Shared memory parallelism

Lu Li
Linkoping University

Parts of slides developed by Usman Dastgeer

TDDC 78 Labs: Memory-based
Taxonomy

Labs Use

LAB 4 (tools). Saves your time for LAB 5.

Lab-2: Image Filters with PThreads

"Blur & Threshold
oSee compendium for details

bl

=7 aiih il
i A ¥\ Threshold Il"n
: \‘

-

k)

i

Wit
RIR

Lab 3 - Stationary Heat Conduction

"Problem
oFind stationary temperature distribution in
a square given some boundary T=0
temperature distribution
oSHMEM, OpenMP T=
oSerial code in Fortran

Lab 3 - Stationary Heat Conduction

"Problem
oFind stationary temperature distribution in
a square given some boundary T=0
temperature distribution
oSHMEM, OpenMP T=
oSerial code In Fortran
"Solution
oRequires solving differential equation
olterative Jacobi method
oDetailed algorithm in Compendium
"Primary concern
oSynchronize access, O(N) extra memory 5

Main Concept: Synchronization (1)

BDifferent from MPIl's Send-Receive
"Thread safety = protect shared data
®Deterministic behavior

Main Concept: Synchronization (2)

" Synchronization objects:

ocMutex Locks ()

0 Serialize access to shared resources
2 Mutual Exclusion!

Mutex lock example

#include<pthread.h>

pthread mutex t count mutex = ... ;
long count;

volid increment count () {
pthread mutex lock (&count mutex) ;
count = count + 1;
pthread mutex unlock (&count mutex) ;

long get count () {
long c;
pthread mutex lock (&count mutex) ;
c = count;
pthread mutex unlock (&count mutex) ;
return (c);

Main Concept: Synchronization (2)

" Synchronization objects:

oSemaphores
0 Block a thread until count is positive
0 Set of resources (>1).

Semaphores

BCoordinate access to resources
olnitialize to the number of free resources
oAtomically increment the count when
resources are added

oAtomically decrement the count when
resources are removed.

oThreads block and wait until the count
becomes greater than zero.

® @

10

Main Concept: Synchronization (2)

" Synchronization objects:

oCondition Variables
0 Block a thread until a (global) condition is true.

11

Conditional variables example

pthread mutex t count lock;

pthread cond t count positive;
long count;

decrement count () {

pthread mutex lock (&count lock);
while (count <= 0)

pthread cond wait (&count positive, &count lock);
count = count - 1;

pthread mutex unlock (&count lock);

increment count ()
pthread mutex lock (&count lock);
count = count + 1;
1f (count > 0)
pthread cond signal (&count positive);
pthread mutex unlock (&count lock);

12

Passing a single parameter

void *PrintHello (void *threadId) ({

long tId;

tId = *((long *)threadId);

printf ("Hello World! It's thread #%1d!\n", tId);
return NULL;

}

long param[NUM THREADS] ;

for (t=0; t<NUM THREADS; t++) {
param[t] = t;

printf ("Creating thread %$1d\n", t);

ret = pthread create(&threads[t],NULL, PrintHello,

(void *) ¶m[t]);

13

Passing multiple parameters

struct thread data{
int threadId;
char *msg;

¥

struct thread data thread data array[NUM THREADS];

void *PrintHello (void *tParam) {
struct thread data *myData;

myData = (struct thread data *) tParam;
taskId = myData->threadId;
helloMsg = myData->msg;

int main

(int argc, char *argv([]) {

thread data array[t].threadId = t;
thread data array[t].Msg = msgPool[t];
rc = pthread create(&threads[t], NULL,

(void *)

&thread data arraylt]);

PrintHello,

14

Compiling and linking

"Don't forget to include
opthread.h, semaphore.h

"Link with
o-|pthread, -lposix4

15

Typical problems (1)

"Uninitialized variables
oUninitialized synchronization objects lead
to strange behavior
oTip: check the return codes!

"Poor performance
oToo many synchronizations
oCache effects kill gains of using
multiprocessors

16

Typical problems (2)

"Deadlocks (>= 2 waiting for each
other)

17

Typical problems (3)

"Race conditions (one misbehaves)

Possible race
condition!

for (t=0; t<NUM THREADS; t++) { Use synchronization
printf ("Creating thread %1d\n", t);

ret = pthread create(&threads[t], NULL, PrintHello, (void *) ¶m) ;

long param = ...;

~ ~

18

Summary and goals for your lab

"Understand
oThreads and their use
oSynchronization vs. Send / Receive

O
O
O

Resource ordering
_ow level parallelism - PThreads vs.

Higher-level specification - OpenMP

"Implement
oLab 2, 3

19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

