
Software Engineering Theory

Requirements Engineering

Daniel Varro / Lena Buffoni / Kristian Sandahl
Department of Computer and Information Science

Assignment #1: Requirements

2

• Solve the problems by reading and reflecting about
the concepts introduced today and on next week.

• Submit before the deadline according to instructions
on the homepage.

• You may work in groups of 1-2 people

• You may get 0-4 bonus credits for the written exam

• Make sure to avoid plagiarism,
run http://noplagiat.bibl.liu.se/default.en.asp

http://noplagiat.bibl.liu.se/default.en.asp

3

Requirement formalization in product life-cycle

Specification

Design

Design
Refinement

Component verification

Subsystem level integration and
verification

Subsystem level integration test
calibration and verification

Product verification and
deployment

Maintenance

Realization

Detailed feature design and
implementation

Architectural design and
system functional design

Preliminary feature design

System
requirements

Level of Abstraction

Documentation, Version and Configuration Management

Verification

Integration

Calibration

Experience Feedback

Flaws in system requirements cause large cost increase in
product development, or even completely failed projects

Definition and Categorization of Requirements

What are requirements?
How to categorize them?

What is a software requirement? 5

• Intuitively:

– A property or behaviour we want from a system

• More formally:

– “Software requirements express the needs and
constraints placed on a software product that
contribute to the solution of some real-world
problems.”

(Kotonya and Sommerville, 2000)
– “A requirement is something the product must do

or a quality it must have.”
(Suzanne & James Robertson, 2006)

Examples

6

Web shop:

– When the user enters type of T-shirt, the system
shall show a palette of available colors.

LIU Intranet:

– A password must contain a combination of literals
and numerals and be at least 8 characters long

Car simulator:

- The feel of the brakes must be realistic

The requirements plane

User System

Functional

Non-functional

Presentatörsanteckningar
Presentationsanteckningar
Requirements can be categorized according to (at least) two axis

User vs. System Requirements
• User requirements (High-level requirements):

– Describe the services the system is expected to
provide in a language (no technical details)

– Example: „The system shall generate monthly
management reports showing the cost of drugs
prescribed by each clinic.”

• System requirements (Low-level requirements):
– Detailed descriptions of system functions and

operational constraints
– Example: „On the last working day of each month, a

summary of the drugs prescribed, their cost and the
prescribing clinics shall be generated.”

Presentatörsanteckningar
Presentationsanteckningar
System requirements provide some technical detail

9

Functional vs. Non-functional Requirements

• Describe what the system should do
• Typically attributed to one component

of the system
• Typical form: “The system shall do …”

Functional
requirements

• Specify properties of the system as a
whole

• (no single component for safety)
• Difficult to check

Non-functional
requirements

(aka. extra-
functional)

Non-functional Requirements:
Sample Properties and Metrics

Property Measure
Scalability & performance Processed transactions/second

User/event response time
Screen refresh time

Size Mbytes
Number of ROM chips

Ease of use Training time
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

Also: security, sustainability, maintainability,
usability / user experience

11

Features
A distinguishing characteristic of a system item (includes both
functional and nonfunctional).

(IEEE Std 829)
Higher level stuff, used in advertising:
“The system shall have an SMS delivery notification service.”

R1: The user phone number shall
be pretty-printed in the format:
07x – xxx xx xx

R2: The delivery tracking
system shall interface
the DHL system.

R3: The user shall be notified
at maximum 30 minutes after
arrival to the pick-up point.

How to Write Good Requirements?

What vs. how:
• Never describe how the system should

deliver the requirement
• Focus on what the system should do

The online web shop system shall allow the
user to access the current content of their cart
in less than 5 seconds for 99.9% of attempts.

Anatomy of a good requirement
Defines the system
being discussed

Use modal verbs:
“shall”

Defines a positive
end result

Measurable quality
criteria is listed

3 Characteristics of a Good Requirement

Feasibility
Can be implemented by the system
Necessity
Provides the rationale and the desired end goal
Testability
Contains quantifiable success criteria

Concerns for (functional) requirements

• Completeness:
Describe all the system features that are required

• Consistency:
Avoid conflicts or contradictions between requirements

• (End-to-end) Traceability:
Link requirements with design models, source code,
test cases which are developed to satisfy them

How do you write a natural language
requirement?

16

• To avoid misunderstandings, always use a complete
sentence.

• A sentence expresses a complete thought and consists of a
subject and a predicate.

• Use modal verbs: ”shall”, ”will”, and ”must”

• Don’t use: ”should”, ”would”, or ”might”

• Be careful with quantifiers “all”, “never”, “each”

• “Timely review should be done as soon as possible, and shall not
exceed two working weeks.”
(TS/ISO 16949)

Functional requirements
17

• Describe the behaviour or features of a software.

• Can be tested by giving input and checking the output.

• Example: “The user shall be able to add an item to the
shopping basket.”

Think of the mathematical definition:

a function is a relation between a set of inputs and a set
of permissible outputs with the property that each input
is (deterministically) related to exactly one output.

f(x)=y

Software Quality Factors
ISO/IEC 25010 (2011)

“The quality of a system is the degree to which the system satisfies the stated and implied needs of its various
stakeholders, and thus provides value. Those stakeholders' needs (functionality, performance, security,

maintainability, etc.) are precisely what is represented in the quality model, which categorizes the product quality
into characteristics and sub-characteristics” (www.iso2500.com)

+ Safety !

See later in the course!

Costs?
Priorities?

Trade-offs?

Non-functional requirements

19

• Design constraints, limiting the solution space

– Example: “The system shall transfer data in a JSON
format.”

• Quality requirements, possible to measure

– Example: “The minimum response time is at most
2.0 seconds in 99% for user requests.”

The user quickly sees their current
account balance on their laptop screen.

Discuss: What is wrong with the
following requirement?

The system shall be easy-to-use and
require minimal training except for
professional mode.

Presentatörsanteckningar
Presentationsanteckningar
Cannot write requirement on the user, �quickly: vague�sees: no auxiliary for the verb
On their laptop screen: what vs. how?

Example 2: Easy-to-use … vague
Minimal … vague
Except … escape clause

21

User stories: A lightweight alternative for
requirement specification

As a (role) I want (something) so that (benefit)

See more at:
http://www.agilemodeling.com/artifacts/userStory.htm

As a student I want to buy a parking
card so that I can drive the car to
school.

Priority: 3
Estimate: 4

Good for:
• Smaller (sub-)projects
• Frequent releases
• User feed-back
• Prototyping
• Elicitation
• Functional requirements

Presentatörsanteckningar
Presentationsanteckningar
user story is a description consisting of one or more sentences in the everyday or business language of the end user or user of a system that captures what a user does or needs to do as part of his or her job function. User stories are used with agile software development methodologies as the basis for defining the functions a business system must provide, and to facilitate requirements management. It captures the 'who', 'what' and 'why' of a requirement in a simple, concise way, often limited in detail by what can be hand-written on a small paper notecard.

How to Model Requirements?

Workflow
Business
process

• UML Activity diagrams
• UML Sequence diagrams

Functions
Use cases • UML Use Case diagrams

Domain models
Data structures

• UML Class diagrams
• EMF Metamodels

Behavior
Communication

• UML Statechart diagrams
• UML Sequence + Activity diagrams

Components
Interfaces

• Block diagrams
• UML Composite Structure diagrams

Deployment
Allocation

• UML Deployment diagrams
• SysML (systems engineering)

What to model?

Requirements modeling

Use Case Modeling

• Capture main features / functions of
the system

• Capture how end users interact with
the system

• Using a graphical notation

Use-case modelling

25

A use-case is:
“… a particular form or pattern or exemplar of usage, a
scenario that begins with some user of the system
initiating some transaction of sequence of interrelated
events.”
Jacobson, m fl 1992: Object-oriented software
engineering. Addison-Wesley

26

Core Concepts in a UML Use Case diagram

Buy a cup of coffee

CoffeeDrinker

Actor: a user of
the system in a
particular role.
Can be human
or system.

Connection /
Association

Use-case name
(verb phrase)

Use-case: functionality / activity of
the system initiated by an actor

27

Use-case diagram for the coffee-machine

CoffeDrinker

TeaDrinker

Service

Porter

Buy a cup of
coffee

Get coin in
return

Pour hot water

Clean
machine

Brew a can of
coffee

CoffeeMachine

Add ingredients

Collect coins

System
boundary

System / Subject System / subject
name

Relations between use-cases

Extend loan

Borrow copy
 of book

Check for
reservation

<<include>>

<<include>>BookBorrower

Refuse loan
<<extend>>

Stereotype: extended
classification of meaning
(handling exceptional case)

”Separating scenarios”

”Reuse”

Generalization between Actors

Generalization:
- The child can initiate each

UC its parent can access
User

Doctor Nurse

Generalization may exist between UCs,
but it is rare so it is not detailed further

Traceability of Use Cases to Other Artifacts

• Each high-level requirement needs to be
addressed by at least one UC

• Each UC will be refined to at least one
business method (in implementation)

• One UC  a set of interrelated scenarios
with a single user’s goal

• One UC  at least 1 (system-level) test case,
– but more typically one for each scenario

Tips for writing good use cases

31

• Start by identifying the list of actors

– remember systems can also be actors, e.g.: PayPal

– be consistent with the breakdown

• Describe “sunny day” use cases
(main success scenario)

• Use them to produce “rainy-day” use-cases

• Agile-workflow? Iterate on the use-cases

Best Practices for Use Case Diagrams

For diagram arrangement
• Put the most important Actors and UCs to the

top-left corner
• Use several diagrams to avoid clutter

(at most 5-7 UCs per diagram)
• Actors on the left / right, UCs in the middle
• You may have overview diagrams

(e.g. all actors on a single diagram depicting
generalization but no Ucs)

Capturing Detailed Scenarios

Three alternatives to provide more
detailed descriptions of use cases /
requirements / user stories?

#1: Structured Scenarios for Detailing Use Cases

Scenario: Starts with a user story explaining
- Who is using the system
- What they are trying to accomplish?
Step:
- Numbered discrete steps
- Performed by either the System or the

User
Main Success Scenario (MSS): Basic Path
- Describes the sequence of steps when

everything goes as expected
Alternate / Exception Path
- Alternative sequence of steps when

one (or more) step in the MSS fails to
complete

Main success scenario
1. Call Handler (CH) responds to call
2. CH encodes incident details
3. CH validates incident location with map

gazetteer
4. CH terminates call
5. CAD software assigns incident to

relevant Allocator
Alternative scenarios
2a. CH determines calls does not require
intervention
2b. Caller or Phone network terminates call

2b.1 CH determines calls does not
require intervention

2b.1a CH determines
call could require intervention

Presentatörsanteckningar
Presentationsanteckningar
https://www.inflectra.com/ideas/topic/use-cases.aspx

#2: Scenario Description in Gherkin (BDD)
35

• Feature: a requirement captured in the form of a user story
– Example:

As a retail customer,
I want to return an electronically purchase merchandise in 14 days,
so that the refund will be processed

• Scenario: Acceptance criteria for each user story
examplified by one or more scenarios
– Given a certain scenario

When an action takes place

Then this should be the outcome

Precondition:
initial context / conditions that
must hold to run the scenario

Action: event that triggers the
execution of the scenario
(e.g. user action)

Postcondition: expected
outcome to be observed
after scenario execution

#3: UML Sequence Diagrams (next lecture)
36

r :Registrar

getPastDueBalance
(studentID)

ar :AccountsReceivable c :Class

opt [pastDueBalance<=0]

addStudent(studentID)

pastDueBalance

register(int studentID,
Class c)

getClassCost()

classCost
chargeForClass
(classCost)

Workflow Modeling

Describes how the system fits into
the business context
(e.g. the business process operates)

Activity diagrams for workflow modeling

Example from I. Sommerville: Software Engineering book

Activity diagrams: Basic elements
Activity:
Consume and
produce data

Flow:
Control: what comes next?
Data: where to use data?

Activity diagrams: Control nodes

Initial Node:
Process starts here

Final Node:
Process ends here

Fork:
Start of
concurrent
„threads”

Join:
End of
concurrent
„threads”

Decision:
Conditional
branching

Merge: End of
conditional branching
(not in the figure)

Presentatörsanteckningar
Presentationsanteckningar
Control nodes:
Initial vs Final node
Fork vs Join node
Decision vs. Merge node

Activity diagrams

Find a semantic inconsistency
in the diagram!

Presentatörsanteckningar
Presentationsanteckningar
The decision node is not closed by a merge node!
This is taken from the book!!!

Correctly:

Confirm
detention
decision

Inform
patient of
rights

Record
detention
decision

“Close all open
parenthesis first”
ForkJoin,
DecisionMerge

Admit to
hospital

Find secure
place

Transfer to
police station

Transfer to
hospital

Inform
social care

Inform
next of kin

Update
register

Requirements Elicitation Process

44The role of requirements in the life-cycle

time

specification

fuzziness

elicitation

modelling formalisation

Carol
the customer

Diana
the developer

Tim
the tester

45

Iterative process
Collect user requirements

Document/build

Check that it matches
user/customer requirements Understand

Elicitation

Analysis

Specification

Validation

46Elicitation

Purpose:
– Understand the true needs of the customer
– Trace future implementation to needs

Sources:
– Goals
– Domain knowledge
– Stakeholders
– Environment

Carol
the customer Robert

the requirements engineer

needs needs

Techniques:
• Interviews
• Scenarios
• Prototypes
• Facilitated meetings
• Observation

Interviews

47

Process:

• Start

• Q & A

• Summary teach-back

• Thank you!

• What’s next

Kinds:

• Structured

• Unstructured

Tips:

• Be 2 interviewers – shift roles
• Plan the interview
• Don’t stick to the plan – use

feelings
• Let the customer talk
• Alternate between open-ended

and yes/no questions
• Prepare ice-breakers
• Probe thinking
• Look for body language
• Think of human bias
• Why do you get the answers you

get?

Elicitation 48

If Henry Ford asked asked his customers what
they wanted, they’d have said a faster horse.

Faster horse or faster transportation?

Prototyping

49

• Consistent with requirement specification

• Clear scope

• Provide and execute a test scenario

• Minimize throwaway code

Requirements analysis goals 50

• Detect and resolve conflicts between
requirements

• Discover bounds of software

• Define interaction with the
environment

• Elaborate high-level requirements to
derive detailed requirements

• Classify requirements for more
effective management

Elicitation

Analysis

Specification

Validation

Often accomplished with requirements modelling

Requirements classification

51

• Functional vs non-functional requirements

• Source

• Product vs process requirements

• Priority

• Scope in terms of affected components

• Volatility vs stability

Presentatörsanteckningar
Presentationsanteckningar
Volatility – examples depending on policies,
Stable requirements – drive from core activity
Source – domain, general objective, user

Enduring requirements These are relatively stable requirements that derive from the core activity of the organisation and which relate directly to the domain of the system. For example, in a hospital there will always be requirements concerned with patients, doctors, nurses, treatments, etc. These requirements may be derived from domain models that show the entities and relations which characterise an application domain (Prieto-Díaz and Arango, 1991, Easterbrook, 1993).
Volatile requirements These are requirements that are likely to change during the system development process or after the system has been become operational. Examples of volatile requirements are requirements resulting from government health-care policies or healthcare charging mechanisms.

process. – management, development, installation / product – feature, design, use of database

Requirement prioritization
52

• Different prioritization strategies

(numerical, categories, 100-dollar method, …)

• Identify and order priorities for trade-off requirements

Eg: I want a fast web-site with high resolution graphics

• Good ratio between different priorities – all requirements cannot
be critical

• Cost, technical-risk, time frames are all considerations in
prioritizing

• Low priority requirements are not a maybe/someday wish-list!

53

Specification

• There is no perfect specification, but you can write a good one
• The Requirement Specification (RS), or SRS (Software RS) avoids many

misunderstandings
• The RS is of special importance in outsourcing programming

Carol
the customer

Robert
the requirements engineer

needs needs

SRS

Elicitation

Analysis

Specification

Validation

Iterative process

54

• The requirement specification is a living document

• Priorities change

• Technical issues can lead to modifications

• Some requirements may need additional elicitation

Great job! Can
you just redo it

in midnight
blue?

Means of validation 55

• Prototyping

• Simulation

• Software Reviews

• Model checking

• Formal proofs

• Acceptance testing

Elicitation

Analysis

Speci-fication

Validation

Agile Requirements Engineering

What about requirements + agile
development?

57

Moving from iteration in a single stage
to iterating over the whole process

Specification

Design

Design
Refinement

Component verification

Subsystem level integration and
verification

Subsystem level integration test
calibration and verification

Product verification and
deployment

Maintenance

Realization

Detailed feature design and
implementation

Architectural design and
system functional design

Preliminary feature design

System
requirements

Level of Abstraction

Documentation, Version and Configuration Management

Verification

Integration

Calibration

Experience Feedback

Agile requirement modelling

58

No single standardized definition of the process

BUT

Several workflow models emerged, including:

• Behavior Driven Development
• Scaled Agile Framework (SAFe) Requirements Model

• Specification by example

General concepts of agile RM:

59

• Frequently based on user stories
• Requirements are elicited at a general level and

refined with each iteration

• Often relies on classic techniques for initial elicitation

• Stakeholders need to be tightly involved

• The notion of done is important

• Good support for change management is key

• Can be integrated with automated acceptance testing
(behavior-driven development)

60

User stories – lightweight alternative for
requirement specification

As a (role) I want (something) so that (benefit)

See more at:
http://www.agilemodeling.com/artifacts/userStory.htm

As a student I want to buy a parking
card so that I can drive the car to
school.

Priority: 3
Estimate: 4

Good for:
• Smaller (sub-)projects
• Frequent releases
• User feed-back
• Prototyping
• Elicitation
• Functional requirements

Presentatörsanteckningar
Presentationsanteckningar
user story is a description consisting of one or more sentences in the everyday or business language of the end user or user of a system that captures what a user does or needs to do as part of his or her job function. User stories are used with agile software development methodologies as the basis for defining the functions a business system must provide, and to facilitate requirements management. It captures the 'who', 'what' and 'why' of a requirement in a simple, concise way, often limited in detail by what can be hand-written on a small paper notecard.

61

Problem: Notion of „Done”

When is the requirement
completed?

Compare with:
A student should be able to complete an
online form, indicating contact
information and payment method and
once it is processed a parking card is
sent in the mail.

User stories might need to be completed by more formal
specifications, use-case diagrams and communication
with stakeholders

As a student I want to buy a parking
card so that I can drive the car to
school.

Priority: 3
Estimate: 4

Behavior Driven Development

What is Behavior-Driven Development? 65

• An agile software
development process

• Emerged from test-driven
development

• Uses a domain-specific
language

• Relies on test/release
automation tools

Agile process:
• Requirements and solutions co-evolve
• Adaptive project planning
• Flexible change management

Test-driven development:
• Develop your unit tests before developing your

functionality
• Repetitions of very short development cycles

Domain-specific language:
• Computer language specific to a target

application domain
• Natively uses concepts from the target domain

Test automation:
• Test cases are automatically executed for each

commit
• Prevents integration of inconsistent source code

Goals of BDD 66

• Should be business-readable to improve communication

– Provide a language to help communication between stakeholders:
engineers, business analysts, product owners, testers, etc.

– Active participation of all stakeholders in requirements
specification

• Provide a domain-specific language to describe

– Features and their acceptance criteria

– System behavior: What the system should do?

– Without implementation details: NOT how the system should do?

• Promote test automation for acceptance tests:

– Integrated with automated build systems (Gradle, Maven

– Executable specification (even when incomplete)

– Integrated with test automation tools (e.g. Selenium)

Behavior-Driven vs. Test-Driven Development 67

• BDD enforces a TDD-like workflow
1. define a test set for checking the expected behavior;
2. make the tests fail / pending
3. then implement behavior;
4. finally verify that the implemented behavior makes the tests

succeed
• Difference: TDD vs BDD

– TDD:
• Focus on unit testing (class, component)
• Tests written in a programming language
• By developer

– BDD:
• Focus on acceptance testing (product as a whole)
• Tests written in a domain-specific language (DSL)
• Written by business analyst, implemented by developer

Popular Tools for TDD 68

• Cucumber: General BDD framework
– Specification language: Gherkin
– Supports 30 spoken languages
– Java, Javascript, Ruby, etc.

• Other related tools:
– JBehave (Java)
– Behat (Php)
– SpecFlow (.NET)

How to Organize Requirements?

Organize the Software Requirement Specification
70

Example from IEEE Std 830-1998
3.2 Functional requirements
3.2.1 Show colors

When the user enters type of T-shirt, the system shall show a palette
of available colours.

3.2.2 Add to shopping basket
The user shall be able to add an item to the shopping basket.

3.3 Performance requirements
3.3.1 Response time

The minimum response time is 2.0 seconds.
3.4 Design constraints

The system shall be implemented in PHP.

If a more thorough description is needed 71

3.2.1 Show colors

3.2.1.1 Input variables

Type of T-shirt

3.2.1.2 Output variables

Set of color codes

3.2.1.3 Processing

1. Query database for available colors of Type of T-shirt.

2. Create a set of color codes.

3. Send color codes to palette viewer

Alternative ways of organizing requirements 72

3.2 System features

3.2.1 SMS notification

3.2.1.1 Purpose of SMS notification

The system shall have an SMS delivery notification service so
customers can collect their delivery as fast as possible.

3.2.1.2 Stimulus/response sequence

When the delivery is has arrived to the pick-up point, notify the user.

3.2.1.3 Associated functional requirements

3.2.1.3.1 Number format

The user phone number shall be pretty-printed in the format:
07x – xxx xx xx

3.2.1.3.2 Change number

…..

SRS contents IEEE Std 830-1998 73

1 Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, acronyms and
abbreviations

1.4 References

1.5 Overview

4 Supporting information
4.1 Index
4.2 Appendices

2 Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 General constraints
2.5 Assumptions and dependencies
2.6 Lower ambition levels

3 Specific requirements
3.1 Interface requirements

3.1.1 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communication interfaces

3.2 Functional requirements
3.3 Performance requirements
3.4 Design constraints
3.5 Software system attributes
3.6 Other requirements

Presentatörsanteckningar
Presentationsanteckningar
Scope : define the context of the product, content and qualities of a good software
Definitions : contact, customer, supplier…

Perspective – product in relation to others

SRS contents IEEE Std 830-1998 74

1 Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, acronyms and
abbreviations

1.4 References

1.5 Overview

2 Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 General constraints
2.5 Assumptions and dependencies
2.6 Lower ambition levels

•Describe purpose of this SRS
•Describe intended audience

•Identify the software product
•Enumerate what the system will and will not do
•Describe user classes and benefits for each

•Define the vocabulary of the SRS
(may reference appendix)

•List all referenced documents including sources
(e.g., Use Case Model and Problem Statement;
Experts in the field)

•Describe the content of the rest of the SRS
•Describe how the SRS is organized

Presentatörsanteckningar
Presentationsanteckningar
Scope : define the context of the product, content and qualities of a good software
Definitions : contact, customer, supplier…

Perspective – product in relation to others

SRS contents IEEE Std 830-1998 75

1 Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, acronyms and
abbreviations

1.4 References

1.5 Overview

2 Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 General constraints
2.5 Assumptions and dependencies
2.6 Lower ambition levels

•Present the business case and operational concept of the system
•Describe how the proposed system fits into the business context
•Describe external interfaces: system, user, hardware, software, communication
•Describe constraints: memory, operational, site adaptation

•Describe and justify technical skills
and capabilities of each user class

•Summarize the major functional capabilities
•Include the Use Case Diagram and supporting
narrative
(identify actors and use cases)
•Include Data Flow Diagram if appropriate

•Describe other constraints that will limit developer’s
options; e.g., regulatory policies; target platform,
database, network software and protocols, development
standards requirements

Presentatörsanteckningar
Presentationsanteckningar
Scope : define the context of the product, content and qualities of a good software
Definitions : contact, customer, supplier…

Perspective – product in relation to others

SRS contents IEEE Std 830-1998 76

1 Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, acronyms and
abbreviations

1.4 References

1.5 Overview

4 Supporting information
4.1 Index
4.2 Appendices

2 Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 General constraints
2.5 Assumptions and dependencies
2.6 Lower ambition levels

3 Specific requirements
3.1 Interface requirements

3.1.1 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communication interfaces

3.2 Functional requirements
3.3 Performance requirements
3.4 Design constraints
3.5 Software system attributes
3.6 Other requirements

Presentatörsanteckningar
Presentationsanteckningar
Scope : define the context of the product, content and qualities of a good software
Definitions : contact, customer, supplier…

Perspective – product in relation to others

Pros and cons of IEEE 830

77

Cons

• Takes some time to
read and
understand

• Very general, needs
to be tailored

• Is no guarantee for a
good SRS

Pros
• Good checklist
• Many ways to adapt

organization
• Many ways to detail

requirements
• You don’t need to have

everything in

Requirements specification

78

Requirements in a good
SRS are:

• Numbered

• Inspected

• Prioritised

• Unambiguous

• Testable

• Complete

• Consistent

• Traceable
• Feasible
• Modifiable
• Useful for:

– operation
– maintenance
– customer
– developer
– ….

Who is the reader?

R51: A car that feels
more comfortable
than the previous

version

What is
“comfortable”?
How much is
“more”?

Summary

AUGUST 30, 2024 79Requirements Engineering / Dániel Varró

• Definition and categorization of requirements
(functional vs. non-functional, user vs. system)

• Best practices
• Modeling requirements

– Use cases
– Workflows

• The iterative process of RE:
– Elicitation
– Analysis
– Specification
– Validation

• Agile Requirement models
• Quality factors
• Requirement Specification Documents (using IEEE Std 830-1998)

UML diagrams

www.liu.se

www.liu.se

	Requirements Engineering
	Assignment #1: Requirements
	Requirement formalization in product life-cycle
	Definition and Categorization of Requirements
	What is a software requirement?
	Examples
	The requirements plane
	User vs. System Requirements
	Functional vs. Non-functional Requirements
	Non-functional Requirements:�Sample Properties and Metrics
	Features
	How to Write Good Requirements?
	Anatomy of a good requirement
	3 Characteristics of a Good Requirement
	Concerns for (functional) requirements
	How do you write a natural language requirement?�
	Functional requirements
	Software Quality Factors�ISO/IEC 25010 (2011)
	Non-functional requirements
	Discuss: What is wrong with the following requirement?
	User stories: A lightweight alternative for requirement specification
	How to Model Requirements?
	What to model?
	Use Case Modeling
	Use-case modelling��
	Core Concepts in a UML Use Case diagram
	Use-case diagram for the coffee-machine
	Relations between use-cases
	Generalization between Actors
	Traceability of Use Cases to Other Artifacts
	Tips for writing good use cases
	Best Practices for Use Case Diagrams
	Capturing Detailed Scenarios
	#1: Structured Scenarios for Detailing Use Cases
	#2: Scenario Description in Gherkin (BDD)
	#3: UML Sequence Diagrams (next lecture)
	Workflow Modeling
	Activity diagrams for workflow modeling
	Activity diagrams: Basic elements
	Activity diagrams: Control nodes
	Activity diagrams
	Correctly:
	Requirements Elicitation Process
	The role of requirements in the life-cycle
	Iterative process
	Elicitation
	Interviews
	Elicitation
	Prototyping
	Requirements analysis goals
	Requirements classification
	Requirement prioritization
	Specification
	Iterative process
	Means of validation
	Agile Requirements Engineering
	What about requirements + agile development?
	Agile requirement modelling
	General concepts of agile RM:
	User stories – lightweight alternative for requirement specification
	Problem: Notion of „Done”
	Behavior Driven Development
	What is Behavior-Driven Development?
	Goals of BDD
	Behavior-Driven vs. Test-Driven Development
	Popular Tools for TDD
	How to Organize Requirements?
	Organize the Software Requirement Specification
	If a more thorough description is needed
	Alternative ways of organizing requirements
	SRS contents IEEE Std 830-1998
	SRS contents IEEE Std 830-1998
	SRS contents IEEE Std 830-1998
	SRS contents IEEE Std 830-1998
	Pros and cons of IEEE 830
	Requirements specification
	Summary
	Bildnummer 80

