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Requirements

System Design
(Architecture,

High-level Design)

Module Design
(Program Design,

Detailed Design)

Implementation
of Units (classes, procedures, 

functions)

Unit testing

Module Testing
(Integration testing of units)

System Testing
(Integration testing of modules)

Acceptance Test
(Release testing)

Validate Requirements, Verify Specification

Verify System Design

Verify Module Design

Verify Implementation

Project Management, Software Quality Assurance (SQA), Supporting Tools, Education
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Motivation for Architecture



Why should we design a system? 
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Harry
the hacker

Carol
the customer

Requirements Implementation

Why not go directly?
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Constructing a building... 

5

Construction
The king's

requirements

Ulla

I need a tower, 
with a big 
clock...
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Constructing a building... 

6Software Architecture/Dániel Varró & Kristian Sandahl

Construction

Ulla
Architecture

The king's

requirements
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Constructing software... 
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Architecture

Carol
the customer

Requirements

Harry
the hacker

Implementation

Software is different
• No physical natural order of construction
(e.g. start with the foundation of the house)

• Software is not tangible 
• Sometimes a large semantic gap
• You need a map to coordinate efforts

2024-09-11

That’s not to say that customers 
and implementers should not 
meet!



Constructing software... 
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Carol
the customer

Requirements

Harry
the hacker

Implementation

System Design
(Architecture,
High-level Design)

Module Design
(Program Design,
Detailed Design)

Abstraction

Fuzzy distinction

▪ Sometimes several levels

▪ Sometimes only one level

2024-09-11



Why design and document software architectures?
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Communication between stakeholders

A high-level presentation of the system. 

Use for understanding, negotiation and communication.

Early design decisions

Profound effect on the systems quality attributes, e.g. 

performance, availability, maintainability etc.

(Bass et.al., 2003)

Large-scale reuse

If similar system have common requirements, modules 

can be identified and reused.
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System vs. Software Architecture: 
General Concepts and Views



Analyze and Synthesize a system 
(decompose and compose)
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Requirements

System Design
(Architecture,
High-level Design)

Module Design
(Program Design,
Detailed Design)

Implementation
of Units (classes, procedures, 
functions)

Unit testing

Module Testing
(Integration testing 

of units)

System Testing
(Integration testing 

of modules)

Acceptance Test
(Release testing)

Imagine a "virtual" System

Divide into "virtual" 

modules

a "concrete" System

Design each module

"concrete“ modules
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Analyze and Synthesize a system 
(decompose and compose)
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Requirements

System Design
(Architecture,
High-level Design)

Module Design
(Program Design,
Detailed Design)

Implementation
of Units (classes, procedures, 
functions)

Unit testing

Module Testing
(Integration testing 
of units)

System Testing
(Integration testing 
of modules)

Acceptance Test
(Release testing)

"concrete" 

modules

Design is an iterative process!

➢ Throw away Prototyping

➢ Evolutionary Prototyping

➢ The world is nearly 

decomposable*

*Herbert Simon
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http://www.ni.com/white-paper/6163/en/
1
3



Overview of System Architecture

14

Platform 
Description

Allocation

System Architecture

Functional 
Architecture
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Functional / Logical Architecture
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Platform 
Description

Allocation

System 
Architecture

Functional 
Architecture

Functional (logical) decomposition of 

system into subsystems / components

- Component: Deployable & 
executable unit with precise 
interfaces at well-defined 
points of service

- Interfaces: Functionality, 
interaction
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Platform Description
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Platform 
Description

Allocation

System 
Architecture

Functional 
Architecture

Specification of HW/SW platform:

- Nodes: Execution units (processors, ECUs)
- Their physical interconnection (e.g., buses, wires)

Examples:
- AUTOSAR (automotive)
- ARINC 653 (avionics)
- Cloud providers, IT infra.
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Allocation
17

Platform 
Description

Allocation

System 
Architecture

Functional 
Architecture

Mapping of functional components to 

hardware/software platform by respecting:

- Schedule, timeliness constraints
- Redundancy, fault-tolerance 

requirements
- Reliability, availability 

agreements
- Performance constraints
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System Architecture
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Platform 
Description

Allocation

System 
Architecture

Functional 
Architecture

Result of the allocation step that:
- Is ready for deployment
- Specifies or derives configuration files
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Block (Box-and-line) diagrams...
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Logging

Identification &
Authentication

User

Database

Encryption / 
Decryption

Packet 
Handler

Session
Handler

Module, Subsystem,

Element, Entity, 

Component... 

(many names)

Interface

Relationship, 

shows data and/or 

control flow
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Coupling - dependency between modules
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Uncoupled - no dependencies Loosely coupled - few dependencies

Highly coupled - many dependencies

What do we want?

Low coupling. Why?

▪ Replaceable

▪ Enable changes

▪ Testable - isolate faults

▪ Understandable

2024-09-11



Cohesion - relation between internal parts of the module
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What do we want?

High cohesion. Why?

▪ More understandable

▪ Easier to maintain

Low cohesion - the parts e.g. functions 

have less or nothing in common.
Medium cohesion - some logically 

related function, e.g. I/O related 

functions

High cohesion - does only what it is designed for

2024-09-11



Architectural views
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Implementation 

(code) view

Execution

view
Deployment

view

Module

Client

Server

On different machines? 

One machine? Different 

CPUs? 

Components, connectors, sub-

systems (box-and-line)
Packages, components, 

artifacts, repositories
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Architecture Modeling in UML



Well-known Diagrams of UML in architecture
UML 2.5

Diagram

Behavior 

Diagram

Structure 

Diagram

Class 

Diagram

Object 

Diagram

Deployment 

Diagram

Component 

Diagram

Package 

Diagram

Use-Case 

Diagram

State 

Machine 

Diagram

Interaction 

Diagram

Sequence 

Diagram

2

4
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Implementation view with packages
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A developer’s perspective:
1. What are we going to develop?
2. Where is the code?

GUI

Transaction
manager

Encryption/
decryption

Storage
 manager

Package
• Organize work
• Compile together
• Name space

dependency

Packages can be used to give an overall structure to other things
than code, e.g., Use Cases and Classes

2024-09-11



Component diagram with interfaces
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Dictionary

spell-check

supplement

Older notation:

<<component>>

Alternative notation:

provided interface

required interface

2024-09-11



Subsystem with components
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Dictionary

Search engine

<<subsystem>> word-book

port

delegation connector

2024-09-11



Artifacts
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<<artifact>>
clientCrypto.jar

<<artifact>>
serverCrypto.jar

<<use>>

Physical code, file, or library

<<artifact>>
clientCrypto.jar

<<manifest>> <<component>>
    Encryption

The artifact implements
the component

2024-09-11



Deployment view in UML
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<<artifact>>
clientCrypto.jar

<<artifact>>
serverCrypto.jar

<<use>>

<<protocol>>
TCP/IP

Node, physical hardware

Communication path

<<client>> <<server>>



Architecture and Quality Factors



Several quality factors - sometimes overlap
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Maintainability

Availability

Performance

Modifiability

Scalability

Portability

Reliability

Safety

Usability

Testability

Non-functional requirements...

2024-09-11



How to design a system for better performance?

What do we mean by “better performance”?

• Throughput?

• Response time in an interactive system?
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Performance
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Scale out...

Scale up...

2024-09-11



Three Aspects of Security
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CIA

Confidentiality • Only authorized users can read 
the information
• E.g. Military

Integrity

• Only authorized users can 
modify, edit or delete data.

• E.g. bank systems

Availability

• Right information is available at the right time
• Important for everyone



How to design a secure system?
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System
User

Encryption layer

Authenticator

Authenticator

Server



Less naïve NIST Zero Trust logical components
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Rose, S. , Borchert, O. , Mitchell, S. and Connelly, S. (2020), Zero Trust Architecture, Special 

Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD, [online], 

https://doi.org/10.6028/NIST.SP.800-207, 

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930420 (Accessed September 2, 2022)



Safety - absence of critical faults
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Critical failures can create 
great damage to property, 
environment and lives. 

E.g. cars, 
civil aircrafts
military 
products



Isolate the most critical parts
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How can we validate that a safety critical system 

is correct?

▪ Formal validation?

▪ Testing?

▪ Software reviews?

▪ Experience?

Design so that all safety 

critical operations are 

located in one or  few 

modules / subsystems. Critical

The whole system

2024-09-11



Redundancy + Diversity
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Critical 
functions 1

Critical 
functions 2

Caller

Manager

Critical 
functions n…

Same specification, 
different teams
Back-up or voting



Maximizing non-functional system 
characteristics with architectural design
• Performance:

- Scale-up: Creating a small number of large subsystems, 

- Scale-out: Parallel computations (see cloud)

• Security:

- Maximized by layering systems with critical assets 
protected in the innermost layer

- No information up-read / down-flow

• Safety:

- Maximized by placing critical safety functions in a small 
number of subsystems

2024-09-11 43Software Architecture/Dániel Varró & Kristian Sandahl



Maximizing non-functional system 
characteristics with architectural design
• Availability:

- Maximized through redundant subsystems to allow 
hot-swapping for updates

• Maintainability:

- Maximized by creating a large number of small, 
independent subsystems
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Balancing tradeoffs in architectural design

• Performance:

- Maximized by creating a small number of large
subsystems

• Maintainability:

- Maximized by creating a large number of small, 
independent subsystems
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How to a portable system?
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Historically, a major factor in technology decisions.



Containers and virtual machines
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VM

App A App C

Bins/Libs Bins/Libs

Guest OS

ContainerVM

App B

Bins/Libs

Guest OS

VM

App B

Bins/Libs

Guest OS

App B

Bins/Libs

Container

App A

Bins/Libs

Container

HypervisorHypervisor

InfrastructureInfrastructure

Container Engine

Host operating system

Infrastructure

e.g. Virtual box, WMware e.g. Docker



Usability - How easy is it and what support 
exists to perform a task
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Relevance
Efficiency
Attitude
Learnability



Separate interface and logic
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GUI

Comnand line

LogicLogic Persistence



How to create a testable system?
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At least 40% of the cost of well-engineered system is due to testing 

(Bass et. al., 2003)



Control, observation, isolation
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Can I make this transition happen?

Can I observe this state?

Is the code 
cohesive?



Architectural Styles



Architectural patterns/styles

• abstract descriptions of tried-and-tested 
solutions to common application problems

• describe when it is a good idea to use and 
when it should be avoided!

2024-09-11 57Software Architecture/Dániel Varró & Kristian Sandahl



Architecture Styles / Patterns
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Example of styles and patterns
▪ Client-Server
▪ Layering
▪ Pipes-and-filters
▪ Service-oriented
▪ Model-View-Control (MVC)
▪ Repository
▪ Peer-to-Peer

Discussed today 

2024-09-11



1. Client-Server
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Server

Client Client Client

The clients need to be 
aware of the server. 

Clients initiate 
communication 

2024-09-11



1. Client-Server
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Server

Client Client Client

The clients need to be 
aware of the server. 

Clients initiate 
communication 

2024-09-11



1. Client-Server
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Presentation 

layer

Business

Layer

Client

Server

Data

management

Two-Tier, Fat-client

Presentation 

layer

Business

Layer

Client

Server

Data

management

Two-Tier, Thin-client

Presentation 

layer

Client

Middle-ware

Business

Layer

Server

Data

management

Three-Tier

- Heavy load on server
- Significant network 

traffic

+ Distribute workload on 
clients
- System management 
problem, update software on 
clients

+ Map each layer on separate 
hardware

+ Possibility for load-balancing

2024-09-11



2. Layers
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layer 3

layer 2

layer 1

layer 3
layer 1

layer 3

Highest
Abstraction

Defined
Interfaces

Client

IP

Ethernet

Application

Transport

Network

Data link

SSL

HTTP

Server

TCP/UDPTCP/UDP

IP

Ethernet

SSL

HTTP In a “pure” layered model, 
only the immediate below 
layer can be accessed

Layer bridging – can access 
lower than the closest one

2024-09-11



2. Layers
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Pros Cons

▪ Easy reuse of layers
▪ Support for standardization
▪ Dependencies are kept local -

modification local to a layer
▪ Supports incremental 

development and testing

▪ Could give performance penalties
▪ Layer bridging loses modularity

layer 3
layer 1

layer 3

2024-09-11



3. Pipes and Filters
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Example: UNIX Shell

lexer parser
semantic

analysis

Intermediate

Code 

Generation

Optimi-

zation

ls -R |grep “html$" |sort ls grep sort

Example: A Compiler

FiltersPipes

Input Output

Code

Generation

2024-09-11



Pipes and Filters

Pros:

▪ Good understandability

▪ Supports reuse of filters

▪ Evolution eased

▪ Analyses of e.g. throughput are possible to early

Cons:

▪ Redundant parsing of data =>  performance penalties

2024-09-11 65Software Architecture/Dániel Varró & Kristian Sandahl



Model-View-Controller

2024-09-11 68Software Architecture/Dániel Varró & Kristian Sandahl



Typical Web App as Layer Architecture
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PersistencePersistenceBackendBackendFrontendFrontend

Service 
request Data

request

Data
response

Service 
response



FrontendFrontend

Client 1

Typical Web App as Client-Server Architecture
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PersistencePersistenceBackendBackendService 
request & 
responseWeb Frontend

Android Frontend

Client 2

Participant 
Management

Event
Management

Service 2

Service 1



FrontendFrontend

Typical Web App as MVC Architecture
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PersistencePersistenceBackendBackend

User
request

Updates (DTOs)

Web Frontend

Android Frontend

View

Participant 
Management

Event
Management

ModelController

Business 
Entities

Database / 
Storage

Manipu-
lates



FrontendFrontend

Layered Architecture in Backend
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PersistencePersistenceBackendBackend

REST API 
calls

Web Frontend

Android Frontend

Participant 
Management

Event
Management

Business 
Entities

Database / 
Storage

Manipu-
lates

Parti-
cipant 
Ctrl

Parti-
cipant 
Ctrl

Parti-
cipant 
Service

Parti-
cipant 
Service

REST 
Controller

Business 
service



Documenting the Architecture



Adapted Example From Industry
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What is going on with
the vertical axis?

How do the
boxes communicate?

What do they represent?

Are their meanings consistent?

What do the colors
represent?

…?

2024-09-11



Coming back to documents...

76Software Architecture/Dániel Varró & Kristian Sandahl

Write from the point of view of the readers...

Stakeholder Use of the architect document

Requirements engineers                Negotiate and make tradeoffs among 

requirements

Architects/Designers                      Resolve quality issues (e.g. performance, 

maintainability etc.)

Architects/Designers                      A tool to structure and analyze the system 

Designers                                       Design modules according to interfaces 

Developers                                     Get better understanding of the general product

Testers and Integrators                  Specify black-box behavior for system testing

Managers                                       Create teams that can work in parallel with

e.g. different modules. Plan and allocate 

resources.     

New software engineers                 To get a quick view of what the system is doing

Quality assurance team                  Make sure that implementation corresponds

to architecture.                            

2024-09-11



When to document?
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Time implementation

design

requirements

Initial 

design
Design 

iterations

After implementation

(consistent with code?)

2024-09-11



The Architecture Notebook makes it easy to 
understand the architecture decisions
Maintains a list of:

– Issues

– Decisions

– Design patterns

– Pointer to code

• Supports iterative development of an architecture.

• Emphasizes the communication between roles

• Aligns with requirements.

• https://www.ida.liu.se/~TDDC88/openup/practice.tech.evoluti
onary_arch.base/workproducts/architecture_notebook_9BB92
433.html?nodeId=9351a72b
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https://www.ida.liu.se/~TDDC88/openup/practice.tech.evolutionary_arch.base/workproducts/architecture_notebook_9BB92433.html?nodeId=9351a72b
https://www.ida.liu.se/~TDDC88/openup/practice.tech.evolutionary_arch.base/workproducts/architecture_notebook_9BB92433.html?nodeId=9351a72b
https://www.ida.liu.se/~TDDC88/openup/practice.tech.evolutionary_arch.base/workproducts/architecture_notebook_9BB92433.html?nodeId=9351a72b


Introduce the architecture and the document
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1. Purpose

What will be included in the document?

2. Architectural goals and philosophy

What will drive the project? 

E.g. High performance, adapt software, micro services

Critical issues addressed by the architecture

E.g. usability, scalability, modularity

3. Assumptions and dependencies

E.g. time, skills, resources, H/W dependencies



4. Architecturally significant requirements 
(ASR) determine the architecture
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ASR can be:

• Important functions, e.g. persistence, authentication

• Non-functional, e.g. response time, portability

• High benefits to stakeholders, e.g. early demo wanted

• Handling a risk, e.g. availability of components

When the ASRs are met the architecture is stable!



5. List decisions together with constraints and 
justifications
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Technology choices of all kinds

• E.g ”We will use a DBMS, since the user needs 
advanced search and filter.”

• E.g. ”We will use the React framework since the app 
will run in multiple browsers.”

• E.g. ”We will not use a service-oriented architecture 
since the customer don't think enough providers will 
register.”



6. Architectural Mechanisms are solutions 
that will be standardized in development
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AMs evolve in different states, e.g.

Make design coherent

Support the buy/make decision

Analysis mechanism Design mechanism Implementation mechanism

Persistence RDBMS MySQL

Communication Message broker RabbitMQ



Architectural Mechanisms are often 
described in basic attributes

2024-09-11 83Software Architecture/Dániel Varró & Kristian Sandahl

E.g. persistence:

• Granularity

• Volume

• Duration

• Retrieval mechanism

• Update frequency

• Survivability



7. Key abstractions are the most important 
concepts the system will handle
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• Typically most high-level analysis classes, e.g. 
customer, catalogue, shopping-basket, payment

• Patterns, e.g. façade or observer

• Without key abstractions you cannot describe the 
system



8. Layers/architectural framework describe 
the components of an architectural style
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• Elements of a box-and-line diagram, e.g. client and 
server

• Description of interfaces connecting elements



Summary

• Decompose-compose

• Coupling and cohesion

• Architectural views (implementation, execution, 
deployment)

• UML notations (Component, Subsystem, Artifact, 
Deployment)

• Quality factors vs architecture

• Architectural styles (Client-server, Layered, Pipes-and-
filters, Service-oriented)

• The architectural notebook

• Much more in course: TDDE41 Software Architecture
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