
Lena Buffoni (including material by Kristian Sandahl/Mariam Kamkar)
Department of Computer and Information Science

2024-09-16

Software
Engineering Theory

Presentatörsanteckningar
Presentationsanteckningar
Detta är en generell mall för att göra PowerPoint presentationer enligt LiU:s grafiska profil.
Du skriver in din rubrik och eventuell underrubrik i det blå fältet på sid 1. Det blå fältet kan justeras för att
stämma överens med rubrikens längd. Namn och institutionstillhörighet ersätter den svarta texten.
Börja sedan skriva in din text på sid 2.
För att skapa nya sidor, tryck Ctrl+M.
Sidan 3 anger placering av bilder och grafik. Titta gärna på ”Baspresentation 2011” för exempel.
Den sista bilden är en avslutningsbild som visar LiU:s logotype och webbadress.
Om du vill ha fast datum, eller ändra författarnamn, gå in under Visa, Sidhuvud och Sidfot.

2

How do you test a ballpoint pen?

• Does the pen write in the right color,
with the right line thickness?

• Is the logo on the pen according to
company standards?

• Is it safe to chew on the pen?
• Does the click-mechanism still work

after 100 000 clicks?
• Does it still write after a car has run

over it?

What is expected from this pen?

Intended use!!

3

Verification vs Validation

Are we building the
system right?

Are we building the
right system?

Presentatörsanteckningar
Presentationsanteckningar
In other words, validation is concerned with checking that the system will meet the customer’s actual needs, while verification is concerned with whether the system is well-engineered, error-free, and so on. Verification will help to determine whether the software is of high quality, but it will not ensure that the system is useful.

4

Testing software
• Are the functions giving

correct output?
• Are the integrated modules

giving correct output?
• Is the entire system giving

correct output when used?
• Is the correct output given in

reasonable time?
• Is the output presented in

an understandable way?
• Was this what we really

expected?

Software testing is an activity in
which a program is executed
under specified conditions,
the results are observed, and
an evaluation is made of the
program.

5

Other methods for Validation & Verification

• Formal verification (Z and B methods)
• Model checking
• Prototyping
• Simulation
• Software reviews

6

”Testing shows the
presence, not the
absence of bugs“

(Edsger Wybe
Dijkstra)

…but you might use experience and
statistics to make some kind of
assessment.

Error, Fault, Failure

7

Human error (Mistake, Bug)

Can lead to

Can lead to

Fault (Defect, Bug)

Failure

8Basic Definitions – lecture notes

The terminology here is taken from standards developed by the institute of Electronics and Electrical
Engineers (IEEE) computer Society.

Error: people make errors. A good synonym is mistake. When people make mistakes while coding, we
call these mistakes bugs. Errors tend to propagate; a requirements error may be magnified during
design and amplified still more during coding.

Fault: a fault is the result of an error. It is more precise to say that a fault is the representation of an
error, where representation is the mode of expression, such as narrative text, data flow diagrams,
hierarchy charts, source code, and so on. Defect is a good synonym for fault, as is bug. Faults can be
elusive. When a designer makes an error of omission, the resulting fault is that something is missing
that should be present in the representation. We might speak of faults of commission and faults of
omission. A fault of commission occurs when we enter something into a representation that is
incorrect. Faults of omission occur when we fail to enter correct information. Of these two types, faults
of omission are more difficult to detect and resolve.

Failure (anomaly): a failure occurs when a fault executes. Two subtleties arise here: one is that failures
only occur in an executable representation, which is usually taken to be source code, or more precisely,
loaded object; the second subtlety is that this definition relates failures only to faults of commission.
How can we deal with failures that correspond to faults of omission?

9Who does the testing?

Developer
Understands the
system but, will test
"gently"
and is driven by
"delivery”

Independent Tester
Must learn about
the system, but will
attempt to break it
and, is driven by
quality

– Development team needs to work with Test team
– “Egoless Programming”

That is not how
you are supposed

to test it!!!!

Presentatörsanteckningar
Presentationsanteckningar
To ensure quality, reviews of code by other programmers are made. Egoless programming - personal factors are minimized so that quality may be improved – fixing bugs =/=rewriting code

10

How is the testing done?

• No point in testing
without a plan

• Define at what
stages what types
of testing will be
performed

?

?

11The V-model from the tester perspective

Requirements
Specification Fault Resolution

Fault
Isolation

Design

Coding

Testing

Fault
Classification

Error

Error

Error

Error

Fault

Fault

Fault

Incident

Fix

Putting Bugs IN
Development phases

Finding Bugs
Testing phase

Getting Bugs OUT

Program behavior

S O

Specification
(expected
behavior)

Program
(observed
behavior)

Correct portion

Missing
functionality
(Faults of
omission)

Extraa
Functionality
(Faults of
commission)

12

Types of Faults
13

• Algorithmic: division by zero

• Computation & Precision: rounding error

• Documentation: discrepancy between documentation and code

• Stress/Overload: data-structure size (dimensions of tables, size of buffers)

• Capacity/Boundary: x devices, y parallel tasks, z interrupts

• Timing/Coordination: failure to meet real-time deadlines

• Throughout/Performance: failure in processing x requests/minute

• Recovery: power failure

• Hardware & System Software: problems with network connection

• Standards & Procedure: a release has not been properly reviewed

14

Contents of a Test Case

"Boilerplate": author, date, purpose, test case ID
Pre-conditions (including environment)
Inputs
Expected Outputs
Observed Outputs
Pass/Fail

Test

Test case Test suite

15

Testing Approaches

Specification Program

Functional
(Black Box)

establishes confidence

Structural
(White Box)
seeks faults

input output

R1: Given input, the software
shall provide output.

X

Find input and output so that
X is executed.

16

The oracle problem

Test

Object

Input

Output

Oracle

Two Types of Oracles

17

• Human: an expert that can examine an input and its
associated output and determine whether the
program delivered the correct output for this
particular input.

• Automated: a system capable of performing the
above task.

R2: “The answer is 42.”
42.0

41.99999
XVII 4242

Black-box/ closed box testing

18

Testing based only on specification:

1. Exhaustive testing

2. Equivalence class testing (Equivalence Partitioning)

3. Boundary value analysis

4. Test tables

1. Exhaustive testing

19

Definition: testing with every member of the input
value space.

Input value space: the set of all possible input values to
the program.

– Sum of two 16 bit integers: 232 combinations

One test per ms takes about 50 days.

2. Equivalence Class Testing

20

• Equivalence Class (EC) testing is a technique
used to reduce the number of test cases to a
manageable level while still maintaining
reasonable test coverage.

• Each EC consists of a set of data that is treated
the same by the module or that should produce
the same result. Any data value within a class is
equivalent, in terms of testing, to any other
value.

21

Identifying the Equivalence Classes
Taking each input condition (usually a sentence or phrase in the specification)
and partitioning it into two or more groups:

– Input condition
• range of values x: 1-50

– Valid equivalence class

• 1 <= x <= 50

– Invalid equivalence classes

• x < 1

• x > 50

x
1 50

x
1 50

x
1 50

Two-variable example
22

Validate loan application forms against the rule:

• If you are 18 years and older, you can borrow
maximally 100.000, but not less than 10.000.

• Variable: age
– EC1: age < 18

– EC2: age >= 18

• Variable: sum
– EC3: sum < 10.000

– EC4: 10.000 <= sum <= 100.000

– EC5: sum > 100.000

Two-variable example, test-cases

Test-case id Age Sum Valid form

1 32 55.300 Yes

2 13 72.650 No

3 44 9.875 No

4 50 60.000 Yes

5 87 103.800 No

23

Arbitrary, valid sums

Arbitrary, valid ages

Two linked variables
SEPTEMBER 17,

2024
24

Validate loan application forms against the rule:

• If you are 21 years and older, you can borrow
maximally 100.000, but not less than 10.000.

• If you are between 18 and 21 you can borrow between
10.000 and 20.000.

Now you have to think
about the combination
between the variables!

Two-variable example, updated
25

• Variable: age
– EC1: age < 18

– EC2: 18 <= age <=21

– EC3: 21 < age

• Variable: sum
– EC4: sum < 10.000

– EC5: 10.000 <= sum <= 20.000

– EC6: 20.000 < sum <= 100.000

– EC7: sum > 100.000

Valid EC

Weak EC approach, valid EC testing:
26

Age/Sum Under 18 18 - 21 Over 21

Under 10.000

10.000-20.000

20.001-100.000

Over 100.000

Each valid EC/ variable covered at least once

Strong EC approach , valid EC testing :
27

Age/Sum Under 18 18 - 21 Over 21

Under 10.000

10.000-20.000

20.001-100.000

Over 100.000

All valid combinations covered

Guidelines
28

1. If an input condition specifies a range of values; identify one valid
EC and two invalid EC.

2. If an input condition specifies the number (e.g., one through 6
owners can be listed for the automobile); identify one valid EC and
two invalid EC (- no owners; - more than 6 owners).

3. If an input condition specifies a set of input values and there is
reason to believe that each is handled differently by the program;
identify a valid EC for each and one invalid EC.

4. If an input condition specifies a “must be” situation (e.g., first
character of the identifier must be a letter); identify one valid EC (it
is a letter) and one invalid EC (it is not a letter)

5. If there is any reason to believe that elements in an EC are not
handled in an identical manner by the program, split the
equivalence class into smaller equivalence classes.

Applicability and Limitations

29

• Most suited to systems in which much of the input data takes on values
within ranges or within sets.

• It makes the assumption that data in the same EC is, in fact, processed
in the same way by the system. The simplest way to validate this
assumption is to ask the programmer about their implementation.

• EC testing is equally applicable at the unit, integration, system, and
acceptance test levels. All it requires are inputs or outputs that can be
partitioned based on the system’s requirements.

3. Boundary Value Testing

30

Boundary value testing focuses on the boundaries
simply because that is where so many defects hide.
The defects can be in the requirements or in the code.

Technique

31

1. Identify the ECs.

2. Identify the boundaries of each EC.

3. Create test cases for each boundary value by
choosing one point on the boundary, one point just
below the boundary, and one point just above the
boundary.

32

Specification: the program accepts four to
eight inputs which are 5 digit integers
greater than or equal to 10000.

Less than 4 Between 4 and 8 More than 8

Number of input values

Less than 10000 Between 10000 and 99999 More than 99999

Input values

33

Boundary value analysis

10000

9999 10001

99999

99998 100000

Less than 10000 Between 10000 and 99999 More than 99999

Applicability and Limitations

34

Boundary value testing is equally applicable at the
unit, integration, system, and acceptance test levels.
All it requires are inputs that can be partitioned and
boundaries that can be identified based on the
system’s requirements.

It makes the assumption that the implementation is
consistent for entries of the same type!

35

Test table

Id Monthly salary Has a
history of
successful
loans

Employment
duration

Loan
application

1 45.000 SEK Yes 1 year Granted

2 45.000 SEK No 5 years Granted

3 45.000 SEK No 2 years Sent for
review

… … … … …

“If a client been employed over 3 years and has a salary over
40.000 SEK or has a history of succesful loans, the loan is granted
automatically, otherwise the application is sent for review”

36Control-flow based coverage

Statement coverage

All statements
executed

37Control-flow based coverage

Branch coverage

All decision
branches tried

38Control-flow based coverage

Full path coverage

All possible paths
executed

39

Example

public int returnInput(int start, boolean c1, boolean c2, boolean c3) {
int x = start;
int y = 0;
if (c1) y = y + x;
if (c2) x++;
if (c3) y = 0;
return y;

}

SEPTEMBER 17,
2024

40

Levels of testing

Specification

Design

Design
Refinement

Component/module verification: Unit testing

Subsystem level integration and
Verification: Integration testing of Units

System level integration test
calibration and verification

Product verification and Deployment:
Acceptance and release testing

Maintenance

Realization

Detailed feature design and
Implementation

Architectural design and
system functional design

Preliminary feature design

System
requirements

Level of Abstraction

Documentation, Version and Configuration Management

Verification

Integration

Calibration

Experience Feedback

Unit Testing

41

Objective: to ensure that code implemented the design
properly.

Design SpecificationCode = System

Often done by the programmers themselves.

xUnit

42

• xUnit is a set of tools for regression testing

• x denotes a programming language

• Junit, for Java is one of the earliest and most popular

• TDDC88 has a lab – do that

• Recommended primer:

http://www.it-c.dk/~lthorup/JUnitPrimer.html

Presentatörsanteckningar
Presentationsanteckningar
Regression testing is a type of software testing that seeks to uncover new software bugs, or regressions, in existing functional and non-functional areas of a system after changes such as enhancements, patches or configuration changes, have been made to them.
The purpose of regression testing is to ensure that changes such as those mentioned above have not introduced new faults.[1] One of the main reasons for regression testing is to determine whether a change in one part of the software affects other parts of the software.[2]

43

JUnit interface

assertEquals("Checks the boundary value 5", true, tester.isBetween5and10(5));

message if fail expected actual

Test-Driven Development (TDD)
44

source: Redmond Developer

Behaviour Driven Development (BDD)
45

• A refinement of TDD
The criteria for naming tests: the software under
test should do something

public void shouldDoX() { // ... }

• Example: ClientDetailsValidatorTest {
public void testShouldFailForMissingSurname (){...}
public void testShouldFailForMissingTitle (){...} }

• If a test does not fit the pattern  refactor
• Choosing the next test: What is the next most

important behaviour?

46

Integration testing

Component code

Unit test

Tested components

Integrated module

Unit test

Integration test

Design
Specification

Integration Testing strategies

48

1. Big-bang
2. Bottom-up
3. Top-down
4. Sandwich

Three level functional decomposition tree

A

CB D

E F HG

Level 1

Level 2

Level 3

Big-Bang testing

Unit
test A

Unit
test B

Unit
test H

…

System-wide
test

Environment:
A, B, C, D, E, F, G, H

Driver

A pretend module that requires a sub-system
and passes a test case to it

Black-box view

setup driver
SUT(x)
verification

SUT

driver

SUT

System
Under
Test

Bottom-up testing

E, F, B

D, G, H

A, B, E, F, C, D, G, H

Is bottom-up smart?
• If the basic functions are complicated, error-prone or has

development risks

• If bottom-up development strategy is used

• If there are strict performance or real-time requirements

Problems:

• Lower level functions are often off-the shelf or trivial

• Complicated User Interface testing is postponed

• End-user feed-back postponed

• Effort to write drivers.

Stub
• A program or a method that simulates the input-

output functionality of a missing sub-system by
answering to the decomposition sequence of the
calling sub-system and returning back simulated or
”canned” data.

SUT
Service(x)

Check x Stub
Return y;
end

SUT

Stub

Top-down testing

A, B, C, D
A, B, E, F, C, D, G, H

Is top-down smart?
• Test cases are defined for functional requirements of the

system

• Defects in general design can be found early

• Works well with many incremental development methods

• No need for drivers

Problems:

• Technical details postponed, potential show-stoppers

• Many stubs are required

• Stubs with many conditions are hard to write

Sandwich testing

A, B, C, D

E, F, B

G, H, D

A, B, E, F, C, D, G, H

target level

58

Is sandwich testing smart?

• Top and Bottom Layer Tests can be done in
parallel

• Problems:
• Does not test the individual subsystems on

the target layer thoroughly before integration

Presentatörsanteckningar
Presentationsanteckningar
Advantages of Sandwich Testing
Sandwich approach is useful for very large projects having several subprojects. When development follows a spiral model and the module itself is as large as a system, then one can use sandwich testing.
Both Top-down and Bottom-up approach starts at a time as per development schedule. Units are tested and brought together to make a system .Integration is done downwards.
It needs more resources and big teams perform both bottom-up and top-down methods of testing at a time or one after the other.
Disadvantages of Sandwich Testing
It require very high cost for testing because one part has Top-down approach while another part has bottom-up approach.
It cannot be used for smaller system with huge interdependence between different modules. It makes sense when the individual subsystem is as good as complete system.
Different skill sets are required for testers at different level as module are separate system handling separate domains like ERP products with modules representing different functional areas.

59

System Testing

Function testing/Thread testing 60

A function test checks that the integrated system performs its function as
specified in the requirement

• Guidelines

– know the expected actions and output

– test both valid and invalid input

– never modify the system just to make testing easier

– have stopping criteria

(testing one function at a time)
functional requirements

61

Testing non-functional requirements

• Stress tests
• Timing tests
• Volume tests
• Configuration tests
• Compatibility tests
• Regression tests
• Security tests

• (physical) Environment tests
• Quality tests
• Recovery tests
• Maintenance tests
• Documentation tests
• Human factors tests / usability

tests

62

Acceptance Testing

Benchmark test: a set of special test
cases

Pilot test: everyday working
- Alpha test: at the developer’s site,
controlled environment
- Beta test: at one or more customer
site.

Parallel test: new system in parallel
with previous one

Customers, users needs

63

GUI Testing
• GUI application is event driven; users can cause any of several

events in any order – this means testing sequences - explosion of
number of tests

• Unit testing is typically at the “button level”; that is buttons have
functions, and these can be tested in the usual unit-level sense.

• The essence of system-level testing for GUI applications is to
exercise the event-driven nature of application

• GUI testing is more expensive/harder to automate – consistent
unit testing at lower levels can help reduce cost

• Challenges: Repeatability and regression

A wide range of GUI testing tools has appeared on the market over
the past few years.

TDDC88 has a lab on Selenium

64

Smoke test

• Important selected tests on
module, or system

• Possible to run fast
• Build as large parts as

possible as often as possible
• Run smoke tests to make

sure you are on the right
way

65

Termination Problem :
How decide when to stop testing

• The main problem for managers!

Termination is influenced by:
• Deadlines, e.g. release deadlines, testing deadlines;
• Test cases completed with certain percentage passed;
• Test budget has been depleted;
• Coverage of code, functionality, or requirements

reaches a specified point;

Summary

66

• Testing context and goals

• Fault classification

• Black Box techniques

• White box techniques

• Testing at different levels

• Non functional requirement testing

www.liu.se

The end. Thank you! Questions?

	Software Engineering Theory
	How do you test a ballpoint pen?
	Verification vs Validation
	Testing software
	Other methods for Validation & Verification
	Bildnummer 6
	Error, Fault, Failure
	Basic Definitions – lecture notes
	Who does the testing?
	How is the testing done?
	The V-model from the tester perspective
	Program behavior
	Types of Faults
	Contents of a Test Case
	Testing Approaches
	The oracle problem
	Two Types of Oracles
	Black-box/ closed box testing
	1. Exhaustive testing
	2. Equivalence Class Testing
	Identifying the Equivalence Classes
	Two-variable example
	Two-variable example, test-cases
	Two linked variables
	Two-variable example, updated
	Weak EC approach, valid EC testing:
	Strong EC approach , valid EC testing :
	Guidelines
	Applicability and Limitations
	3. Boundary Value Testing
	Technique
	Bildnummer 32
	Boundary value analysis
	Applicability and Limitations
	Test table
	Control-flow based coverage
	Control-flow based coverage
	Control-flow based coverage
	Example
	Levels of testing
	Unit Testing
	xUnit
	JUnit interface
	Test-Driven Development (TDD)
	Behaviour Driven Development (BDD)
	Bildnummer 46
	Bildnummer 47
	Integration Testing strategies
	Three level functional decomposition tree
	Big-Bang testing
	Driver
	Bottom-up testing
	Is bottom-up smart?
	Stub
	Top-down testing
	Is top-down smart?
	Sandwich testing
	Is sandwich testing smart?
	Bildnummer 59
	Function testing/Thread testing
	Testing non-functional requirements
	Acceptance Testing�
	GUI Testing
	Smoke test
	Termination Problem : �	How decide when to stop testing
	Summary
	Bildnummer 67

