
Modeling with UML
Dániel Varró / Kristian Sandahl

UML in Software Engineering

3

Requirements

System Design
(Architecture,

High-level Design)

Module Design
(Program Design,

Detailed Design)

Implementation
of Units (classes, procedures,

functions)

Unit testing

Module Testing
(Integration testing of units)

System Testing
(Integration testing of modules)

Acceptance Test
(Release testing)

Validate Requirements, Verify Specification

Verify System Design

Verify Module Design

Verify Implementation

Project Management, Software Quality Assurance (SQA), Supporting Tools, Education

MaintenanceUML Modeling / Kristian Sandahl & Dániel Varró 2024-09-10

The goals of module design
• Provide the expected function

• Prepare for change:

– Separation of concern

– Testability

– Understandability

• Contribute to quality, e.g.:

– Performance

– Usability

– Reliability

– ...

• Map for the implementers, testers, and maintainers

• Provide detailed specs for the internal content and interface of a module

4UML Modeling / Kristian Sandahl & Dániel Varró 2024-09-10

Modelling software

• Models supplement natural language

• Models support both elicitation and design

• Models can generate code and test cases

• The boundaries between specification and design
have to be decided

• UML has become the standard notation

• Industry interest in SysML –
extends UML (and defined in UML)

UML Modeling / Kristian Sandahl & Dániel Varró 52024-09-10

Unified Modeling Language

• Wide-spread standard of modeling software and
systems

• Several diagrams and perspectives

• Often needs a text of assumptions and intentions

• Many tools tweak the standard, we use UML 2.5

2024-09-10 6UML Modeling / Kristian Sandahl & Dániel Varró

UML Class and Object Diagrams

Well-known Diagrams of UML
UML 2.5

Diagram

Behavioral
Diagram

Structural
Diagram

Class
Diagram

Object
Diagram

Deployment
Diagram

Component
Diagram

Package
Diagram

Use Case
Diagram

State Machine
Diagram

Interaction
Diagram

Sequence
Diagram

8

82024-09-10UML Modeling / Kristian Sandahl & Dániel Varró

Activity
Diagram

Where to use Class diagrams?

• Domain modeling: Capture key concepts and relations in a domain

– Ontologies

– Metamodels

• Database design:

– E.g. used by object-relational mappings (Hibernate)

– User code manipulates objects → serialized in Rel DB

• Component / module design:

– Internal structure of components / modules

• Defines structure of various serialization formats

– XMI: XML Metadata Interchange (modeling tools), JSON

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 9

A Single Class

10

+getNoOfOrders():Integer

+getOrderStatus():String

+ addEmail(email:String)

name: String[1]

email: String [0..2]

Customer

Class name

attributes

operations

visibility
+ public
- private
protected
~ package

Multiplicity
1 exactly one
0..1 Zero or one
* Zero or more

(same as 0..*)
2..8 Between 2 and 8

Return type
Parameter

UML Modeling / Kristian Sandahl & Dániel Varró 2024-09-10

Naming of Classes

• Noun

• Singular

• First letter capitalized;

• Use Pascal case (camel case with capital initials) without spaces if
needed

• Not too general, not too specific – at the right level of abstraction

• Avoid software engineering terms (data, record, table, information)

• Good: Hospital, Doctor, PartTimeEmployee

• Bad: register, Hospitals, doctor, PartTimeEmployeeData

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 11

Attributes

• Each attribute shall have

– Name: e.g. birth

– (Primitive) Type:

• E.g. String, Integer, Real, Date, ...

– Example:

• Integer birth;

• Each attribute may

– Specify default value

– Be derived: e.g. age

• Calculated from other values

age = currYear – birth

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 12

Naming of attributes
• Small initial letter
• Followed by camel case
• Without spaces
• Typically singular

Enumerations
• Enumeration:

• a fixed set of symbolic values

• represented as a class with
values as attributes

• Usage:
• Frequently define possible states

• Use enumerations instead of
hard-wired String literals whenever possible

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 13

Relationships (1/6) - overview and intuition
- Association

14

BA Association
(with navigability)

UML Modeling / Kristian Sandahl & Dániel Varró 2024-09-10

Relationships (1/6) - overview and intuition
- Association

15UML Modeling / Kristian Sandahl & Dániel Varró

Car Wheel

wheel1

wheel2

wheel3

wheel4
mycar

4
class

objects

mycar has links to 4
wheels

Navigation - mycar can reach the
wheels, but not the oppositeExplicitly show that navigation is

not allowed

has

Reading order

name

2024-09-10

Equivalent object diagram

2024-09-10 16UML Modeling / Kristian Sandahl & Dániel Varró

mycar : Car

wheel1 : Wheel

wheel2 : Wheel

wheel3 : Wheel

wheel4 : Wheel

Relationships (1/6) - overview and intuition
- Association

17UML Modeling / Kristian Sandahl & Dániel Varró

Car Wheel

wheel1

mycar1

4

What does it mean to have a * here? What if we have multiplicity 1 instead?

mycar2

wheel2 wheel3 wheel4

mycar3

A wheel can be linked to more
than one car instance wheel1

mycar1

wheel2 wheel3 wheel4

mycar2
A wheel can only be liked to

one car instance

"*" "1"

has

2024-09-10

Relationships (1/6) - overview and intuition
- Association

18UML Modeling / Kristian Sandahl & Dániel Varró

Car Wheel

wheel1

mycar1

4

wheel2 wheel3 wheel4

Associations are the "glue" that ties a system together
(by introducing a graph model)

association instance = link

A link (association instance) describes a relation
between objects at run-time.

{(mycar1,wheel1),
(mycar1,wheel2),
(mycar1,wheel3),
(mycar1,wheel4)}

has

2024-09-10

Attributes vs. Associations
• Common mistake:

duplicate an association by adding
an attribute in the class diagram

• An association is already
implemented as a field

• A Java class for Loan that
corresponds to the above class
diagram will have the
borrowedDate, dueDate, and
returnedDate fields, but also a field
for libraryPatron and another one
for CollectionItem

• No need to add it again!

• Attributes have primitive types!

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 19

Relationships (2/6) - overview and intuition
- Aggregation

20UML Modeling / Kristian Sandahl & Dániel Varró

Association
(with navigability)

BA
"A" has a reference(s) to
instance(s) of "B". Alternative: attributes

AggregationBA

2024-09-10

Relationships (2/6) - overview and intuition
- Aggregation

21UML Modeling / Kristian Sandahl & Dániel Varró

Car Wheel
4

Common vague interpretations: "owns a" or "part of"

What does this mean? What is the
difference to association?

Vague definitions Inconsistency and misunderstandings

Aggregation was added to UML with little
semantics. Why?

Jim Rumbaugh
"Think of it as a modeling placebo"

Recommendation: - Do not use it in your models.
- If you see it in other's models, ask them what they actually mean.

2024-09-10

Relationships (3/6) - overview and intuition
- Composition

22UML Modeling / Kristian Sandahl & Dániel Varró

Association
(with navigability)

BA
"A" has a reference(s) to
instance(s) of "B". Alternative: attributes

AggregationBA

BA Composition

Avoid it to avoid misunderstandings

2024-09-10

Relationships (3/6) - overview and intuition
- Composition

23UML Modeling / Kristian Sandahl & Dániel Varró

Car Wheel
4

Any difference to association?

Yes! First, multiplicity must be 1 or 0..1. An instance can only have one owner.

1

Car Wheel
41

But, isn't this equivalent to what we
showed with associations?

Well, in this case...

wheel1

mycar1

wheel2 wheel3 wheel4

mycar2

2024-09-10

Relationships (3/6) - overview and intuition
- Composition

24UML Modeling / Kristian Sandahl & Dániel Varró

Car Wheel MotorCycle
41 2 1

wheel1 wheel2 wheel3 wheel4

mycar1

Using composition...

wheel5 wheel6

mybike1

Ok for wheels to be part of
mycar1 or mybike1

2024-09-10

Relationships (3/6) - overview and intuition
- Composition

25UML Modeling / Kristian Sandahl & Dániel Varró

Car Wheel MotorCycle
41 2 1

wheel1 wheel2 wheel3 wheel4

mycar1

Using composition...

wheel5 wheel6

mybike1

Can mycar1 and mybike1 share
the same wheels?

NO!
Not with composition!

Key concepts

• "No sharing" rule

• The owner is responsible for managing

its parts, e.g. allocation and deallocation.

2024-09-10

Relationships (3/6) - overview and intuition
- Composition

26UML Modeling / Kristian Sandahl & Dániel Varró

Car Wheel MotorCycle
41 2 1

wheel1 wheel2 wheel3 wheel4

mycar1

Using associations...

wheel5 wheel6

mybike1

Can mycar1 and mybike1 share the
same wheels this time?

Yes! Associations do not have
a "no sharing" rule.

(Note the difference. The diamond is removed.)

However, in this case it is a
strange model...

2024-09-10

Relationships (4/6) - overview and intuition
- Generalization

27UML Modeling / Kristian Sandahl & Dániel Varró

Association
(with navigability)

BA
"A" has a reference(s) to
instance(s) of "B". Alternative: attributes

AggregationBA

BA Composition

Avoid it to prevent misunderstandings

An instance of "B" is part of an instance of "A",
where the former is not allowed to be shared.

BA Generalization

2024-09-10

Typical Use of Generalization

Aim: Lift up common attributes
and methods to the superclass

Parent class is more general
than its children classes

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 28

When to Avoid Generalization?

Child classes
with empty content and

no new relationships

State information
should NOT be a class

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 29

Exam

Completed
Exam

Player
name:String
shirtNumber: Int

Goalkeeper Defender

A checklist for using generalization
• Check generalizations to ensure

they obey the is-a rule
• An object cannot change its

type/class during its lifecycle
• All inherited features must make

sense in each subclass
• A class must be different from its

superclass and other subclasses
wrt. behavior or structure

Relationships - overview and intuition
35UML Modeling / Kristian Sandahl & Dániel Varró

Association
(with navigability)

BA
"A" has a reference(s) to
instance(s) of "B". Alternative: attributes

AggregationBA

BA Composition

Avoid it to avoid misunderstandings

An instance of "B" is part of an instance of "A",
where the former is not allowed to be shared.

BA
1) "A" inherits all properties and operations of "B".
2) An instance of "A" can be used where a instance of

"B" is expected.

Generalization

BA Realization "A" provides an implementation of the interface
specified by "B".

"A" is dependent on "B" if changes in the definition
of "B" causes changes of "A".BA Dependency

2024-09-10

Conceptual models, domain models

Design models, architecture models, implementation models

Consistency of UML Class Diagrams by Example

Class Diagram for Animals in Zoo

• There are animals in the zoo

• Animal is an abstract class
(it cannot have direct
instances)

– Notation: Slanted (italic) text

• Animal has two subclasses

– Mouse and Kangaroo

• A kangaroo may carry an
arbitrary animal in her pouch

Domain ModelDomain Model

Zoo

Mouse

Animal

animals*

Kangaroo

carries

0..
1

1

1

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 37

Class Diagram for Animals in Zoo

Is this a well-formed
domain model?

No!

Circularity in the generalization
hierarchy is disallowed in a
domain model

Domain ModelDomain Model

Zoo

Mouse

Animal

animals*

Kangaroo

carries

0..
1

1

1

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 38

Instance Models for Animals in Zoo

Is this a well-formed instance model?
IM1: Yes
IM2: No! →m1 contained by multiple objects

Domain ModelDomain Model

Zoo

Mouse

Animal

animals*

Kangaroo

carries

0..
1

1

1

Instance Model 1Instance Model 1

z1:Zoo

m1:Mouse

:animals

k1:Kangaroo

:carries

Instance Model 2Instance Model 2

z1:Zoo

m1:Mouse

:animals

k1:Kangaroo

:carries :animals

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 39

Instance Model 4Instance Model 4

z1:Zoo

m1:Mouse

k1:Kangaroo

k2:Kangaroo

:animal
s

:carries

Instance Model 3Instance Model 3

z1:Zoo

m1:Mouse

k1:Kangaroo

k2:Kangaroo

:carries

:carries

:animals

Instance Models for Animals in Zoo

Is this a well-formed instance model?
IM3: Yes
IM4: Yes

Domain ModelDomain Model

Zoo

Mouse

Animal

animals
*

Kangaroo

carries

0..
1

1

1

:carries

:animals

:animals

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 40

Instance Models for Animals in Zoo

Is this a well-formed instance model?
IM5: No! → Animals cannot have direct instances (like a1)
IM6: No! → Kangaroo k1 is not contained by any objects

Domain ModelDomain Model

Zoo

Mouse

Animal

animals
*

Kangaroo

carries

0..
1

1

1

:animal
s

:carries

Instance Model 5Instance Model 5

z1:Zoo

m1:Mouse

k1:Kangaroo

a1:Animal

:carries

Instance Model 6Instance Model 6

z1:Zoo

m1:Mouse

k1:Kangaroo

k2:Kangaroo

:carries

:carries

:animals

:animals

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 41

Instance Models for Animals in Zoo

Is this a well-formed instance model?

IM7: No! →Multiplicity of carries association end is violated (0..1)

IM8: No! → No circularity in the containment hierarchy in instance models

Domain ModelDomain Model

Zoo

Mouse

Animal

animals
*

Kangaroo

carries

0..
1

1

1

:animal
s

:carries

Instance Model 7Instance Model 7

z1:Zoo

m1:Mouse

k1:Kangaroo

k2:Kangaroo

:carries

Instance Model 8Instance Model 8

z1:Zoo

m1:Mouse

k1:Kangaroo

k2:Kangaroo

:carries

:carries

:animals :animals

:animals

:carries

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 42

Classification (aka. Instantiation)

• Each object is
an instance of a class

• Direct type:
No other types exist lower
in the class hierarchy
– paris:Capital, klm:Flight

• Indirect type:
Superclass of the
direct type
– paris:City

Class DiagramClass Diagram

City

Capital

Flightfrom

to

Instance DiagramInstance Diagram

klm:Flightparis:Capital

:from

«typeOf»

«typeOf»

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 43

Type conformance

• A link in a model is
type conformant if
• type(src(link)) is subtype of

src(type(link))
AND

• type(trg(link)) is subtype of
trg(type(link))

• Informally:
• The type of the source object

is a subtype of the source
class of the link’s type.

• The type of the target object
is a subtype of the target
class of the link’s type.

Instance ModelInstance Model

Domain ModelDomain Model

City

Capital

Flightfrom

to

klm:Flightparis:Capital

«typeOf»

«typeOf»

«typeOf»

:from

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 44

Domain Models
vs

Implementation Models

What you model depends on the recipient
and the perspective

2024-09-10 46UML Modeling / Kristian Sandahl & Dániel Varró

Information

Outsource

Sketch

Discussion

Communication

Perspectives: Domain modeling vs. Implementation

2024-09-10 47UML Modeling / Kristian Sandahl & Dániel Varró

Domain model vs. Implementation model

48UML Modeling / Kristian Sandahl & Dániel Varró

Person

name:String
address:String

Person

-name: String
-address: String

+getName(): String
+setName(name:String)
+getAddress(): String
+setAddress(address:Sting)

In this course: domain model = conceptual model

2024-09-10

49

Identifying classes: noun analysis
A graduate student application management system (GRADS) help to collect
and review applications from prospective graduate students from all around the
world to graduate programs offered on different levels (MEng vs. PhD), in
different curricula (e.g. Software Engineering) and at a given starting time (E.g.
Fall 2017). Prospective graduate students (MEng or PhD students) create a
personal profile (with their name and citizenship) and then upload their
application, which must contain their language exam score as well as their
(undergraduate and graduate) degrees together with their CGPA score. When
submitting their application, students specify their preferred supervisors. With
the help of GRADS, the Graduate Program Administrator checks if all minimum
criteria of graduate admission are fulfilled, which is 3.0 CGPA score and 100
language exam score, and may contact prospective students to complete
missing information. Professors then review applications of those students in
GRADS who meet the minimum criteria and who selected them as a preferred
supervisor by assigning a numeric score. A student may be admitted to the
graduate program if he or she is scored over 4 by at least one professor,
otherwise his/her application is rejected.

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró

50

Identifying classes: noun analysis
A graduate student application management system (GRADS) help to collect
and review applications from prospective graduate students from all around the
world to graduate programs offered on different levels (MEng vs. PhD), in
different curricula (e.g. Software Engineering) and at a given starting time (E.g.
Fall 2017). Prospective graduate students (MEng or PhD students) create a
personal profile (with their name and citizenship) and then upload their
application, which must contain their language exam score as well as their
(undergraduate and graduate) degrees together with their CGPA score. When
submitting their application, students specify their preferred supervisors. With
the help of GRADS, the Graduate Program Administrator checks if all minimum
criteria of graduate admission are fulfilled, which is 3.0 CGPA score and 100
language exam score, and may contact prospective students to complete
missing information. Professors then review applications of those students in
GRADS who meet the minimum criteria and who selected them as a preferred
supervisor by assigning a numeric score. A student may be admitted to the
graduate program if he or she is scored over 4 by at least one professor,
otherwise his/her application is rejected.

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró

2024-09-10 51UML Modeling / Kristian Sandahl & Dániel Varró

• Class vs. Actor vs.
Actor + Class?

• Class vs. Attribute?

• Class vs. Enumeration?

• Class vs. AssociationEnd?

• Omit from domain model?

• GRADS
• Application
• Student
• StudentProfile
• GraduateProgram
• Curriculum
• StartingTime
• LangExamScore
• Degree
• CGPAScore
• Administrator
• MinimumCriteria
• Professor
• Score

Make your decision!

Key Decisions during Noun Analysis

2024-09-10 52UML Modeling / Kristian Sandahl & Dániel Varró

• Class vs. Actor vs.
Actor + Class?

• Class vs. Attribute?

• Class vs. Enumeration?

• Class vs. AssociationEnd?

• Omit from domain model?

• GRADS → Class
• Application → Class
• Student → Actor? Class?
• StudentProfile → Class? Omit?
• GraduateProgram → Class
• Curriculum → Attribute
• StartingTime → Attribute
• LangExamScore → Attribute
• Degree → Class
• CGPAScore → Attribute
• Administrator → Actor
• MinimumCriteria → Omit? Attr?
• Professor → Class+Actor
• Score → Attribute

Key Decisions during Noun Analysis

A Sample Solution (Not the Only One!)

53UML Modeling / Kristian Sandahl & Dániel Varró 2024-09-10

User
name:String

GRADS

Professor
field:String

Graduate
Program

year: Int
term: TermKind
curriculum: String
gradLevel:LevelType

<<enum>>

TermKind
Summer
Winter

<<enum>>

LevelType
PhD
MSc
BSc

Student
citizen:String

Degree
university: String
level: LevelType

Graduate
Application

CGPAScore: Real
langScore:Real

*

*

*

studentsgradPrograms

professors

applications

1 1

1

1

*

applications

program1

*

preferred
Supervisor

*

reviewed
Application *

1

* degrees

Your Checklist for Domain Modeling

• Use only domain classes!

– No classes like List, HashMap, Collection

• Attributes: type should be built-in (primitive)

– If the type is other domain class → association!

• Generalization: class vs. kind/type attribute?

• Names for all associations

• Specify multiplicities for all association ends (roles)

• Containment hierarchy:
Who is the container of an instance of a class?

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 57

• No circular containment in the instance model
• Aggregation may be circular on the class level!

A complete, comprehensive guide to UML 2.5

2024-09-10 62UML Modeling / Kristian Sandahl & Dániel Varró

UML Behavior Modeling
(State Machine Diagrams)

For defining reactive behavior of objects
by executing state transitions and actions
in response to events

For defining reactive behavior of objects
by executing state transitions and actions
in response to events

State-based Behavior Modeling

• State partition (AKA state space)

– A set of distinguished system states

– Examples

• Days of Week: {Mon, Tue, Wed, Thu, Fri, Sat, Sun}

• States of microwave oven: {full power, defrost, off}

– DEF: A state partition is a set, exactly one element of which
characterises the system at any time.

• Current state

– E.g. today is Wed, the microwave is on defrost, etc.

– DEF: At any given moment, the current state is the element
of the partition which is currently valid.

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 65

Example: Abstract & Concrete States of a Stack

• Concrete states of a stack

– Stack1

• Length = 2

• Element[0] = String(„Winter 2023”)

• Element[1] = String(„Fall 2023”)

– Stack2

• Length = 2

• Element[0] = String(„Winter 2024”)

• Element[1] = String(„Fall 2024”)

• Abstract states of a stack:

– empty : boolean isEmpty() {return length==0;}

– full : boolean isFull() {return length==MAX;}

– hasContent: boolean hasContent()
{return length > 0 && length < MAX;}

Are these stacks in a
different concrete state?
YES!

Are these stacks in a
different abstract state?
NO!

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 66

Abstract State vs. Concrete State

• Concrete state of an object:
– Current value of each of its attributes

– Concrete state space:
• Combination of possible values of attributes

• May be infinite

• Abstract states of an object:
– Predicates over concrete states

– One abstract state many concrete states

– Potentally: state hierarchies

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 67

UML State machine diagram

2024-09-10 68UML Modeling / Kristian Sandahl & Dániel Varró

checking idle
insertCoin()[!fullOfCoin]/checkCoin(self)

For class

CoinHandler:

state trigger event,

causing transition

action, reaction

to the event

initial state marker

this object
transiton

falseCoin()/returnCoin(self)

7

guard condition

for firing transition

Specification

• Kristian’s alarm clock starts sounding at 6.00 with a nasty
signal. He can now do either of three things:

a) Turn the alarm off;

b) Press the snooze button; or

c) Do nothing.

• If the snooze button is pressed the signal will turn off and start
sounding after 5 minutes again.

• After that the alarm sound starts, the signal will last for 2
minutes.

• If no action has been taken during these 2 minutes, the absence
of action will have the same effect as if the snooze button were
pressed exactly when the alarm stopped to sound

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 69

2024-09-10 70UML Modeling / Kristian Sandahl & Dániel Varró

• Task: design
a UML state
machine of the
class AlarmClock

Step 1: Define all Events and Actions
Attributes (Key object attributes used in predicates)

• t: current time

• ta: time set for alarm

• ts: time of snooze button pressed

Events (What can Kristian do with the AlarmClock?)

• setAlarm(tw): set alarm time ta to the wake-up time and turn on the alarm

• snooze: press the snooze button

• turnOff: turn off alarm

• timeout(t): timeout event

Actions (What can the AlarmClock do?)

• startSound: turn on alarm sound

• endSound: turn off alarm sound

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 71

AlarmOff Alarmed

Snoozed SoundOn

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 72

Step 2: Define all States

An object stays in a state until
a triggering event causes a
transition from the state

The name of a state should
reflect its non-transient nature
(cf. Snoozed vs. snooze)

AlarmOff Alarmed

Snoozed SoundOn

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 73

Events:
setAlarm(tw)
snooze
turnOff

Actions:
startSound
endSound

Attributes:
t
ta
ts

Step 3: Define all Transitions

AlarmOff Alarmed

Snoozed SoundOn

setAlarm(tw) / ta := tw

turnOff/-

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 74

Events:
setAlarm(tw)
snooze
turnOff

Actions:
startSound
endSound

Attributes:
t
ta
ts

AlarmOff Alarmed

Snoozed SoundOn

setAlarm(tw) / ta := tw

turnOff/-

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 75

Events:
setAlarm(tw)
snooze
turnOff

Actions:
startSound
endSound

Attributes:
t
ta
ts

turnOff/-
timeout(t-ta >0) /
startSound

Specification

• Kristian’s alarm clock starts sounding at 6.00 with a nasty
signal. He can now do either of three things:

a) Turn the alarm off;

b) Press the snooze button; or

c) Do nothing.

• If the snooze button is pressed the signal will turn off and start
sounding after 5 minutes again.

• After that the alarm sound starts, the signal will last for 2
minutes.

• If no action has been taken during these 2 minutes, the absence
of action will have the same effect as if the snooze button were
pressed exactly when the alarm stopped to sound

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 76

AlarmOff Alarmed

Snoozed SoundOn

setAlarm(tw) / ta := tw

turnOff/-

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 77

Events:
setAlarm(tw)
snooze
turnOff

Actions:
startSound
endSound

Attributes:
t
ta
ts

turnOff/-

snooze / ts:=t; endSound

timeout(t-ts>5) / startSound

timeout(t-ta >0) /
startSound

Specification

• Kristian’s alarm clock starts sounding at 6.00 with a nasty
signal. He can now do either of three things:

a) Turn the alarm off;

b) Press the snooze button; or

c) Do nothing.

• If the snooze button is pressed the signal will turn off and start
sounding after 5 minutes again.

• After that the alarm sound starts, the signal will last for 2
minutes.

• If no action has been taken during these 2 minutes, the absence
of action will have the same effect as if the snooze button were
pressed exactly when the alarm stopped to sound

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 78

AlarmOff Alarmed

Snoozed SoundOn

setAlarm(tw) / ta := tw

turnOff/-

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 79

Events:
setAlarm(tw)
snooze
turnOff

Actions:
startSound
endSound

Attributes:
t
ta
ts

turnOff/-

snooze / ts:=t; endSound

timeout(t-ts>5) / startSound

timeout(t-ta >0) /
startSound

timeout(2) /ts:=t; endSound

turnOff/-

Orthogonal, composite states

2024-09-10 80UML Modeling / Kristian Sandahl & Dániel Varró

Lab 1 Lab 2
lab1 done

Project

lab2 done

project done

Final exam
pass

Studying

Failed Passed
fail

course attempt state machine

orthogonal state

orthogonal region

AlarmOn

AlarmOff Alarmed

Snoozed SoundOn

setAlarm(tw) / ta := tw

turnOff/-

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 81

turnOff/-

snooze / ts:=t; endSound

timeout(t-ts>5) / startSound

timeout(t-ta >0) /
startSound

timeout(2) /ts:=t; endSound

turnOff/-

Composite state:
When it is active, exactly one
substate needs to be active
(in each region)

AlarmOn

AlarmOff Alarmed

Snoozed SoundOn

setAlarm(tw) / ta := tw

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 82

snooze / ts:=t; endSound

timeout(t-ts>5) / startSound

timeout(t-ta >0) /
startSound

timeout(2) /ts:=t; endSound

turnOff/-

This transition can be fired
when any of the substates
of AlarmOn are active

Alarmed

AlarmOff

setAlarm(tw) / ta := tw

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 83

snooze / ts:=t; endSound

timeout(t-ts>5) / startSound

timeout(t-ta >0) /
startSound

timeout(2) /
ts:=t; endSound

turnOff/-

SoundOnSoundOff
startSound

endSound

Alarmed

ActivatedSnoozed

AlarmOn

AlarmOff

setAlarm(tw) / ta := tw

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 84

snooze / ts:=t; endSound

timeout(t-ts>5) / startSound

timeout(t-ta >0) /
startSound

timeout(2) /
ts:=t; endSound

turnOff/-

SoundOnSoundOff
startSound

endSound

Alarmed

ActivatedSnoozed

The AlarmOn composite state has
two orthogonal regions:
• AlarmOn is active →

Each region needs to have an
active substate

• AlarmOn is inactive→
No regions have an acive substate

Alarmed

AlarmOff

setAlarm(tw) / ta := tw

2024-09-10UML Modeling / Kristian Sandahl & Dániel Varró 85

snooze / ts:=t; endSound

timeout(t-ts>5) / startSound

timeout(t-ta >0) /
startSound

timeout(2) /
ts:=t; endSound

turnOff/-

SoundOnSoundOff
startSound

endSound

Alarmed

ActivatedSnoozed

When a composite state is entered at its border →
all regions enter their initial state

When a composite state is exited →
all regions become inactive

Activity diagram ≠ State diagram

insert coin

brew coffee
add hot water

to adjust strength

join

pour coffee

coin accepted?

fork

add sugar/whitener

final

[no] node

2024-09-10 87UML Modeling / Kristian Sandahl & Dániel Varró

decision

Initial node

[yes]

UML Behavior Modeling
(Sequence Diagrams)

Provide a description of the dynamic behavior as interactions
• between actors and the system and
• between objects within the system

Provide a description of the dynamic behavior as interactions
• between actors and the system and
• between objects within the system

Well-known Diagrams of UML
UML 2.5

Diagram

Behavioral
Diagram

Structural
Diagram

Class
Diagram

Object
Diagram

Deployment
Diagram

Component
Diagram

Package
Diagram

Use Case
Diagram

State Machine
Diagram

Interaction
Diagram

Sequence
Diagram

8

9

892024-09-10UML Modeling / Kristian Sandahl & Dániel Varró

Activity
Diagram

Sequence diagram

2024-09-10 92UML Modeling / Kristian Sandahl & Dániel Varró

: CoffeeCustomer

: Interface

insertCoin

machineReady

pressButton(b1)

pourCoffeetime

Lifeline

of object

Message

(synchronous)

role

Procedure

is active

Sequence diagram with several roles

: CoffeeCustomer

: Interface : CoinHandler : Brewer

insertCoin transport

{ 0 < 5s}

litIndicators
coinAccepted warmUp

pressButton(b1)
makeOrder(o1)

pourCoffeepourCoffee

Timing

constraint

Return message

2024-09-10 93UML Modeling / Kristian Sandahl & Dániel Varró

Combining fragments of sequence diagrams

:Order :TicketDB :Account

SD processOrder

create

Get existing customer data
ref

loop [get next item]

reserve(date,no)

add(seats)

answer

destruction

loop condition

loopgate

2024-09-10 94UML Modeling / Kristian Sandahl & Dániel Varró

Combining fragments of sequence diagrams

:Order :TicketDB :Account

SD Get existing customer data

create Getdata(c1)

Data(c1)

2024-09-10 95UML Modeling / Kristian Sandahl & Dániel Varró

More fragments of sequence diagrams

:Order :TicketDB

loop

[get next item]

reserve(date,no)

add(seats)

alternate branches

reject

alt [available]

[unavailable]

nested conditional

guard condition

2024-09-10 96UML Modeling / Kristian Sandahl & Dániel Varró

Rehearsal and a little example

2024-09-10 97UML Modeling / Kristian Sandahl & Dániel Varró

https://www.youtube.com/watch?v=pCK6prSq8aw&t=7s

Two flaws:
Objects preceded with ”:”
Eject card after invalid card or invalid PIN
shall terminate transaction.

https://www.youtube.com/watch?v=pCK6prSq8aw&t=7s

Summary

• Structural diagrams

– Class vs. Objects, Attributes, Relationships

• Behavioral diagrams

– Sequence diagram

– State machine diagram

• Domain analysis vs implementation

2024-09-10 98UML Modeling / Kristian Sandahl & Dániel Varró

Preparation for Friday (Modeling Practice)
A review management system (REMS) help the review of scientific journal papers submitted by researchers. Authors submit a
paper by using a form to specify a title, an abstract, a list of keywords and a first version as PDF document. They may also
suggest names for excluded reviewers. When a new submission is received, REMS assigns a qualified editor to manage its
review process by matching the keywords of the paper with editors’ expertise. An editor sends invitation to several reviewers
(not excluded by the authors) who either accept or decline this invitation. When two reviewers agree to review the paper, no
further reviewers will be invited. A reviewer needs to complete a review which includes a textual critic and a recommendation:
accept, minor revision, major revision or reject. Based upon the recommendations of the reviews, the editor makes a decision
on the paper (which is also one of accept, minor revision, major revision and reject). If the decision is major revision, the
authors need to resubmit a revised version of the paper, and the editor initiates a 2nd round of review, which is identical with
the 1st round, except for excluding major revision as a possible outcome.

2024-09-10 99UML Modeling / Kristian Sandahl & Dániel Varró

Write a functional requirement to capture that only qualified editors will handle any paper.
Write an non-functional requirement on the availability of the REMS system.

Draw a use case diagram for the REMS system highlighting key actors, use cases and their relations.

Draw a UML Class Diagram as domain model for the REMS system showing the domain concepts, their relationships and
potential generalizations. Specify multiplicities for your associations and arrange all objects into a containment hierarchy by
appropriate composition relations between classes.

Describe the high-level workflow of the paper review process using a UML Activity Diagram. You may assume that the
successful invitation of a reviewer is separated into an activity called Invite-and-Accept-Review which you may use in your
diagram. Your actions should have direct traceability to use cases!

Describe the state-based behavior of the “Paper” class by a UML Statechart Diagram. Use operations derived from use cases
as triggering events of transitions. (The Paper class represents a submission that is handled by REMS for review.)

www.liu.se

Modeling with UML /
Dániel Varró & Kristian Sandahl

	Default Section
	Slide 1: Modeling with UML
	Slide 2
	Slide 3
	Slide 4: The goals of module design
	Slide 5: Modelling software
	Slide 6: Unified Modeling Language

	UML Class Diagrams
	Slide 7
	Slide 8
	Slide 9: Where to use Class diagrams?
	Slide 10: A Single Class
	Slide 11: Naming of Classes
	Slide 12: Attributes
	Slide 13: Enumerations
	Slide 14: Relationships (1/6) - overview and intuition - Association
	Slide 15: Relationships (1/6) - overview and intuition - Association
	Slide 16: Equivalent object diagram
	Slide 17: Relationships (1/6) - overview and intuition - Association
	Slide 18: Relationships (1/6) - overview and intuition - Association
	Slide 19: Attributes vs. Associations
	Slide 20: Relationships (2/6) - overview and intuition - Aggregation
	Slide 21: Relationships (2/6) - overview and intuition - Aggregation
	Slide 22: Relationships (3/6) - overview and intuition - Composition
	Slide 23: Relationships (3/6) - overview and intuition - Composition
	Slide 24: Relationships (3/6) - overview and intuition - Composition
	Slide 25: Relationships (3/6) - overview and intuition - Composition
	Slide 26: Relationships (3/6) - overview and intuition - Composition
	Slide 27: Relationships (4/6) - overview and intuition - Generalization
	Slide 28: Typical Use of Generalization
	Slide 29: When to Avoid Generalization?
	Slide 35: Relationships - overview and intuition
	Slide 36
	Slide 37: Class Diagram for Animals in Zoo
	Slide 38: Class Diagram for Animals in Zoo
	Slide 39: Instance Models for Animals in Zoo
	Slide 40: Instance Models for Animals in Zoo
	Slide 41: Instance Models for Animals in Zoo
	Slide 42: Instance Models for Animals in Zoo
	Slide 43: Classification (aka. Instantiation)
	Slide 44: Type conformance

	Domain Modeling vs. Component Modeling
	Slide 45
	Slide 46: What you model depends on the recipient and the perspective
	Slide 47: Perspectives: Domain modeling vs. Implementation
	Slide 48: Domain model vs. Implementation model
	Slide 49: Identifying classes: noun analysis
	Slide 50: Identifying classes: noun analysis
	Slide 51: Key Decisions during Noun Analysis
	Slide 52: Key Decisions during Noun Analysis
	Slide 53: A Sample Solution (Not the Only One!)
	Slide 57: Your Checklist for Domain Modeling
	Slide 62: A complete, comprehensive guide to UML 2.5

	UML Behavioral Diagrams
	Slide 64
	Slide 65: State-based Behavior Modeling
	Slide 66: Example: Abstract & Concrete States of a Stack
	Slide 67: Abstract State vs. Concrete State
	Slide 68: UML State machine diagram
	Slide 69: Specification
	Slide 70
	Slide 71: Step 1: Define all Events and Actions
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76: Specification
	Slide 77
	Slide 78: Specification
	Slide 79
	Slide 80: Orthogonal, composite states
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 87
	Slide 88
	Slide 89
	Slide 92: Sequence diagram
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97: Rehearsal and a little example
	Slide 98: Summary
	Slide 99: Preparation for Friday (Modeling Practice)

	Conclusions
	Slide 100

