
Software Architecture
Dániel Varró / Kristian Sandahl

2

Requirements

System Design
(Architecture,

High-level Design)

Module Design
(Program Design,

Detailed Design)

Implementation
of Units (classes, procedures,

functions)

Unit testing

Module Testing
(Integration testing of units)

System Testing
(Integration testing of modules)

Acceptance Test
(Release testing)

Validate Requirements, Verify Specification

Verify System Design

Verify Module Design

Verify Implementation

Project Management, Software Quality Assurance (SQA), Supporting Tools, Education

MaintenanceSoftware Architecture/Dániel Varró & Kristian Sandahl 2024-09-11

Motivation for Architecture

Why should we design a system?

4

Harry
the hacker

Carol
the customer

Requirements Implementation

Why not go directly?

Software Architecture/Dániel Varró & Kristian Sandahl 2024-09-11

Constructing a building...

5

Construction
The king's

requirements

Ulla

I need a tower,
with a big
clock...

Software Architecture/Dániel Varró & Kristian Sandahl 2024-09-11

Constructing a building...

6Software Architecture/Dániel Varró & Kristian Sandahl

Construction

Ulla
Architecture

The king's

requirements

2024-09-11

Constructing software...

7Software Architecture/Dániel Varró & Kristian Sandahl

Architecture

Carol
the customer

Requirements

Harry
the hacker

Implementation

Software is different
• No physical natural order of construction
(e.g. start with the foundation of the house)

• Software is not tangible
• Sometimes a large semantic gap
• You need a map to coordinate efforts

2024-09-11

That’s not to say that customers
and implementers should not
meet!

Constructing software...

8Software Architecture/Dániel Varró & Kristian Sandahl

Carol
the customer

Requirements

Harry
the hacker

Implementation

System Design
(Architecture,
High-level Design)

Module Design
(Program Design,
Detailed Design)

Abstraction

Fuzzy distinction

▪ Sometimes several levels

▪ Sometimes only one level

2024-09-11

Why design and document software architectures?

9Software Architecture/Dániel Varró & Kristian Sandahl

Communication between stakeholders

A high-level presentation of the system.

Use for understanding, negotiation and communication.

Early design decisions

Profound effect on the systems quality attributes, e.g.

performance, availability, maintainability etc.

(Bass et.al., 2003)

Large-scale reuse

If similar system have common requirements, modules

can be identified and reused.

2024-09-11

System vs. Software Architecture:
General Concepts and Views

Analyze and Synthesize a system
(decompose and compose)

11Software Architecture/Dániel Varró & Kristian Sandahl

Requirements

System Design
(Architecture,
High-level Design)

Module Design
(Program Design,
Detailed Design)

Implementation
of Units (classes, procedures,
functions)

Unit testing

Module Testing
(Integration testing

of units)

System Testing
(Integration testing

of modules)

Acceptance Test
(Release testing)

Imagine a "virtual" System

Divide into "virtual"

modules

a "concrete" System

Design each module

"concrete“ modules

2024-09-11

Analyze and Synthesize a system
(decompose and compose)

12Software Architecture/Dániel Varró & Kristian Sandahl

Requirements

System Design
(Architecture,
High-level Design)

Module Design
(Program Design,
Detailed Design)

Implementation
of Units (classes, procedures,
functions)

Unit testing

Module Testing
(Integration testing
of units)

System Testing
(Integration testing
of modules)

Acceptance Test
(Release testing)

"concrete"

modules

Design is an iterative process!

➢ Throw away Prototyping

➢ Evolutionary Prototyping

➢ The world is nearly

decomposable*

*Herbert Simon

2024-09-11

http://www.ni.com/white-paper/6163/en/
1
3

Overview of System Architecture

14

Platform
Description

Allocation

System Architecture

Functional
Architecture

2024-09-11Software Architecture/Dániel Varró & Kristian Sandahl

Functional / Logical Architecture
15

Platform
Description

Allocation

System
Architecture

Functional
Architecture

Functional (logical) decomposition of

system into subsystems / components

- Component: Deployable &
executable unit with precise
interfaces at well-defined
points of service

- Interfaces: Functionality,
interaction

2024-09-11Software Architecture/Dániel Varró & Kristian Sandahl

Platform Description
16

Platform
Description

Allocation

System
Architecture

Functional
Architecture

Specification of HW/SW platform:

- Nodes: Execution units (processors, ECUs)
- Their physical interconnection (e.g., buses, wires)

Examples:
- AUTOSAR (automotive)
- ARINC 653 (avionics)
- Cloud providers, IT infra.

2024-09-11Software Architecture/Dániel Varró & Kristian Sandahl

Allocation
17

Platform
Description

Allocation

System
Architecture

Functional
Architecture

Mapping of functional components to

hardware/software platform by respecting:

- Schedule, timeliness constraints
- Redundancy, fault-tolerance

requirements
- Reliability, availability

agreements
- Performance constraints

2024-09-11Software Architecture/Dániel Varró & Kristian Sandahl

System Architecture

18

Platform
Description

Allocation

System
Architecture

Functional
Architecture

Result of the allocation step that:
- Is ready for deployment
- Specifies or derives configuration files

2024-09-11Software Architecture/Dániel Varró & Kristian Sandahl

Block (Box-and-line) diagrams...

19Software Architecture/Dániel Varró & Kristian Sandahl

Logging

Identification &
Authentication

User

Database

Encryption /
Decryption

Packet
Handler

Session
Handler

Module, Subsystem,

Element, Entity,

Component...

(many names)

Interface

Relationship,

shows data and/or

control flow

2024-09-11

Coupling - dependency between modules

20Software Architecture/Dániel Varró & Kristian Sandahl

Uncoupled - no dependencies Loosely coupled - few dependencies

Highly coupled - many dependencies

What do we want?

Low coupling. Why?

▪ Replaceable

▪ Enable changes

▪ Testable - isolate faults

▪ Understandable

2024-09-11

Cohesion - relation between internal parts of the module

21Software Architecture/Dániel Varró & Kristian Sandahl

What do we want?

High cohesion. Why?

▪ More understandable

▪ Easier to maintain

Low cohesion - the parts e.g. functions

have less or nothing in common.
Medium cohesion - some logically

related function, e.g. I/O related

functions

High cohesion - does only what it is designed for

2024-09-11

Architectural views

22Software Architecture/Dániel Varró & Kristian Sandahl

Implementation

(code) view

Execution

view
Deployment

view

Module

Client

Server

On different machines?

One machine? Different

CPUs?

Components, connectors, sub-

systems (box-and-line)
Packages, components,

artifacts, repositories

2024-09-11

Architecture Modeling in UML

Well-known Diagrams of UML in architecture
UML 2.5

Diagram

Behavior

Diagram

Structure

Diagram

Class

Diagram

Object

Diagram

Deployment

Diagram

Component

Diagram

Package

Diagram

Use-Case

Diagram

State

Machine

Diagram

Interaction

Diagram

Sequence

Diagram

2

4

242024-09-11Software Architecture/Dániel Varró & Kristian Sandahl

Implementation view with packages

25Software Architecture/Dániel Varró & Kristian Sandahl

A developer’s perspective:
1. What are we going to develop?
2. Where is the code?

GUI

Transaction
manager

Encryption/
decryption

Storage
 manager

Package
• Organize work
• Compile together
• Name space

dependency

Packages can be used to give an overall structure to other things
than code, e.g., Use Cases and Classes

2024-09-11

Component diagram with interfaces

26Software Architecture/Dániel Varró & Kristian Sandahl

Dictionary

spell-check

supplement

Older notation:

<<component>>

Alternative notation:

provided interface

required interface

2024-09-11

Subsystem with components

27Software Architecture/Dániel Varró & Kristian Sandahl

Dictionary

Search engine

<<subsystem>> word-book

port

delegation connector

2024-09-11

Artifacts

28Software Architecture/Dániel Varró & Kristian Sandahl

<<artifact>>
clientCrypto.jar

<<artifact>>
serverCrypto.jar

<<use>>

Physical code, file, or library

<<artifact>>
clientCrypto.jar

<<manifest>> <<component>>
 Encryption

The artifact implements
the component

2024-09-11

Deployment view in UML

2024-09-11 29Software Architecture/Dániel Varró & Kristian Sandahl

<<artifact>>
clientCrypto.jar

<<artifact>>
serverCrypto.jar

<<use>>

<<protocol>>
TCP/IP

Node, physical hardware

Communication path

<<client>> <<server>>

Architecture and Quality Factors

Several quality factors - sometimes overlap

31Software Architecture/Dániel Varró & Kristian Sandahl

Maintainability

Availability

Performance

Modifiability

Scalability

Portability

Reliability

Safety

Usability

Testability

Non-functional requirements...

2024-09-11

How to design a system for better performance?

What do we mean by “better performance”?

• Throughput?

• Response time in an interactive system?

2024-09-11 32Software Architecture/Dániel Varró & Kristian Sandahl

Performance

33Software Architecture/Dániel Varró & Kristian Sandahl

Scale out...

Scale up...

2024-09-11

Three Aspects of Security

2024-09-11 35Software Architecture/Dániel Varró & Kristian Sandahl

CIA

Confidentiality • Only authorized users can read
the information
• E.g. Military

Integrity

• Only authorized users can
modify, edit or delete data.

• E.g. bank systems

Availability

• Right information is available at the right time
• Important for everyone

How to design a secure system?

2024-09-11 36Software Architecture/Dániel Varró & Kristian Sandahl

System
User

Encryption layer

Authenticator

Authenticator

Server

Less naïve NIST Zero Trust logical components

2024-09-11 37Software Architecture/Dániel Varró & Kristian Sandahl

Rose, S. , Borchert, O. , Mitchell, S. and Connelly, S. (2020), Zero Trust Architecture, Special

Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD, [online],

https://doi.org/10.6028/NIST.SP.800-207,

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930420 (Accessed September 2, 2022)

Safety - absence of critical faults

39Software Architecture/Dániel Varró & Kristian Sandahl 2024-09-11

Critical failures can create
great damage to property,
environment and lives.

E.g. cars,
civil aircrafts
military
products

Isolate the most critical parts

40Software Architecture/Dániel Varró & Kristian Sandahl

How can we validate that a safety critical system

is correct?

▪ Formal validation?

▪ Testing?

▪ Software reviews?

▪ Experience?

Design so that all safety

critical operations are

located in one or few

modules / subsystems. Critical

The whole system

2024-09-11

Redundancy + Diversity

2024-09-11 42Software Architecture/Dániel Varró & Kristian Sandahl

Critical
functions 1

Critical
functions 2

Caller

Manager

Critical
functions n…

Same specification,
different teams
Back-up or voting

Maximizing non-functional system
characteristics with architectural design
• Performance:

- Scale-up: Creating a small number of large subsystems,

- Scale-out: Parallel computations (see cloud)

• Security:

- Maximized by layering systems with critical assets
protected in the innermost layer

- No information up-read / down-flow

• Safety:

- Maximized by placing critical safety functions in a small
number of subsystems

2024-09-11 43Software Architecture/Dániel Varró & Kristian Sandahl

Maximizing non-functional system
characteristics with architectural design
• Availability:

- Maximized through redundant subsystems to allow
hot-swapping for updates

• Maintainability:

- Maximized by creating a large number of small,
independent subsystems

2024-09-11 44Software Architecture/Dániel Varró & Kristian Sandahl

Balancing tradeoffs in architectural design

• Performance:

- Maximized by creating a small number of large
subsystems

• Maintainability:

- Maximized by creating a large number of small,
independent subsystems

2024-09-11 45Software Architecture/Dániel Varró & Kristian Sandahl

How to a portable system?

2024-09-11 47Software Architecture/Dániel Varró & Kristian Sandahl

Historically, a major factor in technology decisions.

Containers and virtual machines

2024-09-11 48Software Architecture/Dániel Varró & Kristian Sandahl

VM

App A App C

Bins/Libs Bins/Libs

Guest OS

ContainerVM

App B

Bins/Libs

Guest OS

VM

App B

Bins/Libs

Guest OS

App B

Bins/Libs

Container

App A

Bins/Libs

Container

HypervisorHypervisor

InfrastructureInfrastructure

Container Engine

Host operating system

Infrastructure

e.g. Virtual box, WMware e.g. Docker

Usability - How easy is it and what support
exists to perform a task

50Software Architecture/Dániel Varró & Kristian Sandahl 2024-09-11

Relevance
Efficiency
Attitude
Learnability

Separate interface and logic

2024-09-11 51Software Architecture/Dániel Varró & Kristian Sandahl

GUI

Comnand line

LogicLogic Persistence

How to create a testable system?

2024-09-11 53Software Architecture/Dániel Varró & Kristian Sandahl

At least 40% of the cost of well-engineered system is due to testing

(Bass et. al., 2003)

Control, observation, isolation

2024-09-11 54Software Architecture/Dániel Varró & Kristian Sandahl

Can I make this transition happen?

Can I observe this state?

Is the code
cohesive?

Architectural Styles

Architectural patterns/styles

• abstract descriptions of tried-and-tested
solutions to common application problems

• describe when it is a good idea to use and
when it should be avoided!

2024-09-11 57Software Architecture/Dániel Varró & Kristian Sandahl

Architecture Styles / Patterns

58Software Architecture/Dániel Varró & Kristian Sandahl

Example of styles and patterns
▪ Client-Server
▪ Layering
▪ Pipes-and-filters
▪ Service-oriented
▪ Model-View-Control (MVC)
▪ Repository
▪ Peer-to-Peer

Discussed today

2024-09-11

1. Client-Server

59Software Architecture/Dániel Varró & Kristian Sandahl

Server

Client Client Client

The clients need to be
aware of the server.

Clients initiate
communication

2024-09-11

1. Client-Server

60Software Architecture/Dániel Varró & Kristian Sandahl

Server

Client Client Client

The clients need to be
aware of the server.

Clients initiate
communication

2024-09-11

1. Client-Server
61Software Architecture/Dániel Varró & Kristian Sandahl

Presentation

layer

Business

Layer

Client

Server

Data

management

Two-Tier, Fat-client

Presentation

layer

Business

Layer

Client

Server

Data

management

Two-Tier, Thin-client

Presentation

layer

Client

Middle-ware

Business

Layer

Server

Data

management

Three-Tier

- Heavy load on server
- Significant network

traffic

+ Distribute workload on
clients
- System management
problem, update software on
clients

+ Map each layer on separate
hardware

+ Possibility for load-balancing

2024-09-11

2. Layers

62Software Architecture/Dániel Varró & Kristian Sandahl

layer 3

layer 2

layer 1

layer 3
layer 1

layer 3

Highest
Abstraction

Defined
Interfaces

Client

IP

Ethernet

Application

Transport

Network

Data link

SSL

HTTP

Server

TCP/UDPTCP/UDP

IP

Ethernet

SSL

HTTP In a “pure” layered model,
only the immediate below
layer can be accessed

Layer bridging – can access
lower than the closest one

2024-09-11

2. Layers

63Software Architecture/Dániel Varró & Kristian Sandahl

Pros Cons

▪ Easy reuse of layers
▪ Support for standardization
▪ Dependencies are kept local -

modification local to a layer
▪ Supports incremental

development and testing

▪ Could give performance penalties
▪ Layer bridging loses modularity

layer 3
layer 1

layer 3

2024-09-11

3. Pipes and Filters
64Software Architecture/Dániel Varró & Kristian Sandahl

Example: UNIX Shell

lexer parser
semantic

analysis

Intermediate

Code

Generation

Optimi-

zation

ls -R |grep “html$" |sort ls grep sort

Example: A Compiler

FiltersPipes

Input Output

Code

Generation

2024-09-11

Pipes and Filters

Pros:

▪ Good understandability

▪ Supports reuse of filters

▪ Evolution eased

▪ Analyses of e.g. throughput are possible to early

Cons:

▪ Redundant parsing of data => performance penalties

2024-09-11 65Software Architecture/Dániel Varró & Kristian Sandahl

Model-View-Controller

2024-09-11 68Software Architecture/Dániel Varró & Kristian Sandahl

Typical Web App as Layer Architecture

2024-09-11 69Software Architecture/Dániel Varró & Kristian Sandahl

PersistencePersistenceBackendBackendFrontendFrontend

Service
request Data

request

Data
response

Service
response

FrontendFrontend

Client 1

Typical Web App as Client-Server Architecture

2024-09-11 70Software Architecture/Dániel Varró & Kristian Sandahl

PersistencePersistenceBackendBackendService
request &
responseWeb Frontend

Android Frontend

Client 2

Participant
Management

Event
Management

Service 2

Service 1

FrontendFrontend

Typical Web App as MVC Architecture

2024-09-11 71Software Architecture/Dániel Varró & Kristian Sandahl

PersistencePersistenceBackendBackend

User
request

Updates (DTOs)

Web Frontend

Android Frontend

View

Participant
Management

Event
Management

ModelController

Business
Entities

Database /
Storage

Manipu-
lates

FrontendFrontend

Layered Architecture in Backend

2024-09-11 72Software Architecture/Dániel Varró & Kristian Sandahl

PersistencePersistenceBackendBackend

REST API
calls

Web Frontend

Android Frontend

Participant
Management

Event
Management

Business
Entities

Database /
Storage

Manipu-
lates

Parti-
cipant
Ctrl

Parti-
cipant
Ctrl

Parti-
cipant
Service

Parti-
cipant
Service

REST
Controller

Business
service

Documenting the Architecture

Adapted Example From Industry

75Software Architecture/Dániel Varró & Kristian Sandahl

What is going on with
the vertical axis?

How do the
boxes communicate?

What do they represent?

Are their meanings consistent?

What do the colors
represent?

…?

2024-09-11

Coming back to documents...

76Software Architecture/Dániel Varró & Kristian Sandahl

Write from the point of view of the readers...

Stakeholder Use of the architect document

Requirements engineers Negotiate and make tradeoffs among

requirements

Architects/Designers Resolve quality issues (e.g. performance,

maintainability etc.)

Architects/Designers A tool to structure and analyze the system

Designers Design modules according to interfaces

Developers Get better understanding of the general product

Testers and Integrators Specify black-box behavior for system testing

Managers Create teams that can work in parallel with

e.g. different modules. Plan and allocate

resources.

New software engineers To get a quick view of what the system is doing

Quality assurance team Make sure that implementation corresponds

to architecture.

2024-09-11

When to document?

77Software Architecture/Dániel Varró & Kristian Sandahl

Time implementation

design

requirements

Initial

design
Design

iterations

After implementation

(consistent with code?)

2024-09-11

The Architecture Notebook makes it easy to
understand the architecture decisions
Maintains a list of:

– Issues

– Decisions

– Design patterns

– Pointer to code

• Supports iterative development of an architecture.

• Emphasizes the communication between roles

• Aligns with requirements.

• https://www.ida.liu.se/~TDDC88/openup/practice.tech.evoluti
onary_arch.base/workproducts/architecture_notebook_9BB92
433.html?nodeId=9351a72b

2024-09-11 78Software Architecture/Dániel Varró & Kristian Sandahl

https://www.ida.liu.se/~TDDC88/openup/practice.tech.evolutionary_arch.base/workproducts/architecture_notebook_9BB92433.html?nodeId=9351a72b
https://www.ida.liu.se/~TDDC88/openup/practice.tech.evolutionary_arch.base/workproducts/architecture_notebook_9BB92433.html?nodeId=9351a72b
https://www.ida.liu.se/~TDDC88/openup/practice.tech.evolutionary_arch.base/workproducts/architecture_notebook_9BB92433.html?nodeId=9351a72b

Introduce the architecture and the document

2024-09-11 79Software Architecture/Dániel Varró & Kristian Sandahl

1. Purpose

What will be included in the document?

2. Architectural goals and philosophy

What will drive the project?

E.g. High performance, adapt software, micro services

Critical issues addressed by the architecture

E.g. usability, scalability, modularity

3. Assumptions and dependencies

E.g. time, skills, resources, H/W dependencies

4. Architecturally significant requirements
(ASR) determine the architecture

2024-09-11 80Software Architecture/Dániel Varró & Kristian Sandahl

ASR can be:

• Important functions, e.g. persistence, authentication

• Non-functional, e.g. response time, portability

• High benefits to stakeholders, e.g. early demo wanted

• Handling a risk, e.g. availability of components

When the ASRs are met the architecture is stable!

5. List decisions together with constraints and
justifications

2024-09-11 81Software Architecture/Dániel Varró & Kristian Sandahl

Technology choices of all kinds

• E.g ”We will use a DBMS, since the user needs
advanced search and filter.”

• E.g. ”We will use the React framework since the app
will run in multiple browsers.”

• E.g. ”We will not use a service-oriented architecture
since the customer don't think enough providers will
register.”

6. Architectural Mechanisms are solutions
that will be standardized in development

2024-09-11 82Software Architecture/Dániel Varró & Kristian Sandahl

AMs evolve in different states, e.g.

Make design coherent

Support the buy/make decision

Analysis mechanism Design mechanism Implementation mechanism

Persistence RDBMS MySQL

Communication Message broker RabbitMQ

Architectural Mechanisms are often
described in basic attributes

2024-09-11 83Software Architecture/Dániel Varró & Kristian Sandahl

E.g. persistence:

• Granularity

• Volume

• Duration

• Retrieval mechanism

• Update frequency

• Survivability

7. Key abstractions are the most important
concepts the system will handle

2024-09-11 84Software Architecture/Dániel Varró & Kristian Sandahl

• Typically most high-level analysis classes, e.g.
customer, catalogue, shopping-basket, payment

• Patterns, e.g. façade or observer

• Without key abstractions you cannot describe the
system

8. Layers/architectural framework describe
the components of an architectural style

2024-09-11 85Software Architecture/Dániel Varró & Kristian Sandahl

• Elements of a box-and-line diagram, e.g. client and
server

• Description of interfaces connecting elements

Summary

• Decompose-compose

• Coupling and cohesion

• Architectural views (implementation, execution,
deployment)

• UML notations (Component, Subsystem, Artifact,
Deployment)

• Quality factors vs architecture

• Architectural styles (Client-server, Layered, Pipes-and-
filters, Service-oriented)

• The architectural notebook

• Much more in course: TDDE41 Software Architecture

2024-09-11 86Software Architecture/Dániel Varró & Kristian Sandahl

www.liu.se

Software Architecture /
Dániel Varró & Kristian Sandahl

	Default Section
	Slide 1: Software Architecture
	Slide 2

	Motivation
	Slide 3
	Slide 4: Why should we design a system?
	Slide 5: Constructing a building...
	Slide 6: Constructing a building...
	Slide 7: Constructing software...
	Slide 8: Constructing software...
	Slide 9: Why design and document software architectures?

	General Concepts
	Slide 10
	Slide 11: Analyze and Synthesize a system (decompose and compose)
	Slide 12: Analyze and Synthesize a system (decompose and compose)
	Slide 13
	Slide 14: Overview of System Architecture
	Slide 15: Functional / Logical Architecture
	Slide 16: Platform Description
	Slide 17: Allocation
	Slide 18: System Architecture
	Slide 19: Block (Box-and-line) diagrams...
	Slide 20: Coupling - dependency between modules
	Slide 21: Cohesion - relation between internal parts of the module
	Slide 22: Architectural views

	Architecture Modeling in UML
	Slide 23
	Slide 24
	Slide 25: Implementation view with packages
	Slide 26: Component diagram with interfaces
	Slide 27: Subsystem with components
	Slide 28: Artifacts
	Slide 29: Deployment view in UML

	Architecture and Quality
	Slide 30
	Slide 31: Several quality factors - sometimes overlap
	Slide 32: How to design a system for better performance?
	Slide 33: Performance
	Slide 35: Three Aspects of Security
	Slide 36: How to design a secure system?
	Slide 37: Less naïve NIST Zero Trust logical components
	Slide 39: Safety - absence of critical faults
	Slide 40: Isolate the most critical parts
	Slide 42: Redundancy + Diversity
	Slide 43: Maximizing non-functional system characteristics with architectural design
	Slide 44: Maximizing non-functional system characteristics with architectural design
	Slide 45: Balancing tradeoffs in architectural design
	Slide 47: How to a portable system?
	Slide 48: Containers and virtual machines
	Slide 50: Usability - How easy is it and what support exists to perform a task
	Slide 51: Separate interface and logic
	Slide 53: How to create a testable system?
	Slide 54: Control, observation, isolation

	Architectural Styles
	Slide 56
	Slide 57: Architectural patterns/styles
	Slide 58: Architecture Styles / Patterns
	Slide 59: 1. Client-Server
	Slide 60: 1. Client-Server
	Slide 61: 1. Client-Server
	Slide 62: 2. Layers
	Slide 63: 2. Layers
	Slide 64: 3. Pipes and Filters
	Slide 65: Pipes and Filters
	Slide 68: Model-View-Controller
	Slide 69: Typical Web App as Layer Architecture
	Slide 70: Typical Web App as Client-Server Architecture
	Slide 71: Typical Web App as MVC Architecture
	Slide 72: Layered Architecture in Backend

	Documenting the Architecture
	Slide 74
	Slide 75: Adapted Example From Industry
	Slide 76: Coming back to documents...
	Slide 77: When to document?
	Slide 78: The Architecture Notebook makes it easy to understand the architecture decisions
	Slide 79: Introduce the architecture and the document
	Slide 80: 4. Architecturally significant requirements (ASR) determine the architecture
	Slide 81: 5. List decisions together with constraints and justifications
	Slide 82: 6. Architectural Mechanisms are solutions that will be standardized in development
	Slide 83: Architectural Mechanisms are often described in basic attributes
	Slide 84: 7. Key abstractions are the most important concepts the system will handle
	Slide 85: 8. Layers/architectural framework describe the components of an architectural style
	Slide 86: Summary
	Slide 87

