
Shared memory parallelism

Lu Li
Linköping University

Parts of slides developed by Usman Dastgeer

1

TDDC 78 Labs: Memory-based
Taxonomy

Memory Labs Use

Distributed 1 MPI

Shared 2 & 3 POSIX threads &
OpenMP

Distributed 5 MPI

LAB 4 (tools). Saves your time for LAB 5.

2

Lab-2: Image Filters with PThreads

Blur & Threshold
oSee compendium for details

Threshold Blur

3

Lab 3 – Stationary Heat Conduction

Problem
oFind stationary temperature distribution in
a square given some boundary
temperature distribution

oSHMEM, OpenMP
oSerial code in Fortran

Solution
oRequires solving differential equation
oIterative Jacobi method
oDetailed algorithm in Compendium

Primary concern
oSynchronize access
oO(N) extra memory

T = 0

T = 1

T = 2

T = 1

4

Lab 3 – Stationary Heat Conduction

Problem
oFind stationary temperature distribution in
a square given some boundary
temperature distribution

oSHMEM, OpenMP
oSerial code in Fortran

Solution
oRequires solving differential equation
oIterative Jacobi method
oDetailed algorithm in Compendium

Primary concern
oSynchronize access, O(N) extra memory

T = 0

T = 1

T = 2

T = 1

5

Main Concept: Synchronization (1)

Different from MPI’s Send-Receive
Thread safety = protect shared data
Deterministic behavior

6

Main Concept: Synchronization (2)

 Synchronization objects:
oMutex Locks ()

 Serialize access to shared resources
 Mutual Exclusion!

oSemaphores
 Block a thread until count is positive
 Set of resources (>1).

oCondition Variables
 Block a thread until a (global) condition is true.

7

Mutex lock example

#include<pthread.h>

pthread_mutex_t count_mutex = ... ;
long count;

void increment_count() {
pthread_mutex_lock(&count_mutex);
count = count + 1;
pthread_mutex_unlock(&count_mutex);

}

long get_count() {
long c;
pthread_mutex_lock(&count_mutex);
c = count;
pthread_mutex_unlock(&count_mutex);
return (c);

}

R

8

Main Concept: Synchronization (2)

 Synchronization objects:
oMutex Locks ()

 Serialize access to shared resources
 Mutual Exclusion!

oSemaphores
 Block a thread until count is positive
 Set of resources (>1).

oCondition Variables
 Block a thread until a (global) condition is true.

9

Semaphores

Coordinate access to resources
oInitialize to the number of free resources
oAtomically increment the count when
resources are added

oAtomically decrement the count when
resources are removed.

oThreads block and wait until the count
becomes greater than zero.

10

R R… …

Main Concept: Synchronization (2)

 Synchronization objects:
oMutex Locks ()

 Serialize access to shared resources
 Mutual Exclusion!

oSemaphores
 Block a thread until count is positive
 Set of resources (>1).

oCondition Variables
 Block a thread until a (global) condition is true.

11

Conditional variables example

pthread_mutex_t count_lock;
pthread_cond_t count_positive;
long count;

decrement_count() {
pthread_mutex_lock(&count_lock);
while (count <= 0)

pthread_cond_wait(&count_positive, &count_lock);
count = count - 1;
pthread_mutex_unlock(&count_lock);

}

increment_count() {
pthread_mutex_lock(&count_lock);
count = count + 1;
if (count > 0)

pthread_cond_signal(&count_positive);
pthread_mutex_unlock(&count_lock);

}
12

Passing a single parameter

...
void *PrintHello(void *threadId) {
long tId;
tId = *((long *)threadId);
printf("Hello World! It's thread #%ld!\n", tId);
return NULL;
}

...
long param[NUM_THREADS];
...
for(t=0; t<NUM_THREADS; t++) {
 param[t] = t;
 printf("Creating thread %ld\n", t);

 ret = pthread_create(&threads[t],NULL, PrintHello, (void *)¶m[t]);

...
}

13

struct thread_data{
int threadId;
char *msg;

};

struct thread_data thread_data_array[NUM_THREADS];

void *PrintHello(void *tParam) {
struct thread_data *myData;
…
myData = (struct thread_data *) tParam;
taskId = myData->threadId;
helloMsg = myData->msg;
…

}

int main (int argc, char *argv[]) {
...
thread_data_array[t].threadId = t;
thread_data_array[t].Msg = msgPool[t];
rc = pthread_create(&threads[t], NULL, PrintHello,
(void *) &thread_data_array[t]);
…
}

Passing multiple parameters

14

Compiling and linking

Don't forget to include
opthread.h, semaphore.h

Link with
o-lpthread, -lposix4

15

Typical problems (1)

Uninitialized variables
oUninitialized synchronization objects lead
to strange behavior

oTip: check the return codes!
Poor performance
oToo many synchronizations
oCache effects kill gains of using
multiprocessors

16

Typical problems (2)

Deadlocks (>= 2 waiting for each
other)

17

Typical problems (3)

Race conditions (one misbehaves)

long param = ...;
...
for(t=0; t<NUM_THREADS; t++) {
 printf("Creating thread %ld\n", t);
 ret = pthread_create(&threads[t], NULL, PrintHello, (void *) ¶m);

...
}

Possible race
condition!

Use synchronization
objects.(void *)¶m);

18

Summary and goals for your lab

Understand
oThreads and their use
oSynchronization vs. Send / Receive
oResource ordering
oLow level parallelism - PThreads vs.
oHigher-level specification - OpenMP

Implement
oLab 2, 3

19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

