
TDDC78 Lab Series
August Ernstsson, 2022

Outline

• Organization: 
Workflow, demonstrations, reports, resources

• Assignments:  
Description of each lab and some hints

Organization

Lab Groups

• Group A: Andreas Lindstén (lab assistant)

• Group B: August Ernstsson (course assistant)

• Send reports to your assigned assistant.

• Only one assistant guaranteed present per session.

Lab Assignments
• Lab 1: Image filters

• a) Pthreads (shared memory)

• b) MPI (distributed memory)

• Lab 2: Heat solver, OpenMP (shared memory)

• Miniproject: Particle simulation, MPI (distributed memory)

• Written report and mandatory use of DDT, ITAC

Lab Structure
Title Lab 1a Lab 1b Lab 2 Miniproject

Topic Image filtering Heat
propagation

Particle
simulation

Concepts Pthreads MPI OpenMP MPI

Tools 
(DDT / ITAC) Encouraged Encouraged Encouraged Mandatory

Demonstration Yes Yes Yes Yes

Written report No No No Yes

Sched. time 4 hours 4 hours 4 hours 6 hours

Soft deadline 13/4 27/4 6/5 18/5 A 
19/5 B

Workflow
• Terminal on IDA computers -> log in to Sigma

•ssh username@sigma.nsc.liu.se

• Also possible to use ThinLinc to access Sigma desktop env.

• Sometimes possible to develop locally (shared memory)

• Usage of own computer

• Log in to Sigma as usual

• Local development may require installing e.g. OpenMPI

Demonstrations

• Lab 1 a+b (separate or together), 2, and miniproject.

• Show and explain your code to the assistant.

• Illustrations can help explaining!

• Performance measurements: 
Have plots ready from multiple runs to show scaling.

• Be prepared to do at least one test run live.

Miniproject
• Demonstrate your program as usual (You get a ”D” in WebReg)

• Write a report (aim for at least 5 pages including figures and code
snippets) explaining your approach to solving the problem.

• Suggested outline on the course web page.

• Try to follow the PCAM model

• An image says more than a thousand words! Make illustrations that

• Show your problem decomposition, etc

• Show performance results

• Send via email to your assistant, title ”TDDC78: Report” 
(write LiU IDs and WebReg group number in email and document)

Information Resources

• Lab compendium

• Source files

• NSC + TDDC78 lecture, lesson slides

• NSC website + other online resources (e.g. MPI docs)

• Quick reference sheet (handout)

Suggestions

• Create Makefiles for compiling

• Create scripts for performance measurements 
(Somewhat outside the course scope, but it can be very powerful)

• Establish a good (automated?) plotting workflow

• Use Git for managing files across IDA and Sigma

• LiU Gitlab: https://gitlab.liu.se

https://gitlab.liu.se

Assignments

”PCAM” model
• Partitioning

• Domain decomposition

• Functional decomposition

• Communication + synchronization

• Agglomeration

• Mapping + Load balancing

Lab 1: Image filters

Blur

Threshold

• Task partitioning. 
Consider different approaches.

•

Lab 1 a: Pthreads
struct thread_data {

 int threadId;

 char *msg; 
};

struct thread_data thread_data_array[NUM_THREADS]; 

void *PrintHello(void *tParam) { 
 struct thread_data *myData; 
 myData = (struct thread_data *) tParam; 
 taskId = myData->threadId;  
 helloMsg = myData->msg; 
}

int main (int argc, char *argv[]) {

 ...

 thread_data_array[t].threadId = t;

 thread_data_array[t].msg = msgPool[t];

 rc = pthread_create(&threads[t], NULL, PrintHello,

 (void *) &thread_data_array[t]);

Lab 1 a: Pthreads
#include<pthread.h> 

pthread_mutex_t count_mutex = ... ;  

long count;  

void increment_count() { 
 pthread_mutex_lock(&count_mutex); 
 count = count + 1; 
 pthread_mutex_unlock(&count_mutex);

}

long get_count() {

 long c;

 pthread_mutex_lock(&count_mutex); 
 c = count;  
 pthread_mutex_unlock(&count_mutex); 
 return (c);

}

Lab 1 b: MPI

• MPI concepts: (Refer to lectures and documentation)

• Define type (a Pixel type)

• Send / Receive

• Broadcast

• Scatter / Gather

MPI Type
typedef struct {

 int id;

 double data[10]; 
} buf_t; // Composite type  
buf_t item; // Element of the type

MPI_Datatype buf_t_mpi; // MPI type to commit  
int block_lengths [] = { 1, 10 }; // Lengths of type elements 
MPI_Datatype block_types [] = { MPI_INT, MPI_DOUBLE }; //Set types 
MPI_Aint start, displ[2];

MPI_Get_address(&item, &start);

MPI_Get_address(&item.id, &displ[0]);

MPI_Get_address(&item.data[0], &displ[1]);

displ[0] -= start; // Displacement relative to address of start 
displ[1] -= start; // Displacement relative to address of start
MPI_Type_create_struct(2, block_lengths, displ, block_types, &buf_t_mpi);  
MPI_Type_commit(&buf_t_mpi);

Lab 2: Heat solver
• Problem: Find stationary temperature distribution in a (NxN) square

given some boundary temperature distribution

• Solution: Requires solving differential equation

• Iterative Jacobi method 
Detailed algorithm in Compendium

• Primary concerns:

• Shared memory, OpenMP 
(Refer to lectures)

• Synchronize access

• O(N) extra memory

T = 0

T = 2

T = 1T = 1

Miniproject
• Moving particles

• Validate the pressure law: pV = nRT (how?)

• Dynamic interaction patterns: 
of particles that fly across borders is not static.

• Approximations: when to check for collisions? 
Your baseline sequential comparison needs to apply the same
approximations!

• You need advanced domain decomposition. 
Motivate your choice!

• Use debugging tools, tracing, software counters to convince
yourselves that the approach is good

MPI Topologies (1)
int dims[2]; // 2D matrix / grid

dims[0] = 2; // 2 rows

dims[1] = 3; // 3 columns

 
MPI_Dims_create(nproc, 2, dims); 
int periods[2]; 
periods[0] = 1; // Row-periodic 
periods[1] = 0; // Column-non-periodic

int reorder = 1; // Re-order allowed

 
MPI_Comm grid_comm;

MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods,  
 reorder, &grid_comm);

MPI Topologies (2)
int my_coords[2]; // Cartesian Process coordinates

int my_rank; // Process rank

int right_nbr[2];

int right_nbr_rank;

MPI_Cart_get(grid_comm, 2, dims, periods, my_coords);

MPI_Cart_rank(grid_comm, my_coords, &my_rank);

right_nbr[0] = my_coords[0]+1;

right_nbr[1] = my_coords[1];

MPI_Cart_rank(grid_comm, right_nbr, &right_nbr_rank);

DDT

ITAC

How much parallelism?
• Always measure parallel code on 1 thread/process

• Reference for speedup

• Note: Not the same as measuring sequential code!

• Then measure on at least ”powers of 2” threads/procs.

• 1, 2, 4, 8, 16, …

• Shared memory: Up to all the available processor cores

• Distributed memory: Up to at least 2 nodes, at most 4 nodes

Questions?

