TDDC88/TDDC(C93: Software Engineering Lab 5

Continuous Integration (Cl) and Git
Branches

Objectives:
e To gain fundamental understanding and hands-on experience on Cl

e To gain understanding about git branches and manage branches whenever you want
to add a new work and push it to the original repository via merge request

This lab will give you some hands-on experience in using continuous integration tools to
automate the integration when members of a team push new/modified code into the
remote repository. There are several Cl tools to choose from, for example Jenkins, GitLab ClI,
TeamCity, and Travis Cl etc...

In this Lab, you will be able to set up a Cl system using GitLab, which is one of the more
popular Cl tools. In GitLab, you can create projects for hosting your codebase, collaborate
on code, and automate all sorts of tasks related to building, testing, and delivering or
deploying software continuously with built-in GitLab CI/CD. Builds can be triggered by time
or event based.

You will be using the FreeCol codebase, which resides

at https://gitlab.ida.liu.se/tddb84/freecol/, along with GitLab from LiU
(https://gitlab.liu.se/), and docker hub images available in https://hub.docker.com/ to build
FreeCol application. FreeCol application [http://www.freecol.org/] is a Java module, aims
to create an open source version of the game Colonization. FreeCol project's build script,
using Ant, is configured to build, generate HTML documentation, code coverage reports,
automated testing report etc. Apache Ant (https://ant.apache.org/) is a Java library and
command-line tool with a number of built-in tasks allowing to compile, assemble, test and
run Java applications

Recommended reading before you start working on this lab:

* Introduction to CI/CD with GitLab
https://docs.gitlab.com/ee/ci/introduction/index.html#how-gitlab-cicd-works

» GitLab CI/CD Pipeline Configuration Reference
https://docs.gitlab.com/ee/ci/yam|/README.html

» Creating and Tweaking GitLab CI/CD for GitLab Pages-
https://docs.gitlab.com/ee/user/project/pages/getting started part four.html

e JUnit test reports - https://docs.gitlab.com/ee/ci/junit_test reports.html

Table of Contents

Part A —Tutorial on how to set up @ Cl uSing Gitlab........cccoivviiiiiiiiiriii e 3
1. Create a “helloworld” project in GitLab..........cooiiviiiiiiiiiii e 3

2. CloNe yOUr remMOLE rEPOSITONY ..vuviiiiiiiiiiieeeeisiiteee e e sttt ee e s s sbrreee s s sibar e e e e s e sabaeeeeessnaareeeas 5
QUUESTIONS: . e e et e e e e e e s s s s e e raaee 6

3. Working on your [0Cal rePOSItONYovcuiiiiiiiiiiiiee et e s e e e 7

4. Gitlab Cl configuration for “helloworld” Project......cccceccvieeiiiiiiiiiiiiinie e 8
Part B — GitLab CI Configuration and Git Branches.........cccccovviiiiiiiiiniiiiieeesiieee e 11
1. Setting up a shared Git rePOSITOrYuiiiiiiiiiiiee e 11

2. Forking the FreeCol rePOSItOryiiiiiiiiiiei it e e s 13

3. CloNINgG the rEPOSITONY .uuueiiiieiiieciieeee e e e s s brr e e e s s s sabaeeeeesnnns 14

4. Run build scripts in FreeCol in your local cOmputercceeviiviiiiieiiiiniieeec e 16

5. Set up Continuous Integration in GitLab......cccoevcuuviiiiiiiiiiiiee e 17

6. Step 4. Create a merge request in GitLab to the original repository........cccccvveevevnnnnnee. 20

7. Merge the proposed ChaNEESuuiii ittt e e e s 21

8. Task 5. FiXiNG the teSt CASES ..ciivvuiiiiiii ittt rae e e e s e 21

9. Merge test fix into the master branch........cccooiiiiiiiinii e 22

o= 101 o= 1 1L o 24

Part A — Tutorial on how to set up a Cl using

Gitlab

1. Create a “helloworld” project in GitLab
1. Sign in on https://gitlab.liu.se/ using your LiU account.

2. Inyour dashboard, click the green New project button or use the plus icon in the
navigation bar.

hwv Groups v Morev (@Dv [|m Search or jump to...

New project
Welcome to GitLab New group
Code, test, and deploy together New snippet
Create a project Create a group
E Projects are where you store your code, access ot v Groups are the best way to manage projects and
issues, wiki and other features of GitLab. members.

Explore public projects Learn more about GitLab

There are 121 public projects on this server. Public . .
K Take a look at the documentation to discover all
projects are an easy way to allow everyone to

have read-only access. of GitLab's capabilities.

_ v

This opens the New project page.

Blank project Create from template Import project CI/CD for external repo

Project name

helloworld
Project URL Project slug
https://gitlab.liu.se/alash325/ helloworld
Want to house several dependent projects under the same namespace? Create a group.

Project description (optional)

Description format

Visibility Level @

® @ Private
Project access must be granted explicitly to each user.

U Internal
The project can be accessed by any logged in user.

@ Public

The project can be accessed without any authentication.

Initialize repository with a README
Allows you to immediately clone this project’s repository. Skip this if you plan to push up an existing repository.

Create project Cancel

3. Onthe New project page, choose the blank project tab.
4. On the Blank project tab, provide the following information:
* The name of your project (i.e. helloworld) in the Project name field.

» Select the Initialize repository with a README option to create a README
file.

5. Click Create project. Now your Git repository is initialized with a default branch
(master).

2. Clone your remote repository

H helloworld & Ov st 0
Project ID

The repository for this project is empty

You can get started by cloning the repository or start adding files to it with one of the following options.

& New file Add README Add LICENSE Add CHANGELOG Add CONTRIBUTING @ Set up CI/CD

Clone with SSH
it@gitlab.liu.se:
gitegitlab.liu.se @ Jsing the instructions below.
Clone with HTTPS
https://gitlab.liu.se/ r.]

git config --global user.email

To start working locally on your remote repository, you must clone (download) a copy of its
files to your local computer. You can clone it via HTTPS:

* From your helloworld project click on the Clone button
* Copy the URL from “Clone with HTTPS” field

* Open aterminalin the directory you wish to clone the repository files into, and run
the following command;

git clone [repository_URL]
where [repository_URL] is the URL (remote repository path) you copied.
* Enter your credentials if asked.

Once completed, the following actions occur:

* Anew folder called hellworld initialized as a Git repository is created in your local
computer

* Aremote named origin is created, pointing to the URL you cloned from. Go to
helloworld folder and type git remote -v and press Enter. You will see the current
configured remote repository:

origin https://gitlab.liu.se/<USERNAME>/helloworld.git (fetch)
origin https://gitlab.liu.se/<USERNAME>/helloworld.git (push)

» All of the repository's files and commits are downloaded there (for now only the
README file)

* The default branch (usually called master) is checked out. Type git branch and
press Enter. You will see your branches. A * will appear next to the currently active
branch: * master.

Questions:

Write few lines (i.e., what and why mostly) about each of the following terms, with respect
to GIT:

1) Origin
2) Remote
3) Branching (master or other) — Creating a new branch
4) Forking
5) Merge Request
6) Continuous Integration
7) Continuous Delivery
8) Making a pull request
9) Build Script
10) .ymlfile in CI workflow

3. Working on your local repository

1. Create a file called HelloWorld.java in you project root, which contains the simplest
program of Java printing “Hello World” to the screen.

class HelloWorld
{
public static void main(String args[])

{
System.out.printin("Hello, World");

}

2. Push all your changes to Gitlab (your remote repository):

* Run the command “git status” to know how many files have been
added/changed.

* Add the file to your local repository and stage it for commit to your local
repository;

git add . or git add HelloWorld.java

Note: The . character means all file changes in the current directory and
subdirectories.

* Commit the file that you've staged in your local repository:

git commit -m "hellowrold”, where -m stands for message, you want to
associate with these changes so you remember, why you made these changes.

* Push all commits in your local repository to GitLab (remote repository)

git push [name_of_your_remote] [name_of_your_branch]

On successful completion, your new file “HellowWorld.java” will be added to your
remote repository in GitLab webpage as well as on local computer.

hv Projects v Groups v Activity Milestones Snippets (D) v [v Search or jump to...
H helloworld Alachew Mengist > helloworld > Details
Project .
© H helloworld & ov s 0 YFok 0
Project ID: 1816
Details
Activity & Add license -1 Commit ¥ 1Branch & 0Tags [20 KB Files
Releases
Cycle Analyt master helloworld + v History ~ Q Find file ~ Web IDE ® v
ycle Analytics
Insights
helloworld ea15ad92 @
Alachew Mengist authored 4 minutes ago
@ Repository
O Issues 0 .
Add README Add CHANGELOG Add CONTRIBUTING Enable Auto DevOps Add Kubernetes cluster

1 Merge Requests 0

Set up CI/CD & Security Dashboard
4 C/CD

Name Last commit Last update
© Security & Compliance

&« Collapse sidebar @ HelloWorldjava helloworld 4 minutes ago

4. Gitlab CI configuration for “helloworld” project
* Create .gitlab-ci.yml and save it in your root directory of “helloworld” project. The

image: openjdk:8
stages:
- build
build:
stage: build
script:
- javac HelloWorld.java
- java Helloworld
artifacts:
paths:

- ./HelloWorld.x*

contents of .yml file is as follows:

NOTE: YAML does not allow tab indentation, so use 2 spaces instead. If you are using
vim to create the ci file, run set ts=2 sw=2 et and add a line containing # vi: ts=2
sw=2 et at the bottom of the file. Ensure that the file ~/.vimrc contains the line set
modeline.

Question: Explain each line in the figure above.
* Push all your changes to Gitlab (your remote repository)
git add .
git commit -m "initial CI"

git push [name_of_your_remote] [name_of_your _branch]

On successful completion, GitLab Cl automatically starts to execute the jobs you’ve
set. Go to option on left side on gitlab.liu.se “ClI/CD” and click on “pipelines”. You
should see the status of you last commit changes from pending to either running,
passed or failed as shown below (see your Gitlab repository).

hwv Projects v Groups v Activity Milestones Snippets (D) v [v Search or jump to...
H helloworld Alachew Mengist > helloworld > Pipelines
N All 1 Pending 0 Running 1 Finished 0 Branches Tags Run Pipeline Clear Runner Caches Cl Lint
roject
@ Repository Status Pipeline Triggerer Commit Stages
O Issues 0) #4131 P master -0 7098de6e —~
w‘ @ Eﬁ @ Initial Cl set up @

11 Merge Requests 0
4 Cl/CD

&« Collapse sidebar

You can view all pipelines by going to the Pipelines page in your project.

ll,u Projects v Groups v Activity Milestones Snippets @ v [v Search or jump to...

H helloworld ‘ @© passed ‘ Pipeline #4137 triggered 3 minutes ago by 4 Alachew Mengist

€ Project Initial Cl set up
® Repository . .
O 1 job for master in 32 seconds (queued for 3 seconds)
O Issues 0
R
i1 Merge Requests 0
-0 b160b274 - (@
4 C/CD
Pipelines
Pipeline Jobs 1
Jobs
Schedules Build
Charts
@ build Q

&« Collapse sidebar

In GitLab CI, Runners run the code defined in .gitlab-ci.yml. GitLab Cl not only executes the
jobs you’ve set, but also shows you what’s happening during execution, as you would see in
your terminal. You can also view if artifacts were stored correctly using the build artifacts
browser that is available from the build sidebar.

hv Projects v Groups v Activity Milestones Snippets (D) v [@ v Search orjump to...

build \

H helloworld

Waiting for pod gitlab-dynprov/runner-3bec7447-project-1816-concurrent-@jsktl to be running,
status is Pending

Waiting for pod gitlab-dynprov/runner-3bec7447-project-1816-concurrent-@jsktl to be running,
status is Pending Duration: 32 seconds

Running on runne ect-1816-concurrent-@jsktl via shared-ci-gitlab-runner- Timeout: 1h (from project))
7d85

Runner: shared-runner (#106)

Job artifacts

The artifacts will be removed in 6 days

Keep Download Browse

From https://gitlab.liu.se/al /helloworld
* [new branch] master gin/master Commit b160b274 (fy

Initial Cl set up

7 for master

./HelloWorld. found 2 matching files
Uploading artifacts to coordinator... ok i 0 onseStatus=201 Created ->

Part B — GitLab CI Configuration and Git
Branches

In Part B, you have to work in pair and the project owner (In this case student-A) want the
GitLab Cl tool to continuously integrate, build and test his FreeCol project automatically
triggered by push event, and publish the test results.

1. Setting up a shared Git repository

In this task, you need to import an existing FreeCol repository via HTTP by providing the Git
URL from the New Project page:

» Signin on https://gitlab.liu.se/ using “Student_A” LiU account

. Y
hv Groupsv Morev (Dv [m Ml Search or jump to... Q 0 N & 6-v VLE‘ v

New project

Welcome to GitLab New group
Code, test, and deploy together New snippet
Create a project Create a group

Projects are where you store your code, access Groups are the best way to manage projects and
issues, wiki and other features of GitLab. members.

Explore public projects Learn more about GitLab

There are 121 public projects on this server. Public
oct P P Jt I ¢ " Take a look at the documentation to discover all
rojects are an easy way to allow everyone to —) .
proJ Y way i - of GitLab's capabilities.
have read-only access.

e From your GitLab dashboard click New project
» Switch to the Import project tab
* Click on the Repo by URL button

 Fill https://gitlab.liu.se/jesji387/group3 in the “Git repository URL”. Use Public
Checkbox. By Default, it is private.

* Click Create project to begin the import process

~ 3 ~
Il-" Projects v Groups v More v ’ Search or Iy 2 ::!:]

New project

Blank project reate from template Import project CI/CD for external repo i
A project is where you house your files
(repository), plan your work (issues) ¥
and publish your documentation Import project from

(wiki), among other things.

¢ GitLab export Q GitHub G Google Code ¥ Fogbugz O Gitea git Repo by URL
All features are enabled for blank |
projects, from templates, or when [& Manifest file
importing, but you can disable them
afterward in the project settings.

To only use CI/CD features for an {
external repository, choose CI/CD for Git repository URL
external repo. https://gitlab.ida.liu.se/tddb84/freecol.git
Information about additional Pages (
templates and how to install them can Username (optional) Password (optional) §
be found in our Pages getting started
guide
Tip: You can also create a project from
the command line. Show command
o The repository must be accessible over http://, https:// or git://
o |If your HTTP repository is not publicly accessible, add your credentials.
¢ The import will time out after 180 minutes. For repositories that take longer, use a clone/push combination.
¢ To import an SVN repository, check out this document
* Once imported, repositories can be mirrored over SSH. Read more here.
:
Mirror repository)
t
1

Project name

Project URL Project slug

https://qitlab.liu.se/alash325/ freecol

Project description (optional)

Visibility Level @
& Private
Project

O Internal

The pro

3 Q Public

The project can be accessed without any authenticatior

Create project Cancel

ust be granted explicitly to each user

¢ any logged in user

Once completed, you will be redirected to your newly created FreeCol project accessible at
https://gitlab.liu.se/<student_A_LiU_ID>/freecol, which will be your original remote
repository.

Your task is now to configure Cl for FreeCol project using built-in GitLab CI/CD and propose
changes to the original repository (i.e to the GitLab repository reside in student A). You are
expected to set up the following stages: build, test, and publish HTML test report page in
GitLab. The second requirement for this lab is to create a new branch with git whenever you
want to add a new work and push it to the remote/original repository via create merge
request.

2. Forking the FreeCol repository

A fork is a copy of original repository. Forking a repository allows you to freely experiment
with changes without affecting the original project. In order to push to the original
repository, you will push to your own forked repository and create a merge request from
your forked repository in GitLab.

e Signin on https://gitlab.liu.se/ using “Student_B” LiU account

* Navigate to the FreeCol repository of student_A in your browser
(https://gitlab.liu.se/<student_A_LiU_ID>/freecol)

* Inthe top-right corner of the navigated page, click Fork
* Select your namespace to fork the project

Now if you look at the URL of your forked repository it is changed into
<student_B_LiU_ID>:

https://gitlab.liu.se/<student B LiU ID>/freecol

It also shows you where your repository is forked from (see Figure below).

II.U Projects v Groups v Activity Milestones Snippets @ v] v Search or jump to...
F freecol Alachew Mengist > freecol Details
€ Project F freecol a oy tsar 0 ¥Fork 0
Project ID: 1900
Details
Activity &8 Add license -0-8 Commits ¥ 1Branch & 1Tag [0 Bytes Files
: Forked from Alachew Mengist / freecol
Releases
Cycle Analytics =
Insights master freecol + v History Q Findfile ~WebIDE @ +
® Repository Reversed order of parameters to fix test aldfosss @

Ola Leifler authored 2 years ago

&« Collapse sidebar

3. Cloning the repository
Log in on the lab terminal as Student_B.

To start working locally, you must clone (download) a copy of the original repository files
(available in Student_A GitLab repository) to <Student_B> local computer. You can clone it
via HTTPS:

hov Projects v Groups v Activity Milestones Snippets (D) v [m v Search or jump to...
F freecol Details
€ Project
rojec F freecol a ov o Star 0 ¥ Fork 0
Project ID: 1899 | Leave project
Details
Clone with SSH
Activity B No license. All rights reserved -0-8 Commits ¥ 1Branch & 1Tag (3 0 Bytes Files

git@gitlab.liu.se:alame60/freec @

Releases
e Clone with HTTPS
master freecol + v

Cycle Analytics https://gitlab.liu.se/alame6o/f @

Insights .
gTvers;d order of parameters to fix test aldfogss M
a Leifler

& Collapse sidebar

* Goto https://gitlab.liu.se/<student A LiU ID>/freecol

* Click on the Clone button
* Copy the URL from “Clone with HTTPS” field

* Open aterminal in the directory you wish to clone the repository files into and run
the following command.

git clone [repository_URL] , where [repository_URL] is the URL (original remote
repository path) you copied.

After cloning the repository successfully, you should see the copy of files in your local git
repository as shown below (see the directory where you cloned the repository).

Name R Date modified Type Size ~
git 2019-09-02 15:57 File folder [

© build 2019-09-02 15:57 File folder |
@ config 2019-09-02 15:57 File folder [
€ data 2019-09-02 15:57 File folder
@ doc 2019-09-02 15:57 File folder
9 jars 2019-09-02 15:57 File folder 1
@ packaging 2019-09-02 15:57 File folder
@ schema 2019-09-02 15:57 File folder

- @ src 2019-09-02 15:57 File folder
9 test 2019-09-02 15:57 File folder

¢ @ unused 2019-09-02 15:57 File folder
© www.freecol.org 2019-09-02 15:57 File folder
@/ .classpath 2019-09-02 15:57 CLASSPATH File 1KB
&) gitignore 2019-09-02 1557 Text Document 1KB ’
@/ .project 2019-09-02 15:57 PROJECT File 1KB [
¢ build 2019-09-02 15:57 XML Document 44 KB v

Now add the forked repository as weil:
* Run git remote add <Student_B> <URL to Student_B’s fork>

git remote -v shoud now output the following lines:

origin https://gitlab.liu.se/<Student_A>/freecol.git (fetch)

origin https://gitlab.liu.se/<Student_A>/freecol.git (push)

<Student_B> https://gitlab.liu.se/<Student_B>/freecol.git (fetch)

<Student_B> https://gitlab.liu.se/<Student_B>/freecol.git (push)

4. Run build scripts in FreeCol in your local computer

As mentioned in the introduction, FreeCol application uses the Apache Ant build script. By
default, Ant uses build.xml as the name for a buildfile. You can find the FreeCol buildfile in
your local repository (see ./build.xml). It includes targets for building FreeCol, distribution
packages, running tests, creating documentation etc.

Now try to build, run tests, and create documentation for FreeCol java application using the
Ant build script:

Open a terminal in the directory where your FreeCol project is copied and run the
following command:

ant build to build the FreeCol app

ant -lib test/lib/junit.jar -Dtest=AllTests testall to run the JUnit tests and create a
browsable HTML report (see the result index.html file under ./build/report/).

NOTE: if the “ant” command does not work. Skip to next stage. We have provided
the docker image including “ant” below.

5. Set up Continuous Integration in GitLab
The workflows required to have working Cl and pass this lab is summarized as follows:

1.
2.

3.
4,
5.

Create a new branch

Add your code for Cl configuration. You Cl configuration should include the
following:

* Build the FeeCol application.

* Run the FreeCol test suite.

» Store the result as a build artifact (for the test suite).

* Publish the test results with GitLab pages.

Push your changes to your forked repository.

Create merge request in GitLab to the original repository (i.e. to student A).

Merge the proposed changes in GitLab (from student_A Gitlab repository).

You are free to work with your own starting point but If you have trouble finding a starting
point, follow the following steps:

1.

image:

Create a new branch called “Cl_<student_B_id>" on your local machine and switch
in this branch:

git checkout —b <your_new_branch_name> where <your_new_branch_name> is
“Cl_<student_B_id>"

This will switch your local git repository to a new branch called
“Cl_<student_B_id>". You can verify this by running git branch in your terminal. The
output shall be:

* Cl _<student_id>
master

Create a new file called .gitlab-ci.yml. The first line of yaml file i.e a Docker image to
run your script written in .gitlab-ci.yml file is given below.

alash325/javaant:latest

Complete other parts using tutorials given in Part A and reference materials or your
own material.

Once you are satisfied with you Cl configuration, push your changes to your forked
repository with git push <Student_B> Cl_<student_b_id>.

On successful completion, GitLab Cl automatically starts to execute the jobs you’ve set as
shown below (Go to https://gitlab.liu.se/<student B LiU |ID>/freecol and see your Gitlab
repository).

hov Projects v Groups v Activity Milestones Snippets (D v I v Search or jump to...
E reeel - Alachew Mengist > freecol > Pipelines
All 1 Pending 0 Running 1 Finished 0 Branches Tags Run Pipeline Clear Runner Caches Cl Lint
€ Project
® Repository Status Pipeline Triggerer Commit Stages
O Issues 0) #4138 :ﬁ: ¥ CI_alash325 -0 018cec67 ,—
(@ running | @ Initial Cl set up @
11 Merge Requests 0
4 Cl/CD
Pipelines
&« Collapse sidebar)
® Repository All 15 Pending 0 Running 0 Finished 6 Cl lint
O Issues 0 Status Job Pipeline Stage Name Timing Coverage
1 Merge Requests 0 ~ 1) #10859 ¥ master o #4184 by
{ ® skipped 1 YT = deploy pages
Cl/CD
#10858 ¥ master o #4184 by 00:00:24
® failed 1‘ master . z t test 6 (&
Pipelines e bcocaaas @ 9 17 hours ago
Jobs | o
[— #10857 ¥ master o #4184 by)) & 00:02:37 N
I © passed build build .
Schedules ——J bcocaa4s w # 17 hours ago c

Wait until all the jobs (stages) are executed. Once completed, go to Cl/CD->Jobs from your
project page and see the result for all the jobs you were expected to complete (i.e build,
test, publish html pages). If the results are as shown below in the graph which can be
interpreted as: The Cl for build job is passed, test job is failed, and publish html page
skipped, then go to Step 4 otherwise try to fix your Cl configuration until you reached the
expected results. The reason for the test job failure is due to the sound mixer is not
available in our computer system. However, for the GitLab runner to execute and publish
html page for the test, you are expected to fix those tests otherwise GitLab runner skips to
execute the deploy (publish html page) stage. You are going to do this in step 8.

6. Step 4. Create a merge request in GitLab to the original repository
Go to https://gitlab.liu.se/<student B LiU ID>/freecol

. =
hov Projects v Groups v Activity Milestones Snippets (D) v [m [+ Y Search or jump to (o} 0O N & v ,:_:‘:;«v

E] Alachew Mengist > freecol > Details
€ Project You pushed to CI_alash325 at Alachew Mengist / freecol 1 minute ago
Details
Activi pfreecol @ av fse 0 Yrok 0
Y Project ID: 1909
Releases
&3 Add license -0~ 8 Commits ¥ 2Branches @ 1Tag [41KB Files
Cycle Analytic
ycle Analytics Forked from Alachew Mengist / freecol
Insights
]
® Repository master freecol + v History ~Q Findfile ~WebIDE @ +
& Collapse sidebar b
- Reversed order of s to fix test 1ds o h

* Click on Create merge request button

e Click on Submit merge request button

7. Merge the proposed changes
* Go to your original repository
https://gitlab.liu.se/<student A LiU ID>/freecol

* Go to the Merge Requests tab and open the merge request. Once you open the
merge request you will be redirected to the page like the figure below.

hv Projects v Groups v Activity Milestones Snippets (D) v m v Search or jump to.
F freecol 2 0vened 1 minute ago by 454 Alachew Mengist Edit v To Do AddaToDo >
& Proj o e _ege 0 Assignees Edit
Ci initial set up NE—
None - assign yoursel
B Repositor
Milestone Edit
U (= - Request to merge alash325:Ci_alash325 (@ into Sove
alash325:Ci_alash325 master
i i Checkoutbranch @ +
11 Merge Requests 1 Time tracking (2]
No estimate or time spent
? (L
(%) Pipeline #4192 failed for 861d29ed on alash325:Ci_alash325 v)(x)
- o - Labels Edit
© Security & Compliance N
ne
@ Ope o, (i
& | Approve | Noa) a a (0] Lock merge request Edit
nlocked
@ Packages CR
& Snippets @ Test summary contained 2 failed test results out of 430 total tests Collapse 1 participant
Settings
) S @ test found 2 failed test results out of 430 total tests
Notifications ()
x (&Y testSound
x lm testClassic
Reference: alame60/freecol!2 ®
®
Collapse sideba) ;
Nqjcollapsesidebar > 1 commitand 1 merge commit will be added to master. Modify merge commit .

Ta CODEOWNERS

Source branch CI_alash325

Target branch master Change branches

Delete source branch when merge request is accepted.

Squash commits when merge request is accepted. @

Contribution Allow commits from members who can merge to the target branch. About this feature

Submit merge request Cancel

* Click on Merge to merge the proposed changes to your repository

8. Fixing the test cases

As mentioned, the reason for the test job failure is due to the sound mixer is not available in
our computer system. However, for the GitLab runner to execute and publish html page for
the test, you are expected to fix those tests. In this lab, we will fix just by removing those
tests. Instructions are given below.

1. Check out to the original repository i.e git checkout master

2. Pulling changes from a remote repository to retrieve new work done by other people
and combines your local changes with changes made by others

Create a new branch called “Fix_tests” and checkout your new bransch

4. Go to AllTests.java in ./test/src/net/sf/freecol/common/AllTests.java and comment
the following line of code:

// suite.addTest(net.sf.freecol.common.sound.AllTests.suite());

5. Push your changes (See Step 3 in Task 4)

After pushing your changes successfully, GitLab Cl automatically starts to execute the jobs
you’ve set and you can view the status of the Pipelines.

&
o 2107 ﬁ' Pmaster o 41f A o
J v (v (v D -
n:»
® C/CD . 03106 E Faaster < 910e354 D (n - C
:k"“::.“"" -
Pipelines

«

After successful Pipelines you can view your clickable HTMI pages by going to your projects
Settings->Pages.
You can view your HTLM report by clicking the pages your found.

px g Incognito @ H

& C @ © Notsecure | alash325.gitlab-pages.liu.se/freeco

ItS| itslearning

Home Unit Test Results.
Packages Designed for use with JUnit and Ant.
net.sf.freecol Summary
Tests Failures Errors Skipped Success rate Time
428 0 0 0 100.00% 15.264
Classes 3
Note: failures are anticipated and checked for with assertions while errors are unanticipated.
AllTests
Packages
Name Tests Errors Failures Skipped Time(s) Time Stamp Host
net.sf.freecol 428 0 0 0 15.264 20159-09- runner-

15T13:27:18 mkWFS7N-

concurrent-
0

9. Merge test fix into the master branch
1. Create a merge request (See Step 5 in Task 4)

2. Merge the requested changes from your original repository (See Step 5 Task 4)

F freecol)
m Opened just now by :ﬁ: Alachew Mengist ﬂ Edit ‘ Close merge request ‘ h ‘
€ Project
_ Ci alash325
® Repository
O Issues 0
Request to merge alash325: .
i1 Merge Requests 1 rl Ci_alash325 @ into master Open in Web IDE Check out branch [4
¥ Cl/CD
@ Security & Compliance @ Pipeline #4190 passed for 550b450e on alash325:Ci_alash325 @ @ @

€3 Operations

&\g No approval required; you can still approve @

B Packages

o5 Snippets
Test summary contained no changed test results out of 428 total tests Collapse

©

& Settings
@ test found no changed test results out of 428 total tests

@ m () Squash commits @

Examination

When you are done with all tasks and ready to demonstrate your solutions, contact your
assistant during a lab occasion. Be prepared to show the workflows described in Task 4 and
answers to questions. The lab assistants may ask you to send in these answers for later
evauations.

