TDDC78 Lab Series

Sehrish Qummar, 2023
Credit to: August Ernstsson

Outline

e Organization:
Workflow, demonstrations, reports, resources

e Assignments:
Description of each lab and some hints

Organization

Lab Groups

Group A: Sehrish Qummar (course assistant)
Group B: Sehrish Qummar (course assistant)
Send reports to your assigned assistant.

Only one assistant guaranteed present per session.

Lab Assignments

e | ab 1: Image filters
e a) Pthreads (shared memory)
e b) MPI (distributed memory)
e Lab 2: Heat solver, OpenMP (shared memory)
* Miniproject: Particle simulation, MPI (distributed memory)

e Written report and mandatory use of DDT, ITAC

Lab Structure

Title Miniproject

Topic Image filterin Heat Particle
P J J propagation simulation
Concepts Pthreads MPI OpenMP MPI
Tools Encouraged Encouraged Encouraged Mandato
(DDT / ITAC) J J J Yy
Demonstration Yes Yes Yes Yes
Written report No No No Yes
Sched. time 4 hours 4 hours 4 hours 6 hours
12/4 A 26/4 A 5/5 A 17/5 A

Soft deadline

13/4 B 17/4 B 3/5 B 16/5 B

Workflow

Terminal on IDA computers -> log in to Sigma

e ssh username@sigma.nsc.liu.se

Also possible to use ThinLinc to access Sigma desktop env.
Sometimes possible to develop locally (shared memory)
Usage of own computer

 Log into Sigma as usual

e Local development may require installing e.g. OpenMPI

Demonstrations

Lab 1 a+b (separate or together), 2, and miniproject.
Show and explain your code to the assistant.
* |llustrations can help explaining!

Performance measurements:
Have plots ready from multiple runs to show scaling.

Be prepared to do at least one test run live.

Miniproject

Demonstrate your program as usual (You get a ”"D” in WebReg)

Write a report (aim for at least 5 pages including figures and code
snippets) explaining your approach to solving the problem.

Suggested outline on the course web page.

Try to follow the PCAM model

An image says more than a thousand words! Make illustrations that
 Show your problem decomposition, etc

 Show performance results

Send via email to your assistant, title "TDDC78: Report”
(write LiU IDs and WebReg group number in email and document)

Information Resources

Lab compendium

Source files

NSC + TDDC78 lecture, lesson slides

NSC website + other online resources (e.g. MPI docs)

Quick reference sheet (handout)

Suggestions

Create Makefiles for compiling

Create scripts for performance measurements
(Somewhat outside the course scope, but it can be very powerful)

Establish a good (automated?) plotting workflow
Use Git for managing files across IDA and Sigma

e LiU Gitlab: https://qitlab.liu.se

https://gitlab.liu.se

Assignments

"PCAM” model

Partitioning

e Domain decomposition
 Functional decomposition
Communication + synchronization
Agglomeration

Mapping + Load balancing

L

Lab 1: Image fllters

Threshold

>

Blur

e Task partitioning.
Consider different approaches.

Lab 1 a: Pthreads

struct thread_data {
int threadld;
char *msg;

%
struct thread_data thread_data_array[NUM_THREADS];

void *PrintHello(void *tParam) {
struct thread_data *myData;
myData = (struct thread_data *) tParam;
taskld = myData->threadld;
helloMsg = myData->msg;

}

int main (int argc, char *argv[]) {

thread_data_array|[t].threadld = t;

thread_data_array[t].msg = msgPool[t];

rc = pthread_create(&threads[t], NULL, PrintHello,
(void *) &thread_data_array[t]);

Lab 1 a: Pthreads

#include<pthread.h>

pthread_mutex_t count_mutex = ... ;
long count;

void increment_count() {
pthread_mutex_lock(&count_mutex);
count = count + 1;
pthread_mutex_unlock(&count_mutex);

}

long get_count() {
long c;
pthread_mutex_lock(&count_mutex);
C = count;
pthread_mutex_unlock(&count_mutex);
return (c);

Lab 1 b: MPI

e MPI concepts: (Refer to lectures and documentation)
e Define type (a Pixel type)
e Send / Receive
 Broadcast

o Scatter / Gather

MPI Type

typedef struct {
int id;
double data[10];
} buf_t; // Composite type
buf_t item; // Element of the type

MPI_Datatype buf_t_mpi; // MPI type to commit

int block_lengths [] ={ 1, 10 }; // Lengths of type elements
MPI_Datatype block_types [] = { MPL_INT, MPI_DOUBLE }; //Set types
MPI_Aint start, displ[2];

MPI_Get_address(&item, &start);

MPI_Get_address(&item.id, &displ[0]);

MPI_Get_address(&item.data[0], &displ[1]);

displ[0] -= start; // Displacement relative to address of start

displ[1] -= start; // Displacement relative to address of start MPI_Type_create_struct(2, block_lengths, displ,
block_types, &buf_t_mpi);

MPI_Type_commit(&buf_t_mpi);

Lab 2: Heat solver

* Problem: Find stationary temperature distribution in a (NxN) square
given some boundary temperature distribution

* Solution: Requires solving differential equation

e |terative Jacobi method
Detailed algorithm in Compendium

 Primary concerns:

e Shared memory, OpenMP
(Refer to lectures)

e Synchronize access

* O(N) extra memory

Miniproject

Moving particles

Validate the pressure law: pV = nRT (how?) (B

Dynamic interaction patterns:
of particles that fly across borders is not static.

Approximations: when to check for collisions?
Your baseline sequential comparison needs to apply the same
approximations!

You need advanced domain decomposition.
Motivate your choice!

Use debugging tools, tracing, software counters to convince
yourselves that the approach is good

MPI Topologies (1)

int dims[2]; // 2D matrix / grid
dims[0] = 2; // 2 rows
dims[1] = 3; // 3 columns

MPI_Dims_create(nproc, 2, dims);
int periods|2];

periods[0] = 1; // Row-periodic
periods[1] = 0; // Column-non-periodic

int reorder = 1: // Re-order allowed

MPI_Comm grid_comm;
MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods,
reorder, &grid_comm);

MPI Topologies (2)

iInt my_coords[2]; // Cartesian Process coordinates
iInt my_rank; // Process rank

int right_nbr[2];

int right_nbr_rank;

MPI_Cart_get(grid_comm, 2, dims, periods, my_coords);
MPI_Cart_rank(grid_comm, my_coords, &my_rank);

right_nbr[0] = my_coords[0]+1;
right_nbr[1] = my_coords|[1];
MPI_Cart_rank(grid_comm, right_nbr, &right_nbr_rank);

Arm DDT - Arm Forge 19.0.2
File Edit View Control Tools Window Help

»] B & 5 & B El Bt BJ BE

i
i

O O

|G oo 83

-Current Group: |AII =]Focus on current: @ Group () Process () Thread [| Step Threads Together
Al CEEEIEEEEE] |
Create Group '
Project Files @® | £ mpiblurc X | € gaussw.c X | Locals | Current Line(s) | Current Stack |
[search (Ctrl+K) |& 1@/ — Bx
: , ' 7 #include <math.h= Name Value
I & Application Code 8 ;
F- 08/ : - argc — 4
- M Headers 9 #define MAX X 1.33 & argv _ 0x7ffc835dda68
. 10 #define P1 3.14159 - my_id ~ 9
= 5 Sources :
L blurfilter.c - T - . np 18
o P T 12 /* Generate an array of weights for the gaussian filter. */ - com — 11408508688
12 /* Input: n - number of weights to generate x| [& info _
; i 14 /* QOutput: weights out - array of weights. The element [8] eoma - 0
#- € mpi_blur.c UL girLs. y gL - sre 0x49656e69756e6547
£ ppmio.c 15 /* should be used for the central pixel, elements [1..n] = o
. ¥ External Code 16 /* should be used for the pixels on a distance [1..n] */
17 = void get gauss weights(int n, double* weights out) {
A 18 double x;
19 int 1;
(4] [[+] (4] [}
~ Input/Output | Breakpoints | Watchpoints | Stacks (All) | Tracepoints | Tracepoint Output | Logbook | Evaluate @ ®
Input/Output @ & | Name Value
Has read the image: 3000 x 3000, generating coefficlients
After first step: 25.5378 secs
Note: Arm DDT can only send input to the srun process with this MPI implementation
Type here (‘Enter’ to send): | H More -

Ready

ITAC

Intel® Trace Analyzer - [1: /nome/x_auger/tddc78/labl/blurc-trace.stf] I\Ag.:.==2&

T File Options Project Windows Help

View Charts MNavigate Advanced Layout

=] ﬁ |m o 0.181 392 - 0.199 744 : 0.018 353 [LAGNLE 2 All_processes [MPI expanded in (Major Function Groups) & | +

MPI_Scatterv
j S
| Pl _Bcast MPI_Scatterv

' %

jfP2 MPI_Bcast MPI_Scatterv

‘- I Y
[<IMP| Bcast MP|_Scatterv

‘E) P
M P| Bcast

|EMPI|_Bcast MPI_Scatterv

‘ O |

MPI_Scatterv
(I JMMP| Bcast MP|_Scatterv

AN P|_Bcast MPI_Scatterv

‘- N
|2 3P| _Bcast MPI_Scatterv

N
pq V] Hca : vils 2ttarn

Performance Issue Duration (%) Duration
Late Broadcast 760.13% 4,46412 5
- Show advanced...

Flat Profile Load Balance Call Tree Czll Graph

All_Processes -

Name TSelf TSelf TTotal #Calls
4 All Processes

-

Group Applicaticn 197.064e-3 s |G 587.282e-3 s 0 T A (Koot Causaa]
MPI_Bcast 275.107e-2 s I 2 '-.107=-3 s) P P . . :
MPI_Wt ime 5e—6 5 be—6 s 1 Select performance issue to see detalls.

MPI_Scatterwv 115.106e-3 s R 115.106e-3 s 32 :

How much parallelism?

e Always measure parallel code on 1 thread/process
e Reference for speedup
 Note: Not the same as measuring sequential code!
e Then measure on at least "powers of 2” threads/procs.
e 1,2,4,8, 16, ...
e Shared memory: Up to all the available processor cores

e Distributed memory: Up to at least 2 nodes, at most 4 nodes

Questions?

