TDDC78 Lab Series

August Ernstsson, 2022

Outline

• Organization:

Workflow, demonstrations, reports, resources

• Assignments:

Description of each lab and some hints

Organization

Lab Groups

- Group A: Andreas Lindstén (lab assistant)
- **Group B**: August Ernstsson (course assistant)
- Send reports to your assigned assistant.
- Only one assistant guaranteed present per session.

Lab Assignments

- Lab 1: Image filters
 - a) Pthreads (shared memory)
 - b) MPI (distributed memory)
- Lab 2: Heat solver, OpenMP (shared memory)
- Miniproject: **Particle simulation**, MPI (distributed memory)
 - Written report and mandatory use of DDT, ITAC

Lab Structure

Title	Lab 1a	Lab 1b	Lab 2	Miniproject
Торіс	Image filtering		Heat propagation	Particle simulation
Concepts	Pthreads	MPI	OpenMP	MPI
Tools (DDT / ITAC)	Encouraged	Encouraged	Encouraged	Mandatory
Demonstration	Yes	Yes	Yes	Yes
Written report	No	No	No	Yes
Sched. time	4 hours	4 hours	4 hours	6 hours
Soft deadline	13/4	27/4	6/5	18/5 A 19/5 B

Workflow

- Terminal on IDA computers -> log in to Sigma
 - ssh username@sigma.nsc.liu.se
- Also possible to use ThinLinc to access Sigma desktop env.
- Sometimes possible to develop locally (shared memory)
- Usage of own computer
 - Log in to Sigma as usual
 - Local development may require installing e.g. OpenMPI

Demonstrations

- Lab 1 a+b (separate or together), 2, and miniproject.
- Show and explain your code to the assistant.
 - **Illustrations** can help explaining!
- Performance measurements: Have **plots** ready from multiple runs to show scaling.
- Be prepared to do at least one test run live.

Miniproject

- Demonstrate your program as usual (You get a "D" in WebReg)
- Write a report (aim for *at least* 5 pages including figures and code snippets) explaining your approach to solving the problem.
- Suggested outline on the course web page.
- Try to follow the PCAM model
- An image says more than a thousand words! Make illustrations that
 - Show your problem decomposition, etc
 - Show performance results
- Send via email to your assistant, title "TDDC78: Report" (write LiU IDs and WebReg group number in email and document)

Information Resources

- Lab compendium
- Source files
- NSC + TDDC78 lecture, lesson slides
- NSC website + other online resources (e.g. MPI docs)
- Quick reference sheet (handout)

Suggestions

- Create Makefiles for compiling
- Create scripts for performance measurements (Somewhat outside the course scope, but it can be very powerful)
- Establish a good (automated?) plotting workflow
- Use Git for managing files across IDA and Sigma
 - LiU Gitlab: <u>https://gitlab.liu.se</u>

Assignments

"PCAM" model

- Partitioning
 - Domain decomposition
 - Functional decomposition
- Communication + synchronization
- Agglomeration
- Mapping + Load balancing

Lab 1: Image filters

Threshold

 Task partitioning. Consider different approaches.

Lab 1 a: Pthreads

```
struct thread_data {
    int threadId;
    char *msg;
3;
struct thread_data thread_data_array[NUM_THREADS];
void *PrintHello(void *tParam) {
    struct thread_data *myData;
    myData = (struct thread_data *) tParam;
    taskId = myData->threadId;
    helloMsg = myData->msg;
}
int main (int argc, char *argv[]) {
    . . .
    thread_data_array[t].threadId = t;
    thread_data_array[t].msg = msgPool[t];
    rc = pthread_create(&threads[t], NULL, PrintHello,
                        (void *) &thread_data_array[t]);
```

Lab 1 a: Pthreads

#include<pthread.h>

```
pthread_mutex_t count_mutex = ...;
long count;
```

```
void increment_count() {
    pthread_mutex_lock(&count_mutex);
    count = count + 1;
    pthread_mutex_unlock(&count_mutex);
}
long get_count() {
    long c;
    pthread_mutex_lock(&count_mutex);
    c = count;
    pthread_mutex_unlock(&count_mutex);
    return (c);
```

Lab 1 b: MPI

- MPI concepts: (Refer to lectures and documentation)
 - Define type (a Pixel type)
 - Send / Receive
 - Broadcast
 - Scatter / Gather

MPI Type

```
typedef struct {
    int id;
    double data[10];
} buf_t; // Composite type
buf_t item; // Element of the type
MPI_Datatype buf_t_mpi; // MPI type to commit
int block_lengths [] = { 1, 10 }; // Lengths of type elements
MPI_Datatype block_types [] = { MPI_INT, MPI_DOUBLE }; //Set types
MPI_Aint start, displ[2];
MPI_Get_address( &item, &start );
MPI_Get_address( &item.id, &displ[0] );
MPI_Get_address( &item.data[0], &displ[1] );
displ[0] -= start; // Displacement relative to address of start
displ[1] -= start; // Displacement relative to address of start
MPI_Type_create_struct( 2, block_lengths, displ, block_types, &buf_t_mpi );
MPI_Type_commit( &buf_t_mpi );
```

Lab 2: Heat solver

- **Problem**: Find stationary temperature distribution in a (NxN) square given some boundary temperature distribution
- Solution: Requires solving differential equation
 - Iterative Jacobi method Detailed algorithm in Compendium
- Primary concerns:
 - Shared memory, OpenMP (Refer to lectures)
 - Synchronize access
 - O(N) extra memory

T = 0 T = 1

Miniproject

- Moving particles
- Validate the pressure law: pV = nRT (how?)
- Dynamic interaction patterns:
 # of particles that fly across borders is not static.
- Approximations: when to check for collisions? Your baseline sequential comparison needs to apply the same approximations!
- You need advanced domain decomposition. Motivate your choice!
- Use debugging tools, tracing, software counters to convince yourselves that the approach is good

MPI Topologies (1)

```
int dims[2]; // 2D matrix / grid
dims[0] = 2; // 2 rows
dims[1] = 3; // 3 columns
```

```
MPI_Dims_create( nproc, 2, dims );
int periods[2];
periods[0] = 1; // Row-periodic
periods[1] = 0; // Column-non-periodic
int reorder = 1; // Re-order allowed
```

MPI Topologies (2)

```
int my_coords[2]; // Cartesian Process coordinates
int my_rank; // Process rank
int right_nbr[2];
int right_nbr_rank;
```

MPI_Cart_get(grid_comm, 2, dims, periods, my_coords); MPI_Cart_rank(grid_comm, my_coords, &my_rank);

```
right_nbr[0] = my_coords[0]+1;
right_nbr[1] = my_coords[1];
MPI_Cart_rank( grid_comm, right_nbr, &right_nbr_rank);
```

DDT

orm FORGE	Arm DDT - Arm Forge 19.0.2		•	×				
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>Control</u> <u>Tools</u> <u>W</u> indow <u>H</u> elp								
🕨 🚺 🖓 🤻								
Current Group: All	Focus on current: Group O Process O Thread D Step Threads Together							
All	0 1 2 3 4 5 6 7 8 9							
Create Group								
Project Files		Locals Currer	nt Line(s) Current Stack					
Search (Ctrl+K)	1 ± /**/	Locals		ðx				
🖻 🔳 Application Code	7 #include <math.h></math.h>	Name	Value					
 Application code Application code Headers Sources Sources Sources Gussw.c Gussw.c Gussw.c Gussw.c Gussw.c F get gaus Gussw.c F get gaus Cussw.c F get gaus External Code 	<pre>s_weights(int n</pre>	argc argv my_id np com ⊡ info colmax ⊕ src ⊕ w	4 0x7ffc835dda68 9 10 1140850688 0 0x49656e69756e0	6547				
Input/Output Breakpo	ints Watchpoints Stacks (All) Tracepoints Tracepoint Output Logbook		Evaluate	0 8				
Input/Output		@ X	Name Value					
Has read the image: 30 After first step: 25.5	000 x 3000, generating coefficients 5378 secs							
Note: Arm DDT can only s	end input to the srun process with this MPI implementation							
Type here ('Enter' to send):	More -						

ITAC

ITAE	Intel® Trace Analyzer - [1: /home/x_auger/tddc78/lab1/blurc-trace.stf]						+ - 8 ×	
🦉 <u>F</u> il	e <u>O</u> ptions <u>P</u> roject <u>W</u> indows <u>H</u> elp							_ & ×
View	Charts <u>N</u> avigate <u>A</u> dvanced Layout	-	7					
27.52	i 0.181 392 - 0.199 744 : 0.018 353 Secon	ids 👻 😾 All_Processes 🫂	MPI	expand	ed in (Major Function G	Groups) 👩	🗶 Y 🐼 🖤 🔨 🔼 Zi 🛠 -	
			-					
PO	Application		ApN	IPI_Sc	atterv		Application	
Ρ1	MPI_Bcast		Ap	MPI_S	cattery <mark>Applicat</mark>	ion		
P2	MPI_Bcast		ArM	PI_Sc	atterv	Ap	plication	
PЗ	MPI_Bcast		Ap	4PI_Se	catterv	Applic	cation	
Ρ4	MPI_Bcast		App	MPI_S	catterv	Ар	plication	
P5	MPI_Bcast		Apr	MPI_S	catterv		Application	
P6	MPI_Bcast		Apr	MPI_S	catterv		Application	
P7	MPI_Bcast		App	MPI_S	catterv		Application	
P8	MPI_Bcast		App	MPI_S	catterv		Application	
P9	MPL Boast		Apr	MPL S	cattery		Application	
4								·
Fla	t Profile Load Balance Call Tree Call Graph	1			Performance Issue	Duration (%) Duration	
All_P	rocesses				Show advanced	:	4.40412 5	
Name	TSelf TSe	elf Tīotal	#Call	s T				
4	All_Processes				-			
	MPT Beast 275 107e-3 s	587.282e-3 s		0	Description Af	fected Proc	cesses Source Locations (Root Caus	es)
	MPI_Wtime 5e-6 s	5e-6 s		1	Select performance is	ssue to see	e details.	
L L	MPI_Scatterv 115.106e-3 s	115.106e-3 s		32 3				
] • ===				►				

How much parallelism?

- Always measure parallel code on 1 thread/process
 - Reference for speedup
 - Note: Not the same as measuring sequential code!
- Then measure on at least "powers of 2" threads/procs.
 - 1, 2, 4, 8, 16, ...
 - Shared memory: Up to all the available processor cores
 - Distributed memory: Up to at least 2 nodes, at most 4 nodes

Questions?