
allow this solution, since we only mentioned this orally at the lectures.

5 a) Which of the following statements are true? There are exactly two correct
answers, wrong answers give negative score. (2)

 In an inspection, it is good if the inspectors have very similar competence to give a
statistical ground for process improvement.

 An audit is a software review with no written documents; the participants discuss
about the ideas of the software

 You normally record data about the inspection itself in order to improve the
expensive inspection process.

 Both the author and the inspection leader take part in the exit-and-follow-up
phase of the inspection process

5 b) Suggest two different software metrics for measuring the maintainability of
software. Don’t forget to briefly motivate (in 2-3 sentences) why the metrics
can give information of the maintainability. (4)

5 b)
Sample solution:
Description: Average Cyclomatic complexity
How to obtain data: This metric is often included in development tools and metrics
plugins
How to calculate the metric: Read off the value, if the average is not an option,
calculate the average from the values per function or method.
Relevant quality factor: Analysabiltiy. Several studies and recommendations try to
keep the value low since in general it is hard for a human to understand the code
with high cyclomatic complexity. Understanding the code is a necessary step to
change it. Changing the code is inevitable in most maintenance efforts.

Description: Average lead time
How to obtain data: Time stamp change requests, and record when the change
request is done (according to your definition of done)
How to calculate the metric: For each change request, calculate time done – time
received. Take the average for a given number of change requests.
Relevant quality factor: Modifiability. A high speed indicates good maintainability
since most maintenance implies change. If change is relatively fast, this indicates
that both the product and the process are fit for maintainability work.

Grading:
1p for the first three items per metric
1p for the description of relevant quality factor per metric

5 c) Scenario: Life isn’t easy: Your end-users complain that even though your
software is failure-free and has a good-looking GUI, you miss certain
features (functions) that “everyone” in their company know are sometimes
needed. Your employees are really appreciating your personal feedback, but
it comes sporadically and is based on your feelings only. As a complement,
they would like to have more regular and objective feedback.

Task: Describe a CMMI process area that you think will help you the most. A
description is typically 5-6 sentences that covers Introductory
notes and/or Specific goals. Also, describe how this will help your company.
(4)

5 c) Sample solution:
PPQA – Process and Product Quality Assurance
The purpose of PPQA is to provide stakeholders with objective insights of process and products.
Assessing the product and process quality can be done in different ways, for instance, by
measuring characteristics or by reviewing artifacts and documents. An important part is that the
methods used are based on predefined criteria. This ensures objectivity and alignment with the
goals of the organizations. Objectivity can be further strengthened if the evaluation is performed
by an independent organization, but this is not possible in a small organization. The result is fed
back to the developing organization and deviations from targets are handled in the project,
sometimes with help from company leadership or experts.

The company will be helped by the necessity to clearly formulate its goals. These goals are then
broken down into criteria for different work-products and processes. In the process of setting
goals, there will be reviews that make sure that nothing is forgotten. It will take a while of
experimentation until well accepted criteria are in place, but once this is done the employees will
accept the feedback as objective. The more the personnel are involved, the faster the
experiments will be finished.

Grading:
2p for a good PA description. If only the purpose statement is elaborated 1p.
2p for a good motivation.
There are different PAs that can be applicable to the problem. For example, Verification or
Validation can provide a statement of the product to ship.

Total credits Mark

0-49 U

50-66 3

67-83 4

84- 5

Marks

Allowed aids
 Two sheets of

handwritten A4 papers
(you can write on both
sides)

 One volume of dictionary
to or from English or an
English wordbook.

Explicitly forbidden aids
 Textbook
 Machine-written pages
 Printout from drawing

software
 Photocopied pages
 Pages of another

format than A4
 Electronic equipment

Hints

• Register for the exam
• If necessary, reserve a guest computer
• Never guess on the first multiple-choice questions

of each KA
• Bring a good pen for diagrams and sketches
• Have the nerve to read through the exam first
• Use time-boxing and buffer time
• Do as the exam invigilators say
• If you have questions, wait until we pass your table.

Thanks for listening!

GOOD LUCK!

	Grading Instructions to Exam 2023-10-25
	Bildnummer 2
	Bildnummer 3
	Bildnummer 4
	Bildnummer 5
	Bildnummer 6
	Bildnummer 7
	Bildnummer 8
	Bildnummer 9
	Bildnummer 10
	Section 7
	Bildnummer 12
	Section 6 (a)
	Solution (Section 6.a)
	Section 6 (b)
	Solution (Section 6.b)
	Section 1.a
	Section 1.b
	Solution (Section 1.b)
	Section 1.c)
	Section 2.a)
	Section 2.b
	Solution (Section 2.b)
	Section 2.C)
	Section 3.a)
	Section 3.b)
	Solution 3.B)
	Section 3.C)
	Bildnummer 29
	Bildnummer 30
	Bildnummer 31
	Bildnummer 32
	Bildnummer 33
	Bildnummer 34
	Bildnummer 35
	Bildnummer 36
	Bildnummer 37
	Bildnummer 38
	Bildnummer 39
	Bildnummer 40
	Bildnummer 41
	Hints
	Bildnummer 43

