Software Architecture

Daniel Varrd / Kristian Sandahl

II LINKOPING
o UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl iVI'dI ntenance

Validate Requirements, Verify Specificatior

Acceptance Test
(Release testing)

4

Requirements

Verify System Design

System Design System Testing

(Architecture, (Integration testing of modules)
High-level Design)

Verify Module Design

' Module Design

(Program Design,
Detailed Design)

Module Testing

(Integration testing of units)
Verify Implementation

Implementation

of Units (classes, procedures,
functions)

Project Management, Software Quality Assurance (SQA), Supporting Tools, Education

II LINKOPINGS
) UNIVERSITET

Motivation for Architecture

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11

Why should we design a system?

Why not go directly?

Carol
the customer th: ggg{(er
Requirements Implementation

II LINKOPING
L UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 5

Constructing a building...

| need a tower,
with a big

Ulla

The king's
requirements

Construction

II LINKOPING
L) UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11

Constructing a building...

e Architecture Ulla

The king's
requirements

Construction

II LINKOPING
L) UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 7

Constructing software...

Software is different

e No physical natural order of construction
(e.g. start with the foundation of the house)
e Software is not tangible

That’s not to say that customers
and implementers should not

y meet!
e Sometimes a large semantic gap
* You need a map to coordinate efforts |
-_.
Architecture
Carol
the customer Harry

the hacker

Requirements Implementation

II LINKOPING
L UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 8

Constructing software... @ D

R 0

Abstraction
System Design

Werity Modula Duesign :
Werdy Implamantstan
(e Fuzzy distinction

High-level Design) = Sometimes several levels
Sometimes only one level

Module Design

(Program Design,

Detailed Design)

Carol

the customer th:ﬁggl,(er
Requirements Implementation

II LINKOPING
L) UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 9

Why design and document software architectures?

.

=»c

Communication between stakeholders
A high-level presentation of the system.
Use for understanding, negotiation and communication.

Early design decisions

Profound effect on the systems quality attributes, e.g.
performance, availability, maintainability etc.

Large-scale reuse

If similar system have common requirements, modules
can be identified and reused. (Bass et.al., 2003)

LINKOPING
II." UNIVERSITY

System vs. Software Architecture:
General Concepts and Views

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 11

Analyze and Synthesize a system

(decompose and compose)
Imagine a "virtual" System a "concrete” System

Acceptance Test
(Release testing)

Requirements

System Testing

"concrete” modules (Integration testing
of modules)

System Design Divide into "virtual"

(Architecture, modules
High-level Design)

Module Design _ Module Testing
(Program Design, Design each module (Integration testing
Detailed Design)

of units)

Implementation
of Units (classes, procedures, Unit testing
functions)

LINKOPING
II.“ UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 12

Analyze and Synthesize a system
(decompose and compose)

Requirements Acceptance Test
(Release testing)

_ _]] em Testing
Design is an iterative process! e

> Throw away Prototyping ¥
» Evolutionary Prototyping

» The world is nearly
decomposable*

System Design
(Architecture,
High-level Design)

Module Design viouule Testing

(Program Design, (Integration testing
Detailed Design) of units)

Implementation
of Units (classes, procedures, Unit testing
functions)
v |
*Herbert Simon

1 Adaptive Cruise Control —

2 Electronic Brake Systerm MKG0E L e

3 Sensor Cluster o B

4 Gateway Data Transmitter ,.

5 Force Feadback "
Accelerator Pedal Lo

6 Door Control Unit '

7 Sunroof

Control Unit

8 Reversible Seatbelt
Pretensioner
9 Seat Control Unit
10 Brakes
11 Closing Velocity Sensor
12 Side Satellites
13 Upfront Sensor
14 Airbag Control Unit

http://www.ni.com/white-paper/6163/en/

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 14

Overview of System Architecture

Functional Platform
Architecture Description

Allocation

System Architecture

II LINKOPING
L) UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 15

Functional / Logical Architecture

Functional (logical) decomposition of
system into subsystems / components

- Component: Deployable &
executable unit with precise
interfaces at well-defined Fausiloiel e
points of service

- Interfaces: Functionality, Allocation
Interaction

System

II LINKOPING Architecture
o UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 16

Platform Description

Specification of HW/SW platform:

- Nodes: Execution units (processors, ECUs)
- Their physical interconnection (e.g., buses, wires)

Examples:

- AUTOSAR (automotive) vl Deceription
- ARINC 653 (avionics)

- Cloud providers, IT infra. Allocation

System

I LINKOPING Architecture
I. UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 17

Allocation

Mapping of functional components to
hardware/software platform by respecting:

Schedule, timeliness constraints
Redundancy, fault-tolerance

requirements Functional Platform

Architecture Description

Reliability, availability
agreements Allocation
Performance constraints

System

I LINKOPING Architecture
I. UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 18

System Architecture

Result of the allocation step that:
- Is ready for deployment
- Specifies or derives configuration files

Functional Platform
Architecture Description

Allocation

System

I LINKOPING Architecture
I. UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl

Block (Box-anc

Encryption /
Decryption

2024-09-11 19

-line) diagrams...

Logging

Module, Subsystem,
Element, Entity,
Component...

-

|

(many names)

Relationship,

|Identification &
Authentication

Packet Session
Handler Handler
<

shows data and/or
control flow

Interface

User

Database

LINKOPING
II.“ UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 20

Coupling - dependency between modules

/]

Uncoupled - no dependencies Loosely coupled - few dependencies

—

What do we want?
N

— Low coupling. Why?

IZlli . Replaceable

— = Enable changes
—

= Testable - isolate faults
Highly coupled - many dependencies = Understandable

LINKOPING
II.“ UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 21

Cohesion - relation between internal parts of the module

Low cohesion - the parts e.g. functions Medium cohesion - some logically

have less or nothing in common. related function, e.g. I/O related
functions

What do we want?

High cohesion. Why?

= More understandable
= Easier to maintain

High cohesion - does only what it is designed for

LINKOPING
II.“ UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 22

Architectural views

Implementation Execution Deployment
(code) view view view
Server
Module
T On different machines?
L .
Client
. *
Packages, components, Components, connectors, sub- One machine? Different
artifacts, repositories systems (box-and-line) CPUs?

II LINKOPING
L UNIVERSITY

Architecture Modeling in UML

Well-known Diagra

Software Architecture/Daniel Varré & Kri

Sandah

UML 2.5
Diagram

JAN

ms of UML in architecture

2024-09-1

Structure Behavior
Diagram Diagram
/\ /\
Use-Case
Class Package Diagram
Diagram Diagram
State
Machine
Object Component Diagram
Diagram Diagram Interaction
Diagram
/\
Deployment Sequence
~ | Diagram Diagram

LINKOPING
II.“ UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 25

Implementation view with packages

A developer’s perspective:] dependency

1. What ing to develop?
atare we going to develop? | sui e L
2. Where is the code?

1 v 1 v
Transaction | Encryption/
manager | decryption
Package ;
e QOrganize work
* Compile together ! I
¢ Name space e > Storage
manager

Packages can be used to give an overall structure to other things
than code, e.g., Use Cases and Classes

II LINKOPING
L UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 26

Component diagram with interfaces

provided interface

o spell-check
DICt|Onary required interface
—ment
Older notation: Alternative notation:
| | <<component>>

LINKOPING
II.“ UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 27

Subsystem with components

<<subsystem>> word-book

L]
il

port

\

:
g

—
—

Dictionary

|
!
|

delegation connector

—
—

Search engine

L

7\

II LINKOPING
L UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl

Artifacts

Physical code, file, or library

<<artifact>>
clientCrypto.jar

<<use>>

<<artifact>>
serverCrypto.jar

<<artifact>>
clientCrypto.jar

<<manifest>>

<<component>>
Encryption

The artifact implements
the component

2024-09-11

28

II LINKOPING
L UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 29

Deployment view in UML

Node, physical hardware

<<protocol>>
TCP/IP

<<client>> <<server>>

<<artifact>>
serverCrypto.jar

<<artifact>> <<use>>
clientCrypto.jar

Communication path

II LINKOPING
L UNIVERSITY

Architecture and Quality Factors

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 31

Several quality factors - sometimes overlap
Non-functional requirements...

Modifiability
Portability
Maintainability
Reliability

Testability
Availability

Performance

Scalability

LINKOPING
II.“ UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 32

How to design a system for better performance?

What do we mean by “better performance”?
* Throughput?

« Response time in an interactive system?

II LINKOPING
o UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 33

Performance

Scale up...

Scale out...

II LINKOPING
L) UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 35

Three Aspects of Security

Confidentiality e Only authorized users can read
the information

e E.g. Military

Availability Integrity

i) .))) ® Only authorized users can
 Right information is available at the right time modify, edit or delete data.

e Important for everyone e E.g. bank systems

II LINKOPING
L) UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 36

How to design a secure system?

Authenticator
Encryption layer
User
System
Authenticator
Server

II LINKOPING
L UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 37

Less naive NIST Zero Trust logical components

Policy Engine
Policy
Administrator

Control Plane

CDM System Policy

Decision
Point

Industry
Compliance

ID
Management

Threat
Intelligence

SIEM System

Activity Logs

Data Plane

Rose, S., Borchert, O. , Mitchell, S. and Connelly, S. (2020), Zero Trust Architecture, Special
Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD, [online],
https://doi.org/10.6028/NIST.SP.800-207,
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930420 (Accessed September 2, 2022)

II LINKOPING
o UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 39

Safety - absence of critical faults

Critical failures can create
great damage to property,
environment and lives.

E.g. cars,
civil aircrafts
military
products

II LINKOPING
L UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl

2024-09-11

Isolate the most critical parts

The whole system

Critical

Design so that all safety
critical operations are
located in one or few
modules / subsystems.

How can we validate that a safety critical system

is correct?

= Formal validation?

= Testing?

= Software reviews?

= Experience?

40

CINKOPING
UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 42

Redundancy + Diversity

Same specification,
Caller different teams
Back-up or voting
Manager
Critical Critical Critical
functions 1 functions 2 functions n

LINKOPING
II.“ UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 43

Maximizing non-functional system

characteristics with architectural design
 Performance:

- Scale-up: Creating a small number of large subsystems,

- Scale-out: Parallel computations (see cloud)

Security:

Maximized by layering systems with critical assets
protected in the innermost layer

No information up-read / down-flow
Safety:

Maximized by placing critical safety functions in a small
number of subsystems

II LINKOPING
o UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 44

Maximizing non-functional system
characteristics with architectural design
« Availability:

- Maximized through redundant subsystems to allow
hot-swapping for updates

« Maintainability:

- Maximized by creating a large number of small,
independent subsystems

II LINKOPING
o UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 45

Balancing tradeoffs in architectural design

e Performance:

- Maximized by creating a small number of large
subsystems

« Maintainability:

- Maximized by creating a of :
independent subsystems

II LINKOPING
L UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 47

How to a portable system?

Historically, a major factor in technology decisions.

II LINKOPING
o UNIVERSITY

Software Architecture/Daniel Varrd & Kristian Sandahl

2024-09-11 48

Containers and virtual machines

VM VM VM
App A App B App B
Bins/Libs | | Bins/Libs | | Bins/Libs
Guest OS Guest OS Guest OS

Hypervisor
Infrastructure

e.g. Virtual box, WMware

Container Container Container
App A App B App C
Bins/Libs | Bins/Libs = Bins/Libs

Container Engine
Host operating system

Infrastructure

e.g. Docker

LINKOPING
II.“ UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11

Usability - How easy is it and what support
exists to perform a task

Relevance
Efficiency
Attitude
Learnability

50

II LINKOPING
L UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl

Separate interface and logic

GUI

Comnand line

Logic

2024-09-11

51

Persistence

LINKOPING
UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 53

How to create a testable system?

At least 40% of the cost of well-engineered system is due to testing
(Bass et. al., 2003)

LINKOPING
II.“ UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 54

Control, observation, isolation

Can I observe this state?

Is the code
cohesive?

|
Can I make this transition happen?

II LINKOPING
L) UNIVERSITY

Architectural Styles

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 57

Architectural patterns/styles

 abstract descriptions of tried-and-tested
solutions to common application problems

 describe when it is a good idea to use and
when it should be avoided!

II LINKOPING
o UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl

Architecture Styles / Patterns

Example of styles and patterns
ient-Server
Layering

= Pipes-and-filters
= Service-oriented
odel-View-Co (MVC)
= Repository

= Peer-to-Peer

Discussed today

2024-09-11

58

LINKOPING
II." UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 59

1. Client-Server

\

Clients initiate
communication

The clients need to be

aware of the server™~~—_

II LINKOPING
L) UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 60

1515

1. CIien-Sﬂwerve

Clients initiate
communication

The clients need to be

aware of the server. ™~

II LINKOPING
L) UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11

1. Client-Server

Two-Tier, Thin-client Two-Tier, Fat-client Three-Tier

61

Client Client Client

Presentation
layer layer

Presentation
layer
Business _
Server Layer Middle-ware
Business Business
Layer Server Layer

DEF!
management

DEIF!
management
- Heavy load on server + Distribute workload on management

Server

clients

- Significant network

traffic - System management + Map each layer on separate
problem, update software on hardware
clients + Possibility for load-balancing

II LINKOPING
L) UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 62

2. Layers

Highest — %
Abstraction

In a “pure” layered model,
only the immediate below
layer can be accessed

Application

TCP/UDP Transport

Layer bridging — can access

Network lower than the closest one

Ethernet Data link Ethernet

CI' LINKOPING Server
oY UNIVERSITY

2024-09-11 63

Software Architecture/Déaniel Varré & Kristian Sandahl

2. Layers

layer 3
layer 3

Pros Cons

= Could give performance penalties

= Easy reuse of layers
= Layer bridging loses modularity

= Support for standardization

= Dependencies are kept local -
modification local to a layer

= Supports incremental
development and testing

II LINKOPING
L UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 64

3. Pipes and Filters

Pipes Filters

-

Example: UNIX Shell

1ls -R |grep “html$" |sort

Example: A Compiler

cerrElte Intermediate et

analysis : _ation :
Generation M Generation

LINKOPING
II." UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 65

Pipes and Filters

Pros:

* Good understandability

= Supports reuse of filters

= Evolution eased

= Analyses of e.g. throughput are possible to early
Cons:

= Redundant parsing of data => performance penalties

II LINKOPING
o UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl

2024-09-11

Model-View- Controller

Controller View
' selection
Maps user actions » Renders model
to model updates Requests model updates
Selects view ~ Sends user events to
User events | controller
A
Change
notification
State
change State query
Model
Encapsulates application
— > state e —

LINKOPING
II.“ UNIVERSITY

MNotifies view of state

changes

68

Software Architecture/Daniel Varrd & Kristian Sandahl

Typical Web App as Layer Architecture

Frontend

LINKOPING
UNIVERSITY

Service
request

—>

€——

Service
response

Backend

Data
request

—>

——

Data
response

2024-09-11

Persistence

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 70

Typical Web App as Client-Server Architecture

-
Client 1 Service 1
Frontend service Backend Persistence
reques: & o
Web Frontend fesponke Participant
Management
>
\
4

Android Frontend Event

Management

. LINKOPING)
Cllerllo“ UNIVERSITY \Serwce 2

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 71

Typical Web App as MVC Architecture

4 N\ 4
View Controller Model

Frontend Backend Persistence

Participant lanipuy ETETEES
Management

Web Frontend

tes Entities

re

Database /
Storage

Android Frontend Event
Management

<€
Ilo“ H“K!%EIQI[T;Y \ Updates (DTOs) y

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 72

Layered Architecture in Backend

Frontend Backend Persistence

Business
Entities

Web Frontend RESTAPI | =laielef
lls Managerne:nt

| Parti-
- cipant

Service

Event
Manage m2nt

Android Frontend Database /

Storage

II uLINKOPING REST Business
O UNIVERSITY Controller service

Documenting the Architecture

Software Architecture/Déaniel Varré & Kristian Sandahl

Adapted Example From Industry

Enterprise Data
Source A

Enterprise Data
Source B

Enterprise Data
Source C

Other Systems

How do the

boxes communicate?

Data Systems Interface

S

=

si1ejdepy

]

What do they represent?

Data Visualization Data Storage Social/lComm Notification
(Data Type A) System Service
Data Storage Data Storage
(Data Type B) (Data Type C)
Orchestrator
Message Bus ‘
Platform

‘ Adapters ‘

External Data ; -
Source X Custom Storage Custom Analysis System Monitoring

Are their meanings consistent?

2024-09-11 75

Execution Slave

Execution Slave

What is going on with
the vertical axis?
What do the colors

represent?
2

LINKOPING
UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 76

Coming back to documents...

Write from the point of view of the readers...

Stakeholder Use of the architect document
~Requirements engineers Negotiate and make tradeoffs among
requirements
Architects/Designers Resolve quality issues (e.g. performance,
maintainability etc.) - -
Architects/Designers A tool to structure and analyze the system :%E!
Designers Design modules according to interfaces
Developers Get better understanding of the general product
Testers and Integrators Specify black-box behavior for system testing
Managers Create teams that can work in parallel with
e.g. different modules. Plan and allocate
resources.
New software engineers To get a quick view of what the system is doing ,L
Quality assurance team Make sure that implementation corresponds E
to architecture.
vz

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 77

When to document?

N After implementation
In|t|.al Design (consistent with code?)
design . :

iterations

[l

LINKOPING
II.“ UNIVERSITY

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 78

The Architecture Notebook makes it easy to
understand the architecture decisions

Maintains a list of:
— Issues
— Decisions
— Design patterns
— Pointer to code
« Supports iterative development of an architecture.
« Emphasizes the communication between roles
« Aligns with requirements.

* https://www.ida.liu.se/~TDDC88/openup/practice.tech.evoluti
onary arch.base/workproducts/architecture notebook 9BBg2
433.html?nodeld=9351a72b

LINKOPING
II.“ UNIVERSITY

https://www.ida.liu.se/~TDDC88/openup/practice.tech.evolutionary_arch.base/workproducts/architecture_notebook_9BB92433.html?nodeId=9351a72b
https://www.ida.liu.se/~TDDC88/openup/practice.tech.evolutionary_arch.base/workproducts/architecture_notebook_9BB92433.html?nodeId=9351a72b
https://www.ida.liu.se/~TDDC88/openup/practice.tech.evolutionary_arch.base/workproducts/architecture_notebook_9BB92433.html?nodeId=9351a72b

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 79

Introduce the architecture and the document

1. Purpose

What will be included in the document?

2. Architectural goals and philosophy

What will drive the project?

E.g. High performance, adapt software, micro services
Critical issues addressed by the architecture

E.g. usability, scalability, modularity

3. Assumptions and dependencies

E.g. time, sKkills, resources, H/W dependencies

II LINKOPINGS
o UNIVERSITET

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 80

4. Architecturally significant requirements
(ASR) determine the architecture

ASR can be:

« Important functions, e.g. persistence, authentication
« Non-functional, e.g. response time, portability

« High benefits to stakeholders, e.g. early demo wanted

« Handling a risk, e.g. availability of components

When the ASRs are met the architecture is stable!

II LINKOPINGS
o UNIVERSITET

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 81

5.

List decisions together with constraints and

justifications

Technology choices of all kinds

E.g "We will use a DBMS, since the user needs
advanced search and filter.”

E.g. "We will use the React framework since the app
will run in multiple browsers.”

E.g. "We will not use a service-oriented architecture
since the customer don't think enough providers will
register.”

LINKOPINGS
UNIVERSITET

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 82

6. Architectural Mechanisms are solutions
that will be standardized in development

AMs evolve in different states, e.g.

Analysis mechanism | Design mechanism | Implementation mechanism

Persistence RDBMS MySQL

Communication Message broker RabbitMQ

Make design coherent
Support the buy/make decision

LINKOPINGS
Il.u UNIVERSITET

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11 83

Architectural Mechanisms are often
described in basic attributes

E.g. persistence:

« Granularity

* Volume

« Duration

* Retrieval mechanism
« Update frequency

 Survivability

II LINKOPINGS
o UNIVERSITET

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11

/.

Key abstractions are the most important

concepts the system will handle

Typically most high-level analysis classes, e.g.
customer, catalogue, shopping-basket, payment

Patterns, e.g. facade or observer

Without key abstractions you cannot describe the
system

84

LINKOPINGS
UNIVERSITET

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11

8. Layers/architectural framework describe
the components of an architectural style

« Elements of a box-and-line diagram, e.g. client and
server

« Description of interfaces connecting elements

85

II LINKOPINGS
o UNIVERSITET

Software Architecture/Déaniel Varré & Kristian Sandahl 2024-09-11

Summary

« Decompose-compose
* Coupling and cohesion

 Architectural views (implementation, execution,
deployment)

« UML notations (Component, Subsystem, Artifact,
Deployment)

* Quality factors vs architecture

« Architectural styles (Client-server, Layered, Pipes-and-
filters, Service-oriented)

« The architectural notebook
« Much more in course: TDDE41 Software Architecture

86

LINKOPING
II.“ UNIVERSITY

Software Architecture /
Daniel Varro & Kristian Sandahl

www.liu.se

II LINKOPING
o UNIVERSITY

	Default Section
	Slide 1: Software Architecture
	Slide 2

	Motivation
	Slide 3
	Slide 4: Why should we design a system?
	Slide 5: Constructing a building...
	Slide 6: Constructing a building...
	Slide 7: Constructing software...
	Slide 8: Constructing software...
	Slide 9: Why design and document software architectures?

	General Concepts
	Slide 10
	Slide 11: Analyze and Synthesize a system (decompose and compose)
	Slide 12: Analyze and Synthesize a system (decompose and compose)
	Slide 13
	Slide 14: Overview of System Architecture
	Slide 15: Functional / Logical Architecture
	Slide 16: Platform Description
	Slide 17: Allocation
	Slide 18: System Architecture
	Slide 19: Block (Box-and-line) diagrams...
	Slide 20: Coupling - dependency between modules
	Slide 21: Cohesion - relation between internal parts of the module
	Slide 22: Architectural views

	Architecture Modeling in UML
	Slide 23
	Slide 24
	Slide 25: Implementation view with packages
	Slide 26: Component diagram with interfaces
	Slide 27: Subsystem with components
	Slide 28: Artifacts
	Slide 29: Deployment view in UML

	Architecture and Quality
	Slide 30
	Slide 31: Several quality factors - sometimes overlap
	Slide 32: How to design a system for better performance?
	Slide 33: Performance
	Slide 35: Three Aspects of Security
	Slide 36: How to design a secure system?
	Slide 37: Less naïve NIST Zero Trust logical components
	Slide 39: Safety - absence of critical faults
	Slide 40: Isolate the most critical parts
	Slide 42: Redundancy + Diversity
	Slide 43: Maximizing non-functional system characteristics with architectural design
	Slide 44: Maximizing non-functional system characteristics with architectural design
	Slide 45: Balancing tradeoffs in architectural design
	Slide 47: How to a portable system?
	Slide 48: Containers and virtual machines
	Slide 50: Usability - How easy is it and what support exists to perform a task
	Slide 51: Separate interface and logic
	Slide 53: How to create a testable system?
	Slide 54: Control, observation, isolation

	Architectural Styles
	Slide 56
	Slide 57: Architectural patterns/styles
	Slide 58: Architecture Styles / Patterns
	Slide 59: 1. Client-Server
	Slide 60: 1. Client-Server
	Slide 61: 1. Client-Server
	Slide 62: 2. Layers
	Slide 63: 2. Layers
	Slide 64: 3. Pipes and Filters
	Slide 65: Pipes and Filters
	Slide 68: Model-View-Controller
	Slide 69: Typical Web App as Layer Architecture
	Slide 70: Typical Web App as Client-Server Architecture
	Slide 71: Typical Web App as MVC Architecture
	Slide 72: Layered Architecture in Backend

	Documenting the Architecture
	Slide 74
	Slide 75: Adapted Example From Industry
	Slide 76: Coming back to documents...
	Slide 77: When to document?
	Slide 78: The Architecture Notebook makes it easy to understand the architecture decisions
	Slide 79: Introduce the architecture and the document
	Slide 80: 4. Architecturally significant requirements (ASR) determine the architecture
	Slide 81: 5. List decisions together with constraints and justifications
	Slide 82: 6. Architectural Mechanisms are solutions that will be standardized in development
	Slide 83: Architectural Mechanisms are often described in basic attributes
	Slide 84: 7. Key abstractions are the most important concepts the system will handle
	Slide 85: 8. Layers/architectural framework describe the components of an architectural style
	Slide 86: Summary
	Slide 87

