Appendix: Introduction to PlantUML

PlantUML is an open-source tool that allows users to create UML diagrams using a simple textual
language. It supports various UML diagrams, such as use case diagrams, class diagrams, sequence
diagrams, activity diagrams, and more. The main advantage is that diagrams can be created and
updated by editing plain text, which is ideal for version control and collaboration. In this LAB you
are advised to use PlantUML or other tools like Mermaid (https://docs.mermaidchart.com/) due
to the limited capabilities of the submission system for uploading images during the final exam.

For full reference and syntax of PlantUml, see:

https://plantuml.com/guide/
You can render your diagrams using PlantUML’s web service, see:
https://editor.plantuml.com/uml

Note: When copying the code snippets from this document, you might encounter a syntax error
caused by the comment indicator character: ” > 7. If you delete that line or replace ” *> ” from your
own keyboard, the error will disappear.

Important: The following examples are only to demonstrate the capabilities of the
PlantUML language. They are not meant to represent realistic systems.

1. Use Case Diagram

A use case diagram describes the functional requirements of a system and the interactions between
actors and use cases. Here is an example of a simple online banking system:

@startuml
actor Customer
actor "Bank Employee" as Employee

rectangle "Online Banking System" {
(Login)
(Contact Support)
(Transfer Momney)
(Pay Bills)
(Approve Transfers)
(Manage Accounts)

’Relationships

Customer --> (Login)

Customer --> (Transfer Money)
Customer --> (Pay Bills)
Customer --> (Contact Support)

(Transfer Money) .> (Login) : <<include>>
(Pay Bills) .> (Transfer Money) : <<extend>>

Employee --> (Approve Transfers)
Employee --> (Manage Accounts)

}

@enduml
Explanation:
e ——> : standard association.
e .>: dashed arrow for include and extend relationships.
e <<include>>: indicates mandatory inclusion of another use case.

e <<extend>>: indicates optional/conditional behavior extending a base use case.


https://docs.mermaidchart.com/
https://plantuml.com/guide/
https://editor.plantuml.com/uml

2. Class Diagram

Class diagrams show structure, attributes, methods, and relationships. PlantUML supports multiple
relationship types: association, aggregation, composition, and inheritance.

@startuml

class Customer {
+name: String
+email: String
+login(): void

}

class Account {
+accountNumber: String
+balance: double
+deposit (amount: double): void
+withdraw(amount: double): void

class SavingsAccount
class CheckingAccount

class Transaction {
+date: Date
+amount: double
+type: String
+execute(): void

b

’Relationships

Customer "1" --> "x" Account : owns
Account "1" --> "x" Transaction : logs
Account <|-- SavingsAccount

Account <|-- CheckingAccount

Account o-- Transaction : composed of
@enduml

Explanation:

e —-> : association

e o-- : composition (strong ownership)
e <|-- : inheritance/generalization

e Multiplicity can be added with "1" --> "x"

3. Sequence Diagram

Sequence diagrams show dynamic interactions between objects over time.

@startuml

actor Customer

participant "Login Service" as LoginService
participant Account

participant Transaction

Customer -> LoginService: login(username, password)
LoginService —-> Customer: authenticationResult ()



Customer -> Account: checkBalance()
Account -> Customer: balance

Customer -> Account: transferMoney(amount, targetAccount)
Account -> Transaction: createTransaction(amount, targetAccount)
Transaction -> Account: updateBalance()

Account -> Customer: confirmation()

@enduml

Explanation:
e actor: external user
e participant: system components

e Arrows represent messages; top-down order shows temporal sequence.



