
Laboratory Work in

Programming of Parallel Computers, TDDC78

August Ernstsson
Revised for 2022, based in part on earlier work by:

Lu Li, Usman Dastgeer, Fredrik Berntsson, and Mikhail Chalabine

April 5, 2022

1 Introduction

The purpose of the laboratory work is to get “hands on” experience in pro-
gramming parallel computers. You will implement programs to solve your as-
signment on the different architectures using communication primitives that are
characteristic for the specific paradigm on each computer. The work should be
done in groups of two (preferred) or three students. Every participant should
clearly understand the assignment, work with the implementation, and under-
stand the algorithms and solutions. Some additional information regarding the
programming exercises can be found on the course homepage1.

Please also refer to the course webpage for important dates and deadlines.

2 Assignments

Table 1 describes what you are supposed to do.

Table 1: Required assignments for TDDC78 course.

Lab No. Lab Name Sections

1 a Image filter (pthreads) 4, 4.4.2

1 b Image filter (MPI) 4, 4.4.1

2 Heat Equation (OpenMP) 5

4 Miniproject: Particles 6

2.1 Demonstration

For lab 1, 2, and the miniproject, you should demonstrate each lab assignment
to your laboratory assistant. During demonstration, each group member should

1www.ida.liu.se/~TDDC78

1

http://www.ida.liu.se/~TDDC78

be able to explain all of their contributions. Show your source code and ex-
plain your implementation. Some things to think about when preparing your
presentation:

• Figures are always a huge help when trying to express your algorithm,
task partitioning, communication flow, etc.

• The PCAM method can help you conceptualize and express your ap-
proach.

• Provide graphs of performance measurements. Show how the execution
time scales with different problem size, and even more importantly, dif-
ferent number of cores/ranks. Make sure to use more than one full node
(32 ranks) for one data point in the MPI assignments.

2.2 Report

The miniproject has, in addition to the usual demonstration, a written report
requirement. Express your approach to solving the problem in the usual report
format, and include performance evaluation results and subsequent discussion.
Include figures to illustrate communication patterns.

One chapter for each of the two tools should also be included. Discuss your
experiences with the tools and relate back to the performance results. How
does the tools help you find bugs and identify performance bottlenecks?

A report outline will be avaiable on the course website soon.

3 Working on Sigma, NSC’s supercomputer

The Sigma parallel computer cluster at NSC is available for the laboratory
assignments.

3.1 Organizational issues

To do laboratory assignments, you need to secure an account on Sigma. The
procedure for getting an account on NSC machines (including Sigma) takes
some steps. Please follow the instructions given on
https://www.ida.liu.se/~TDDC78/nsc.shtml.

As soon as you have your account information you can login to the NSC
computer using ssh: ssh <username>@sigma.nsc.liu.se. However, using the
ThinLinc client is recommended for longer sessions.

More information about Sigma, including its architecture, available soft-
ware, resource management system (SLURM) etc. can be found at NSC’s web
pages at https://www.nsc.liu.se. See especially https://www.nsc.liu.se/

systems/sigma/.

2

https://www.ida.liu.se/~TDDC78/nsc.shtml
https://www.nsc.liu.se
https://www.nsc.liu.se/systems/sigma/
https://www.nsc.liu.se/systems/sigma/

3.2 Using Sigma, SLURM, etc.

For information specifically about the workflow of Sigma building, running, and
debugging, see lecture slides by Frank Bramkamp and the ”Quick Reference for
Sigma” document, both available on the course webpage.

3.3 Version control

Git is available on the NSC system by default (no modules needed). We rec-
ommend using Git for the course, as it provides both version tracking features,
facilitates moving source code between your computer and Sigma, and is great
for collaboration. Just make sure to keep your Git repository private among the
group members. You can use the LiU GitLab service 2 for free. Note, however,
that the assistants do not usually have time to provide support with Git or
GitLab.

2http://gitlab.liu.se

3

http://gitlab.liu.se

4 Image Filter

The assignment consist of implementing two simple image transformation al-
gorithms. The transformations are from an input image to an output image.
There is source code available on the course webpage that provide serial imple-
mentations of the two transformations described below.

Use as much as you like of the given serial code. However, observe that
the code is not cache optimized and is that the structure of the code is not
intended to have any similarity to suitable structures for parallel implementa-
tions (this does not mean that it necessarily have a bad structure for a parallel
implementation).

4.1 Averaging Filter

The first transformation makes the image “blurry”. The algorithm works as
follows:

The value for a pixel (x, y) in the output image is the normalized
weighted sum of all the pixels in a rectangle in the input image
centred around (x, y).

In other words, the pixel in the output image is an average of the rectangle-
shaped neighbourhood of corresponding pixel in the input image. To be more
precise:

co(x0, y0) =

∑x0+r
x=x0−r

∑y0+r
y=y0−r w(x− x0, y − y0)ci(x, y)

∑x0+r
x=x0−r

∑y0+r
y=y0−r w(x− x0, y − y0)

Where

• ci(x, y) is the color of the pixel (x, y) in the input image;

• co(x0, y0) is the color of the pixel (x0, y0) in the output image;

• r - size of the averaging rectangle

• w(x− x0, y − y0) the weights distribution function.

The weight function used in the lab outputs coefficients of Gaussian (normal)
distribution.

Your implementation should work with different sizes of the rectangle. There-
fore, it is recommended that the function implementing this transformation take
parameters specifying the size.

4.2 Thresholding Filter

The second transformation is a thresholding filter. The filter computes the
average intensity of the whole input image and use this value to threshold the
image. The result is an image containing only black and white pixels. White
for those pixels in the input image that are lighter than the threshold and black
for those pixels in the input image that are darker than the threshold.

4

4.3 Image Format

There are some images available on the course webpage with the source files.
These images are saved in the ppm format, the binary version. The serial code
examples contain code to read ppm-files and write ppm and pgm-files. Your
implementations should work with the images im1.ppm, im2.ppm, im3.ppm and
im4.ppm. They are of different sizes but you can assume that they all are at
most by 3000× 3000 pixels.

4.4 Platform

You have to implement the same filter functionality using two different pro-
gramming models on the same platform:

4.4.1 Sigma and MPI

In MPI, the communication can be implemented in different ways. Choose a
suitable method and motivate the choice in the report you hand in. You may
use C or C++ for the lab.

Try to minimize the communication, and avoid overallocating memory, such
as allocating the entire data set on each rank. If you do this, you have to clearly
motivate why this is the best approach. It is allowed to allocate the entire input
and output data set on one rank (e.g. rank 0), such as for reading and writing
to disk. File system reads do not need to be parallelized and shouldn’t be
included in time measurements.

Use MPI Wtime to measure the execution time.

4.4.2 Sigma and pthreads

In the beginning it might be easier to work on your local workstation - the
pthreads library is portable. Later, when the algorithms works, move the pro-
gram to Sigma. Verify that it works and that you can utilise up to 32 cores.
You can use C or C++ for the lab.

Use clock gettime() to measure the execution time.

5

5 Stationary Heat Conduction Using OpenMP

In this assignment you will solve a stationary heat conduction problem on a
shared memory computer (a single compute node on sigma.nsc.liu.se), using
OpenMP. A serial code for solving the problem is given in the file laplsolv.c,
which is found on the course home page3, and should be used as a starting
point for your implementation. (Optionally, this lab can be solved in Fortran,
based on the serial code in laplsolv.f90. The lab assistants can, however,
only give limited assistance for Fortran.) Your final parallel program should
produce exactly the same results as the serial code does. Do not necessarily
assume that the given files are optimized for performance or memory usage;
you are encouraged to improve performance in any way you can.

5.1 Description of the problem and the numerical method

The purpose of this section is to explain briefly the numerical details of the code
that you are going to use in this excercise. It is not necessary to understand all
parts of this discussion.

The problem we are going to solve is the following: Find the stationary
temperature distribution in the square [0, 1]× [0, 1], if the temperature at the
boundary is specified as in Figure 1. The stationary temperature is described
by the differential equation

∂2T

∂x2
+
∂2T

∂y2
=0, 0<x, y<1.

We introduce an equidistant grid {(xi, yj)}N+1
i,j=0, as seen in Figure 2, and dis-

cretize the differential equation using finite differences. Thus the differential
equation is replaced by a system of linear equations,

−4Ti,j+Ti+1,j+Ti−1,j+Ti,j−1+Ti,j+1=0, 1≤ i, j≤N−1, (1)

where Ti,j =T (xi, yj). The number of unknowns is N2, and if a large number of
grid points is used the problem will be too large to solve using direct methods,
e.g. Gaussian Elimination. Instead the problem is solved iteratively.

Let T k
i,j be the approximate temperature for grid point (xi, yj) at the kth

iteration. The next iterate T k+1
i,j is computed by

T k+1
i,j =(T k

i+1,j+T k
i−1,j+T k

i,j−1+T k
i,j+1)/4, 1≤ i, j≤N−1.

Thus the new approximation of the temperature at grid point (xi, yj) is ob-
tained by taking the avarage of the values at the neighbouring gridpoints. This
particular iterative method is known as the Jacobi method, see Section 8.1.

5.2 Description of the code

The serial program is available in the course home page (see previous page for
link).

3www.ida.liu.se/~TDDC78/labs

6

http://www.ida.liu.se/~TDDC78/labs

Figure 1: Boundary conditions.

4.4.2 Triolith and pthreads

In the beginning it might be easier to work on your local workstation - the pthreads library is portable. Later, when
the algorithms works, move the program to the Triolith . Verify that it works and that you can utilise up to 16
processor cores. You can use C or C++ for the lab. Note that you must use the batch queue.

Use clock_gettime() to measure the execution time.

5 Stationary Heat Conduction Using OpenMP
In this assignment you will solve a stationary heat conduction problem on a shared memory computer (a single compute
node on triolith.nsc.liu.se), using OpenMP. A serial code for solving the problem is given in the file laplsolv.f90,
which is found on the course home page4, and should be used as a starting point for your implementation. Your final
parallel program should produce exactly the same results as the serial code does.

5.1 Description of the problem and the numerical method
The purpose of this section is to explain briefly the numerical details of the code that you are going to use in this
excercise. It is not necessary to understand all parts of this discussion.

The problem we are going to solve is the following: Find the stationary temperature distribution in the square
[0, 1]⇥[0, 1], if the temperature at the boundary is specified as in Figure 1. The stationary temperature is described
by the differential equation

@2T

@x2
+
@2T

@y2
=0, 0<x, y<1.

We introduce an equidistant grid {(xi, yj)}N+1
i,j=0, as seen in Figure 2, and discretize the differential equation using finite

differences. Thus the differential equation is replaced by a system of linear equations,

�4Ti,j +Ti+1,j +Ti�1,j +Ti,j�1+Ti,j+1 =0, 1 i, jN�1, (1)

where Ti,j =T (xi, yj). The number of unknowns is N2, and if a large number of grid points is used the problem will
be too large to solve using direct methods, e.g. Gaussian Elimination. Instead the problem is solved iteratively.

Let T k
i,j be the approximate temperature for grid point (xi, yj) at the kth iteration. The next iterate T k+1

i,j is
computed by

T k+1
i,j =(T k

i+1,j +T k
i�1,j +T k

i,j�1+T k
i,j+1)/4, 1 i, jN�1.

Thus the new approximation of the temperature at grid point (xi, yj) is obtained by taking the avarage of the values
at the neighbouring gridpoints. This particular iterative method is known as the Jacobi method, see Section 5.3.

4 www.ida.liu.se/˜TDDC78/labs

iv

Figure 1: Boundary conditions.

Figure 2: The computational grid.

5.2 Description of the code
The serial program is available in the course home page (see previous page for link).

The temperature data are stored in an (n + 2)⇥(n + 2) matrix,

T =

0
BBBBB@

T0,0 T0,1 . . . T0,n T0,n+1

T1,0

...
Tn,0

T1,1 . . . T1,n

...
...

Tn,1 . . . Tn,n

T1,n+1

...
Tn,n+1

Tn+1,0 Tn+1,1 . . . Tn+1,n Tn+1,n+1

1
CCCCCA

,

where, as previously, Ti,j denotes the temperature at grid point (xi, yj). Note that only the middle part of the matrix
contains unknowns since the temperatures at the boundary of the square are known. The boundary data are explicitly
set at the beginning of the computation.

Suppose that the matrix T contain the values {T k
i,j}, i.e. the approximate solution at the kth iteration. The next

iterate, i.e. the values {T k+1
i,j }, can be computed by performing the following steps:

tmp1=T(1:n,0)
do j=1,n

tmp2=T(1:n,j)
T(1:n,j)=(tmp1+T(1:n,j+1)+T(0:n-1,j)+T(2:n+1,j))/4.0
tmp1=tmp2

end do

The temporary vectors, tmp1 and tmp2, are necessary since the old values in column j are needed for computing the
new values in the (j+1)th column.

The assignment is to parallelize the provided serial code using OpenMP. When parallelizing, please consider the
following:

1. You should only use at most O(N) (e.g., 2 ⇤ N and 100 ⇤ N are valid examples of O(N)) additional memory
where N is one side of the square. This means that you cannot create, for example, a copy of the T matrix as it
would result in O(N2) extra memory usage.

2. Do not run any computations with more than 100 ⇥ 100 grid points before you are convinced that your code
works.

3. Make sure that your parallel code produce exactly the same results as the serial code.
4. The error estimate that is used as a stopping rule for the iteration is a bit tricky to parallelize.
Use the compiler option -openmp when you compile your program. The number of processors is set by executing

the command export OMP_NUM_THREADS=p, where p is the number of procerssors.

v

Figure 2: The computational grid.

The temperature data are stored in an (n+ 2)×(n+ 2) matrix,

T =




T0,0 T0,1 . . . T0,n T0,n+1

T1,0
...

Tn,0

T1,1 . . . T1,n
...

...
Tn,1 . . . Tn,n

T1,n+1
...

Tn,n+1

Tn+1,0 Tn+1,1 . . . Tn+1,n Tn+1,n+1



,

where, as previously, Ti,j denotes the temperature at grid point (xi, yj). Note
that only the middle part of the matrix contains unknowns since the tem-
peratures at the boundary of the square are known. The boundary data are
explicitly set at the beginning of the computation.

Suppose that the matrix T contain the values {T k
i,j}, i.e. the approximate

solution at the kth iteration. The next iterate, i.e. the values {T k+1
i,j }, can be

computed by performing the steps of the following pseudocode4:

tmp1 = T(1:n, 0)

do j = 1, n

4Actually it is Fortran, which has a concise array notation.

7

tmp2 = T(1:n, j)

T(1:n, j) = (tmp1 + T(1:n, j+1) + T(0:n-1, j)+T(2:n+1, j)) / 4.0

tmp1 = tmp2

end do

The temporary vectors, tmp1 and tmp2, are necessary since the old values in
column j are needed for computing the new values in the (j+1)th column.

The assignment is to parallelize the provided serial code using OpenMP.
When parallelizing, please consider the following:

1. You should only use at most O(N) additional memory where N is one
side of the square5.

2. Do not run any computations with more than 100×100 grid points before
you are convinced that your code works.

3. Make sure that your parallel code produce exactly the same results as the
serial code.

4. The error estimate that is used as a stopping rule for the iteration is a bit
tricky to parallelize.

Use the compiler option -fopenmp when you compile your program. The
number of processors is set by executing the command export OMP_NUM_THREADS=p,
where p is the number of procerssors. On the NSC system, the ompsalloc

command handles this for you when you specify the corresponding resource
specification flags.

5This means that you cannot create, for example, a copy of the T matrix as it would result
in O(N2) extra memory usage.

8

Figure 3: Gas simulation by rigid bodies.

/software/intel/itac/$VERSION/doc

OBS: Your task is to trace a MPI program at your choice by ITAC, possibly your Lab 1 code. Your report should
contain a successful story where you use ITAC to find a performance bottleneck of your MPI program, e.g. by timeline,
profiles etc. Include screenshots for key steps.

6.2.1 Running program with MPI and ITAC

For information about how to use ITAC on Triolith:
http://www.nsc.liu.se/systems/triolith/software/triolith-software-intel-itac.html

In this lab, you need to use the following functions to generate traces showing how much time the program spends
working on different parts of the algorithm (collision analysis, communication, synchronization):

• use VT_classdef() and VT_funcdef() to define symbol name
• use VT_enter() and VT_end(), to record function begin and end.

Use a counter to record the pressure development on different processors:
• use VT_countdef() to define a counter at program startup
• use VT_countval() to log the value.

7 Particle Simulation
In this assignment we will do a particle simulation and verify the gas law pV = nRT . The particles are hard with a
radius 1 and all collisions will be regarded as perfectly elastic (with the walls and other particles) and no friction is
present in the box. The box will be a 2 dimensional rectangle (the collisions will be easier to handle).

Until a collision occur the particles will travel straight (no external forces) and if a collision occur the momentum
and energy is conserved, by the elastic collision. From the following relationships the velocity after the collision can
be found, m1, m2 is the mass of the particle and v̂(x,y) is the velocity before the collision and v(x,y) after, see Figure
4. The law of conservation of the momentum is, after a suitable rotation of the coordinate system,

m1v1,x + m2v2,x = m1v̂1,x + m2v̂2,x

and the kinetic energy

m1(v
2
1,x + v2

1,y) + m2(v
2
2,x + v2

2,y) = m1(v̂
2
1,x + v2

1,y) + m2(v̂
2
2,x + v2

2,y).

The coordinate system is rotated so the tangent to the collision point is vertical so there is no change in the velocity
in the y-direction.

When a particle hits wall the particle will bounce back with negative velocity normal to the surface.

vii

Figure 3: Gas simulation by rigid bodies.

6 Miniproject: Particle Simulation

In this assignment we will do a particle simulation and verify the gas law pV =
nRT . The particles are hard with a radius 1 and all collisions will be regarded
as perfectly elastic (with the walls and other particles) and no friction is present
in the box. The box will be a 2 dimensional rectangle (the collisions will be
easier to handle). Until a collision occur the particles will travel straight (no
external forces) and if a collision occur the momentum and energy is conserved,
by the elastic collision. From the following relationships the velocity after the
collision can be found, m1,m2 is the mass of the particle and v̂(x,y) is the velocity
before the collision and v(x,y) after, see Figure 4. The law of conservation of the
momentum is, after a suitable rotation of the coordinate system,

m1v1,x +m2v2,x = m1v̂1,x +m2v̂2,x

and the kinetic energy

m1(v
2
1,x + v21,y) +m2(v

2
2,x + v22,y) = m1(v̂

2
1,x + v21,y) +m2(v̂

2
2,x + v22,y).

The coordinate system is rotated so the tangent to the collision point is vertical
so there is no change in the velocity in the y-direction.

When a particle hits wall the particle will bounce back with negative velocity
normal to the surface.

With this simulation one can simulate the notion of pressure, the bouncing
particles will exhibit a pressure on the walls each time they hit. Each time a
particle hits a wall a momentum of 2mvx,y will be absorbed by the wall. If we
sum all collisions by a wall during t second and divide this by the circumference
of the box and t, we will obtain the (two dimensional) pressure in the box.
You will use this pressure to verify the pressure law pV = nRT , p pressure, V
volume (here area), n number of moles (number of particles), R magic constant
and T is the temperature, in our case the volume will be instead area.

6.1 Implementation

Write the framework for the simulation of small particles in a rectangular box.
Choose and motivate a good distribution of the particles between the proces-

9

Figure 4: Interaction between two particles

With this simulation one can simulate the notion of pressure, the bouncing particles will exhibit a pressure on the
walls each time they hit. Each time a particle hits a wall a momentum of 2mvx,y will be absorbed by the wall. If we
sum all collisions by a wall during t second and divide this by the circumference of the box and t, we will obtain the
(two dimensional) pressure in the box. You will use this pressure to verify the pressure law pV = nRT , p pressure, V
volume (here area), n number of moles (number of particles), R magic constant and T is the temperature, in our case
the volume will be instead area.

7.1 Implementation
Write the framework for the simulation of small particles in a rectangular box. Choose and motivate a good distribution
of the particles between the processors, implement the communication between the processors using MPI, count the
pressure. You may use either Fortran or C/C++ as the implementation language.

7.1.1 Data types

The particles in the provided functions are represented by the following struct

struct part_cord {float x; float y; float vx; float vy;}
typedef struct part_cord pcord_t;

x, y is the position, vx, vy the velocity. The walls can be represented by

struct cord {float x0; float x1; float y0; float y1;}
typedef struct cord cord_t;

These datatypes are defined in the file coordinate.h. The particles can be stored on each processor in a fix ar-
ray.

7.1.2 Functions provided

The interaction between the particles is provided by the following routines in the file physics.c;

float collide (pcord_t *p1,pcord_t *p2)
interact (pcord_t *p1,pcord_t *p2,float t)
float wall_collide (pcord_t *p, cord_t wall)
feuler (pcord_t *a, float time)

viii

Figure 4: Interaction between two particles.

sors, implement the communication between the processors using MPI, count
the pressure. You may use either Fortran or C/C++ as the implementation
language.

6.1.1 Data types

The particles in the provided functions are represented by the following struct

struct part cord {float x; float y; float vx; float vy;}
typedef struct cord cord t;

x, y is the position, vx, vy the velocity. The walls can be represented by

struct cord {float x0; float x1; float y0; float y1;}
typedef struct cord cord t;

These datatypes are defined in the file coordinate.h. The particles can be
stored on each processor in a fix array.

6.1.2 Functions provided

The interaction between the particles is provided by the following routines in
the file physics.c;

float collide (pcord t *p1,pcord t *p2)

interact (pcord t *p1,pcord t *p2,float t)

float wall collide (pcord t *p, cord t wall)

feuler (pcord t *a, float time)

The routine collide returns −1 if there will be no collision this time step,
otherwise it will return when the collision occurs. This will then be used as
one of input parameter to the routine interact. The routine interact moves
two particles involved in the collision. Do not move these particles again.
wall collide checks if a particle has exceeded the boundary and returns a

10

momentum. Use this momentum to calculate the pressure. The routine feuler
moves the a particle.

6.1.3 Important implementation issues

The files necessary for the implementation are available on the course home
page6. Download the files to your working directory on Sigma. Some simpli-
fications to the model can be made. If the particles are small compared to
the box and the time step is short, the possibility that a particle will collide
with more than one other particle is statistically very small, so if a particle hits
another, we can update both and ignore them until the next time step (this
is done in the procedure interact). Observe that this can be implemented
without some sort of update flag array!. Depending on how the particles are
distributed over the processors some simplifications of the communication can
be done, motivate each simplification done!

Also note that if you make such simplifications, when doing the performance
and speedup evaluation you should compare to a sequential program with the
same simplifications made. We are interested in speedup numbers stemming
from parallelization, not from approximations or algorithmic reformulations.

• Each time-step must be 1 time unit long.

• The initial velocity should be less then 50. Use the random number gener-
ator to generate the absolute velocity and a starting angle. (r=rand()·max vel;
θ=rand()·2π; vx = r cos(θ); vy = r sin(θ))

• Typical numbers for the simulation; number of particles = 10000 × num-
ber of processors, and area of the box = 104 · 104.

• The pressure can be found at the end of the simulation by dividing the
total momentum from the routine wall collide with the number of time-
steps and the length of the circumference of the box.

• Think about pros and cons of data structure (arrays, linked list etc.) that
you use to represent particles.

• Avoid unnecessary communication by sending all particles at once.

6.2 A short summary of the structure of the program

• Initiate particles

• Main loop: for each time-step do

– for all particles do

∗ Check for collisions.

∗ Move particles that has not collided with another.

6www.ida.liu.se/~TDDC78/labs

11

http://www.ida.liu.se/~TDDC78/labs

∗ Check for wall interaction and add the momentum.

– Communicate if needed.

• Calculate pressure.

6.3 Questions

Before the demonstration, you should measure and note down the following:

1. Explain your choice of distribution of the particles over the processors. Is
there an optimal relation between the distribution and the geometry of the
domain? Measure this by counting particles passed between processors in
each time step.

2. Verify the gas law pV = nRT by changing the number of particles (n)
and size of the box (V) and then measure the pressure.

12

Figure 5: DDT main view, showing 10 ranks running an MPI program.

7 Tools

During this lab you will try two different tools: a parallel debugger, DDT, and
a tracing tool, Intel Trace Analyzer and Collector, ITAC.

Note: External documentation for these tools often show different, or even
wrong, ways to invoke them (for NSC/this course). Always look at the NSC
slides and website documentation first.

7.1 Debugging with DDT

DDT is a powerful, interactive parallel debugger and works with both MPI
and OpenMP. The debugger shows in-line source code which can be expanded
or collapsed, and offers standard debugging features such as breakpoints and
watchpoints also for parallel programs. The variable inspector can, for instance,
show the contents of the same variables on all ranks simultaneously.

Instructions for how to run DDT can be found in the NSC slides and in
the quick reference manual for the course. See the DDT documentation on the
NSC web page (https://www.nsc.liu.se/software/installed/tetralith/
allinea-DDT/) and the DDT user manual at http://content.allinea.com/
downloads/userguide-forge.pdf for more information about the program.

Your miniproject report should contain a short review of the features that
you have used. Compare DDT with other debuggers that you used before.
Comment on ease of use, manageability for parallel application debugging, etc.

13

https://www.nsc.liu.se/software/installed/tetralith/allinea-DDT/
https://www.nsc.liu.se/software/installed/tetralith/allinea-DDT/
http://content.allinea.com/downloads/userguide-forge.pdf
http://content.allinea.com/downloads/userguide-forge.pdf

Figure 6: ITAC main view, showing 32 ranks running an MPI program.

7.2 Tracing with ITAC

ITAC is an interactive visualization tool designed to analyze and debug parallel
programs, in particular message passing programs using the MPI interface.
ITAC is installed on Sigma and all the necessary environment variables are set
after following the instructions given in the NSC slides.

Unfortunately, ITAC is not fully publicly advertised on Sigma yet and de-
tailed documentation is still missing. Explore the interface and see what kinds
of visualization views are available.

OBS: Your task is to trace the particle simulation lab and present screen-
shots along with appropriate description/explanation of the traces in your re-
port. 7

Take screenshots of a few different visualization views that help you identify
performance bottlenecks or other interesting information and include in the
report.

7You may alternatively present traces from another lab as long as they are not overly
trivial.

14

8 Appendix

8.1 The Jacobi method

Usually linear systems that originate from the discretization of partial dif-
ferental equtions are too large to be solved by direct methods. Instead iterative
methods are used. In this section we discuss the Jacobi method, which is one
of the simplest (and least efficient) iterative methods for solving linear systems
of equations. For simplicity we restrict the discussion to 3×3 matrices.

Consider linear system Ax=b, where

A=




a11 a12 a13
a21 a22 a23
a31 a32 a33


 , b=




b1
b2
b3


 .

The starting point of the Jacobi method (and other iterative methods) is the
splitting of the matrix A into two parts, A=N−M , representing the diagonal
and off–diagonal elements respectively, i.e.

N=




a11 0 0
0 a22 0
0 0 a33


 , and, M=




0 −a12 −a13
−a21 0 −a23
−a31 −a32 0


 .

Using this notation the original system of equations, Ax=b, can be written as

Nx=Mx+ b, or, x=N−1Mx+N−1b.

The Jacobi method is based on the above formula. Given an approximation xk

of the solution we compute a (hopefully) better approximation xk+1 by

xk+1=N−1Mxk +N−1b.

The Jacobi method is very inefficient and should not be used for real–life prob-
lems. However, it is as difficult to parallelize as the more sophisticated iterative
methods.

15

	Introduction
	Assignments
	Demonstration
	Report

	Working on Sigma, NSC's supercomputer
	Organizational issues
	Using Sigma, SLURM, etc.
	Version control

	Image Filter
	Averaging Filter
	Thresholding Filter
	Image Format
	Platform
	Sigma and MPI
	Sigma and pthreads

	Stationary Heat Conduction Using OpenMP
	Description of the problem and the numerical method
	Description of the code

	Miniproject: Particle Simulation
	Implementation
	Data types
	Functions provided
	Important implementation issues

	A short summary of the structure of the program
	Questions

	Tools
	Debugging with DDT
	Tracing with ITAC

	Appendix
	The Jacobi method

