
Vampir 2.0

Tutorial

Pallas GmbH
Hermülheimer Straße 10
D-50321 Brühl, Germany
http://www.pallas.com

Vampir was originally developed by the Zentralinstitut für Mathematik at the Forschungszentrum
Jülich.

We wish to thank Prof. Hoßfeld, Dr. Wolfgang Nagel and Dr. Alfred Arnold for the excellent work and
the good cooperation.

Vampir is a trademark of the Forschungszentrum Jülich.

This is document VA20-WTUT-11, date 98-12-23

Contents

i

Contents
Contents .. i
1 Welcome to Vampir ... 1

1.1 Introduction .. 1
1.2 Conventions used in this Tutorial .. 1

2 Vampir first steps.. 2
2.1 Before you start.. 2
2.2 Running Vampir ... 2
2.3 Loading a Tracefile... 3
2.4 Vampir Main Displays... 4

2.4.1 Global Timeline Display... 4
2.4.2 Summaric Chart Display.. 7
2.4.3 Activity Chart Display... 10
2.4.4 Communication Statistics Display .. 12
2.4.5 Communication Length Statistic .. 15

3 Analysing the NAS LU benchmark ... 17
3.1 Statistical Analysis Based on the whole Program Execution.. 17

3.1.1 Loading the Tracefile... 17
3.1.2 Global Displays ... 17
3.1.3 Timeline .. 18
3.1.4 Summaric Chart .. 18
3.1.5 Activity Chart ... 21
3.1.6 Communication Statistics .. 23
3.1.7 Process Displays... 25
3.1.8 Process Timeline... 25
3.1.9 Activity Chart ... 26

3.2 Summary ... 27
3.3 Detailed Analysis for Timeline Sections .. 28

3.3.1 Identifying a Single Time Step of the LU Sample ... 28
3.3.2 Structure of a Time Step.. 29
3.3.3 Lower Tridiagonal Solvers (jacld, blts) ... 30
3.3.4 Exercises .. 30
3.3.5 Filtering... 31

3.4 Summary First Example ... 31
4 Generation of Tracefiles (Matrix Multiply).. 32

4.1 Matrix Multiply (matmul) ... 32
4.2 Linking with Vampirtrace library .. 33

4.2.1 Exercises .. 33
4.3 User Defined Activities ... 33

4.3.1 Vampirtrace API .. 34
4.3.2 Instrumentation of pMxM (1).. 34
4.3.3 Instrumentation of pMxM (2).. 35
4.3.4 Instrumentation Hints... 35

4.4 Summary ... 36
5 Tracing “Real World” Programs... 37

5.1 Using a Configuration File .. 37
6 Vampir – Tips & Tricks.. 38

6.1 Filter Arbitrary Symbols .. 38
6.2 Highlight Messages in the Timeline .. 38
6.3 Reduce Default Timeline Display Range... 38
6.4 Use the Parallelism Display inside Global Timeline... 38
6.5 Select Multiple Processes inside Timeline View.. 39

Contents

ii

Welcome to Vampir

1

1 Welcome to Vampir

1.1 Introduction

This tutorial documents the main features and capabilities of Vampir release 2.0. It can help you
quickly master the basics of using Vampir and move on to using Vampir’s more specialized features
by guiding the reader through a selection of useful scenarios. Along practical examples it is not a
replacement for the complete reference manual distributed with the Vampir 2.0 package.

Vampir offers a lot of opportunities for every user to find his own style of using it. This tutorial gives
some hints and should encourage the user to develop his own way in using Vampir.

The “Vampir performance analysis toolkit for MPI” consists of two packages:

Vampir Tracefile visualization program with a graphical user interface
(GUI) for X Windows desktops.

Vampirtrace Instrumented MPI library to link with the user code for automatic
tracefile generation on a parallel platform.

Chapter 2 will provide an introduction into the most important elements of Vampir by using a
predefined tracefile. The user not familiar with Vampir will get an impression of important Vampir
displays and their significance for program analysis.

Chapter 3 shows an in depth analysis of application hot spots and how Vampir can help the user to
find these sections inside the traced application.

Chapter 4 deals with the whole process of tracefile generation with Vampirtrace’s automatic MPI
instrumentation and the possible use of user defined activities. The example code matrix multiplication
is kept simple because the focus is on the basic technique of trace generation.

Finally some tips for tracing real world programs are given in chapter 5. Reduction of tracefile size is
the central issue of this chapter closing with a more advanced “Tips & Tricks” section.

1.2 Conventions used in this Tutorial

• Instructions will be given in form of bullet lists for emphasis of different steps of execution.

• Clickable menus are printed bold.
For example: File / Open Tracefile. It is activated by selecting the first menu on the left (File)
and selecting Open Tracefile inside the File menu.

• Keyboard shortcuts are printed in verbatim-bold with a box around each key.
For example: ALT-O is activated by pressing the keys ALT and O together.

• File, directory and function names are printed verbatim: vampir.

• Context menus are associated with a display and were activated by a right mouse button click
inside the window area.

Vampir first steps

2

2 Vampir first steps

2.1 Before you start

Vampir will create a configuration file called VAMPIR2.cnf in the directory
$HOME/.VAMPIR_defaults, with $HOME referencing your home directory. This file contains all
configuration settings for Vampir and enables Vampir to preserve settings from one session to
another. If you don't already have a configuration file, you should create the directory
$HOME/.VAMPIR_defaults and copy the system–default file $VAMPIR_ROOT/etc/VAMPIR2.cnf
into it.

For Vampir 1.0 users the existing configuration file ~/.VAMPIR_defaults/VAMPIR.cnf will be
automatically migrated to the new VAMPIR2.cnf file. So all Vampir 1.0 settings are immediately
available.

If there's no configuration file at all, Vampir will create one with default values that allow to start the
visualisation.

Vampir has to allocate a lot of different color cells to display all information properly. In conjunction
with other color greedy applications like “Netscape Navigator” it is possible (especially on 8-bit
displays) that the colormap does not have enough free cells. To avoid this, the user can invoke Vampir
with the command line option “–install” to instruct Vampir to use a private colormap instead of the
default.

2.2 Running Vampir

We assume that Vampir has been installed on the system you are using. If that is not the case, please
refer to the “Vampir Installation Guide” for help. Let $VAMPIR_ROOT be the root directory of your
Vampir installation, e.g. /usr/local/vampir.

The Vampir executable image resides in the directory $VAMPIR_ROOT/bin. This directory should be
included in the user’s executable search path (shell variable path or environment variable PATH).

To start Vampir please type :

% vampir

After Vampir has completed startup, the main window shown in Figure 2.1 is displayed:

Figure 2.1 Vampir main window

Vampir first steps

3

2.3 Loading a Tracefile

To open a trace file select the menu item File / Open Tracefile or press the keyboard shortcut
ALT-O. A Motif–style file selector as shown in Figure 2.2 will pop up.

To actually open the provided tutorial tracefile, either double-click on the appropriate entry in Files, or
enter the filename $VAMPIR_ROOT/etc/lu.S.4.bpv into the Selection field and click on the OK
button.

Figure 2.2 Open Tracefile

During the process of loading a tracefile the status panel inside the Vampir main windows will show a
progress bar and three buttons to Pause, Resume or Cancel the tracefile loading. The different status
panels while loading a tracefile are shown in Figure 2.3.

Figure 2.3 Vampir 2.0 main menu bars

Vampir first steps

4

2.4 Vampir Main Displays

2.4.1 Global Timeline Display

After loading the tutorial tracefile $VAMPIR_ROOT/etc/lu.S.4.bpv the global timeline view
(available via Global Displays / Timeline or keyboard shortcut ALT-O) will popup automatically as
shown in Figure 2.4.

Figure 2.4 Global Timeline Display

In default mode this view presents an overview of the whole execution trace. For each process, the
display shows the different states and their change over execution time along a horizontal time axis.
Messages between processes are indicated as lines connecting the sending and receiving process.

Vampir implements a two-level state model. The states are grouped into activities, with a color being
associated with an activity. The timeline display shows the activity colors to indicate state transitions;
therefore, any state changes within an activity cannot be indicated. This method was chosen because
the relatively high numbers of different states in a parallel application makes color-coding by states
ineffective. Vampir displays a list of all activities occuring in the displayed part of the trace and their
associated color in the upper right corner of the window.

By default, the timeline view shows the whole execution trace. Even with smaller traces this will lead to
a cluttered display like that shown in Figure 2.4. To concentrate on a special part of the tracefile
please invoke the Vampir zooming function by selecting an area of interest with your mouse. To zoom
into a part of the timeline view, move the mouse pointer to the start of the interval you want to zoom
into, press the left mouse button, drag the mouse to the end of the zoom interval while keeping the left
mouse button down (only the x-coordinate matters). Vampir will indicate the marked region with
rubber-bands. Finally release the mouse button. The timeline display will be redrawn showing just the
time interval you selected, with the contents magnified accordingly. Figure 2.5 shows the process of
zooming into a selected time interval.

Vampir first steps

5

Figure 2.5 Timeline view Zoom-In

You can repeatedly zoom into arbitrary levels of detail. Zooming out step-by-step can be done with the
Undo Zoom function of the context menu, or with the hotkey U. Figure 2.6 show the necessary steps
to undo zoom the timeline display.

Figure 2.6 Timeline view Undo-Zoom

Vampir first steps

6

To get detailed information about a particular state or a single message invoke the functions
Identify State or Identify Message from the timeline context menu or by pressing the timeline window
hotkeys S for state or M for message. The context menu is activated by a right mouse button click
inside the timeline window. After selecting one of the identify functions the mouse cursor shape is
changed into the “target” symbol ”�”. This new mouse cursor shape indicates that you have to identify
the wanted state or message line by a single left mouse button click so that Vampir can show you
further information. Please see Figure 2.7 for an illustration of these steps.

Figure 2.7 Timeline view Identify message action

The global Timeline view is the central display of Vampir because all other global and process
specific statistic displays can be configured to use only the portion of time the timeline view displays.
This option can be selected for a single display by selecting Use Timeline Portion from the
appropriate context menu or as a global default value by setting the option Use Timel. Portion in the
general preferences dialog available via Preferences / Display / General.

Global Timeline Summary:

• It will automatically open when pause or finished loading a tracefile.
• By default it will show the whole execution trace.
• Zooming in can be done by simply point and drag with your mouse in unlimited

depth.
• Zooming out can be done step-by-step with the Undo Zoom function from the

context menu, or by the hotkey U.
• Detailed information about states or messages can be shown by invoking

Identify State or Identify Message from the timeline context menu or by using the
hotkeys S (state) or M (message) and clicking on the state or message of interest.

• Central display to chose a timeframe for associated statistic views.
• For a complete description of all available Timeline features please read chapter

4.3.1 of the “Vampir 2.0 User’s Guide”.

Vampir first steps

7

2.4.2 Summaric Chart Display

The Summaric Chart display shows the sum of the time consumed by all instrumented activities over
all selected processes. This is analogous to the information displayed by conventional profilers. To
activate this view, select Global Displays / Summaric Chart from the main menu or press the hotkey
ALT-U.

Figure 2.8 Summaric Chart View

By default, the Summaric Chart display shows a horizontal bar chart of those activities that occur in
the time interval displayed in the window’s top line, like shown in Figure 2.8. To get a statistic of a
specific time interval activate the option Use Timeline Portion from the context menu. Now an
arbitrary time interval can be chosen in the timeline display.

By default the view shows how much time is used for the application program, and how much time
were used by MPI calls. An interesting question is now, which MPI functions uses up most of the
runtime ? To break down the time used by the activity “MPI” into the time used by single MPI functions
open the context menu by pressing the right mouse button and select Display / MPI. Now the display
shows all traced MPI functions and the time spend inside (see Figure 2.9).

Figure 2.9 Summaric Chart Display for MPI functions

To generate an average, per process statistic open the context menu and select Options / Per
Process. All times are now divided by the number of processes.

Vampir first steps

8

Figure 2.10 Summaric Chart display – “per process”

By activating the option Include Sum from the context submenu Options an additional bar is included
indicating the sum of all times shown by the display.

Figure 2.11 Summaric Chart display – Include Sum

Vampir first steps

9

Summaric Chart Display Summary:

• By default it will show the sum of all times consumed by all processes.
• It is possible to look (“zoom”) into arbitrary activities by selecting a special activity

from the Display submenu reachable by the context menu
• It is possible to get an average “per process” statistic bv selecting Options / Per

Process from the context menu.
• To see the relation between single bars and the total time used, by inserting a

special “Summation” bar via Options / Include Sum.
• For a complete description of all feature please read chapter 4.3.2 of the “Vampir

2.0 User’s Guide”.

Vampir first steps

10

2.4.3 Activity Chart Display

The Global Activity Chart display (available via Global Displays / Activity Chart or keyboard
shortcut ALT-A) shows a statistic about the time spent in each activity individually for each process
defined in the tracefile. It’s default appearance is shown in Figure 2.12.

Figure 2.12 Global Activity Chart

With the default pie chart display you can recognise load imbalance at a glance in the traced program
by comparing the different time consumption of activities over all processes (in our example MPI).
Vampir can assist the user by visualising the actual trace data in different chart modes. Depending on
the users preference the activity chart display can be switched to the so called “Histrogram” mode.
Please see Figure 2.13 for details.

Figure 2.13 Global Activity Chart in histogram mode

Vampir first steps

11

To focus on a single activity, for instance MPI, please open the context menu with a right mouse
button click inside the Activity Chart and select the activity MPI from the Display menu cascade (as
you did before for the Summaric Chart display). A new set of pie charts is drawn, showing only the
symbols of the selected activity MPI (see Figure 2.14). So you can easily compare different activities
or symbols of all processes.

Figure 2.14 Global Activity Chart for MPI functions

Activity Chart Display Summary:

• By default it will show all activities for each process in a single pie charts.
• It’s main purpose is to detect load imbalance. Different chart types assist the user

in detecting the imbalance.
• It is possible to look (“zoom”) into arbitrary activities by selecting a special activity

from the Display submenu reachable by the context menu)
• For a complete description of all feature please read chapter 4.3.3 of the “Vampir

2.0 User’s Guide”.

Vampir first steps

12

2.4.4 Communication Statistics Display

The global Communication Statistics display shows a communication matrix describing the
messages that were passed between each pair of sender and receiver. The default view will show the
absolute number of bytes communicated between processes (see Figure 2.15).

Figure 2.15 Communication Statistics View

While in default mode, the sender / receiver matrix will show the total amount of data communicated
between the processes. To get the minimum, average or maximum bandwidth or message length
please select the appropriate item of the Count submenu cascade from the communication statistics
context menu.

Figure 2.16 Communication Statistics – Max. Rate

Vampir first steps

13

There are two ways to reduce the amount of processes shown in the communication matrix and to
focus on special processes and their communication behaviour. If you would like to see a continuous
block of processes like the upper 2x2 sub matrix from the display, a selection is done by simply mark
the area with your mouse (like zooming inside the timeline display). To select a sub matrix move the
mouse pointer to the upper left corner of the wanted area, press and hold the left mouse button, move
the mouse pointer to the lower right edge of the sub matrix (Vampir will indicate the marked region
with rubber bands) and release the left mouse button. Now, only the selected sub matrix will be
shown. This action is called zooming. To undo these selection please use the Undo Zoom function
from the context menu or the corresponding keyboard shortcut U (see Figure 2.17 for details).

Figure 2.17 “Zoom” into communication statistic display

To select arbitrary processes from the communication matrix please use the Global Displays /
Filter Processes dialog (see Figure 2.18).

Because this is a global filter, the current selection affects all other global displays !

Figure 2.18 Global Process Filter

Vampir first steps

14

To filter messages by their tag or communicator invoke the local message filter dialog by selecting
Filter Messages from the context menu. By default all communicators and tags are selected and so
not filtered. To actually filter messages deselect unwanted items and click on the Apply button. The
communication statistic will be recalculated with the local message filter in mind. Now the
communication matrix will show only unfiltered messages. To deactivate the local filter select all
communicators and tags and click on the Apply button. The message filter dialog is shown in Figure
2.19.

Figure 2.19 Local message filter dialog

The Communication Statistics display is the only display that can be opened several times
simultaneously and all displays can be configured independently. This is important for the
communication analysis to see different communication statistics at a time.

Communication Statistics Display Summary:

• By default it will show the total amount of data passed between the processes.
• The display can show min/max/avg bandwidth or message length.
• A subset of processes can be filtered locally with your mouse or globally with the

Global Displays / Filter Processes dialog.
• Different groups of messages can be filtered locally with the Filter Messages

dialog.
• It can be opened several times simultaneously.
• For a complete description of all feature please read chapter 4.3.5 of the ”Vampir

2.0 User’s Guide”.

Vampir first steps

15

2.4.5 Communication Length Statistic

The Length Statistics display is an addition to the Communication Statistics display. To invoke it,
open the Communication Statistics display click on the Length Statistic entry of the context menu.
Now wait for the cursor to change into cross-hairs (“+”), and then mark the wanted area of the
communication matrix by pressing the left mouse button and drawing a rectangle on the
communication matrix. After the left mouse button is released, a Length Statistics window like Figure
2.20 will be opened. It shows a histogram of the distribution of message lengths.

Figure 2.20 Communication length statistic view

Instead of other context displays the Length Statistic view behaves like a normal top level
statistic display. So it is independent from the parent Communication Statistic window and
would not be closed automatically when the user closes the former parent view.

In default mode the Length Statistics view shows how many messages with a particular length were
passed, because messages are grouped by their lenght in default mode. These information helps you
to decide if the traced application is latency (mostly short messages), or bandwidth (mostly large
messages) bound. The actual achieved min/max/avg bandwidth can be shown by selecting one of the
items from the Display sub menu cascade, reachable via the context menu.

Figure 2.21 Length Statistic View – Avg. Rates

Vampir first steps

16

Communication Length Statistic Summary:

• Invoked by the Communication Statistics context menu. Thereafter independent
from the parent display.

• The length statistics can be grouped by message length (default), message type
(tag) or by the message communicator.

• The histogram can show message counts, the amount of data passed or
min/max/avg rates (bandwidth).

• For a complete description of all feature please read chapter 4.3.5 - ”Length
statistic display” of the “Vampir 2.0 User’s Guide”.

Analysing the NAS LU benchmark

17

3 Analysing the NAS LU benchmark
The NAS LU benchmark is part of the NAS benchmark suite which can be found at:
http://www.nas.nasa.gov/NAS/NPB. Documentation is available at the same location. The
example is an implementation of a fluid dynamics code employing the SSOR method. Limited
concurrency is achieved by using a so called wave front strategy. The limitation is due to inherent
sequential calculations.

All tracing was done on the Cray T3E (450Mhz) machine located at the FZ-Jülich. The program was
compiled with the makefile flags CLASS=W NPROCS=8. In order to keep the tracefile small only 10 time
steps were used.

The fist part of the analysis (section 3.1) will employ most of the important Vampir displays in order of
their appearance in the main menu Global Displays.

After this basic analysis, appropriate displays will be demonstrated for a more detailed view of the
program (section 3.3). In particular, filtering (section 3.3.5) will be stressed.

3.1 Statistical Analysis Based on the whole Program Execution

In order to get a first impression of the programs timing, load balancing and message passing
performance we will relate analysis to the whole program execution. In section 3.3 details are revealed
by magnification.

3.1.1 Loading the Tracefile

• A file browser is activated by the menu: File / Open Tracefile
A valid tracefile is provided under: $TUTORIAL/lu.W.8.bpv
Select this file and load it by clicking the OK button.

• In later sessions one can use File / Recent Tracefiles to select a tracefile that has been analyzed
in a previous session.

3.1.2 Global Displays

The Global Displays menu contains a collection of Vampir displays providing views of global
properties of a program. Here, “Global” means referring to either all processes or a selected group of
processes at the same time (the next major menu Process Displays will focus on single selected
processes). The key view is Timeline, a display of the program’s time evolution.

As predefined in the configuration file, all other global displays refer to the time interval
shown in the Timeline window. This feature is not default. The context menu of most displays
provide a Use Timeline Portion switch which turns this feature on or off. Globally this
feature is turned on by selecting the Use Timeline Portion in the Preferences /
Displays / General menu.

Analysing the NAS LU benchmark

18

3.1.3 Timeline

The Global Displays / Timeline menu has already been activated automatically by the
File / Open Tracefile menu. Figure 3.1 shows the timeline window as it should appear now. The black
vertical lines are so called message lines. Due to a quite coarse resolution, they appear in clusters.
These 10 blocks correspond to a code inherent sub structuring into so called time steps. Blue bars at
the beginning mean suspended tracing (TRACE_OFF).

Figure 3.1 Timeline window

The blue bars at the beginning of the timeline can be hidden by zooming into the timeline. Point with
the left mouse button on the right end of one of the blue bars, drag the rubber box to the end of the
timeline and release the mouse button (if the first try fails, zooming can be undone by typing U. The
original view is restored by typing A).

3.1.4 Summaric Chart

• Activation of the Global Displays / Summaric Chart menu will pop up a new window with timings
that are accumulated over all processes. This so called Summaric Chart can be compared to
conventional profiling for sequential programs.

• Note that Timeline and Summaric Chart window will change accordingly when zoom into the
timeline is applied. Type A to restore the original timeline and observe the accompanying change
in the Summaric Chart (see Figure 3.2). Zoom back into the timeline to hide the TRACE_OFF
symbol.

Analysing the NAS LU benchmark

19

• Return to the Summaric Chart window. Timings can be shown per process and related to the sum
of all shown activities. In order to get these options, employ a context menu (click with the right
mouse button inside the Summaric Chart window) and activate Options / Per Process and
Options / Include Sum (see Figure 3.3)

• The MPI activities shown in the Summaric Chart window consists of all traced MPI symbols. In
order to investigate only MPI timings, use the context menu Display / MPI. Several different MPI
functions will be displayed (see Figure 3.4)

• Note that tracing events can be ordered hierarchically into activities and symbols. MPI is an
activity that consist of several symbols. User defined activities like rhs consist of only one symbol.

• The Summaric Chart reported summed or averaged timings over all processes. Use the context
menu Close to deactivate it.

Figure 3.2 Summaric Chart display in default mode

Figure 3.3 Summaric Chart - Sum and Per Process selected

Analysing the NAS LU benchmark

20

Figure 3.4 Summaric Chart – Display / MPI selected

Analysing the NAS LU benchmark

21

3.1.5 Activity Chart

• Selection of Global Displays / Activity Chart pops up a window that consists of pie charts for
every process. Load imbalances can be identified by this view (see Figure 3.5).

• Select the context menu Mode / Histogram for a histogram representation of the current view.

• The context menu Display / rhs will filter only rhs activity. It has already been mentioned that
rhs consists of only one symbol so this view is quite simple. One identifies a non perfect load
balancing. The timings of rhs are ordered in the following way: (0,1,2),(4,5,6),(3),(7).

• Part of the imbalance for the current example are induced by a not perfectly distributed grid. The
timing order is due to the fact that the top processes (0,1,2,3) get one more row of the grid and the
right processes (3,7) get one column less (see Figure 3.6).

• Filter MPI activities by aid of Display / MPI. The MPI timings show a reversed order of timing
because short computation time means more waiting time in blocking MPI routines.

So far we have only displayed routine or code block timings. The next views will provide message
passing performance information. Close the Global Displays / Activity Chart first.

Figure 3.5 Activity Chart – default view

Analysing the NAS LU benchmark

22

Figure 3.6 Activity Chart – Histogram Mode

Analysing the NAS LU benchmark

23

3.1.6 Communication Statistics

• Activation of the menu Global Displays / Comm. Statistics shows a communication matrix
displaying sent / received data volumes for all process pairs.

• A typical 2D message passing pattern for next neighbour communication is displayed (see
Global Displays / Activity Chart figure to identify the 2x4 process grid). One sees a perfectly
symmetric pattern for the amount of sent data.

• There are eight different views for the communication matrix that can be found under the context
menu Count. Default is Sum. Length (sum of all message length in bytes).Try out some of the
other!

• For optimization issues the average message passing rates in [MB/sec] are more interesting.
Select the context menu Count / Avg. Rate to get the rates (last item in the Count menu). See
Figure 3.8.

• A more detailed analysis of the highly non symmetric rates will follow later. Rates are quite low,
compared to the peak rates of the machine (Cray T3E). The most likely reason is that message
lengths are quite short.

• To verify this assumption, employ the context menu Length Statistics. Click on this menu, point
to the (0,0) matrix element, drag the mouse to the (7,7) element and release the mouse. See
Figure 3.9.

Figure 3.7 Communication Statistics – Default View

Analysing the NAS LU benchmark

24

Figure 3.8 Communication Statistics – Message Passing Rates

Figure 3.9 Communication Length Statistics

Analysing the NAS LU benchmark

25

3.1.7 Process Displays

The third main menu Process Displays is valuable for viewing individual selected processes. It
contains the menus Timeline and Activity Chart that directly correspond to their Global Displays
counterparts. If no process has been selected so far the Process Display’s submenus are invalidated.

• To activate the Process Displays, select at least one process. A process is selected by clicking
the left mouse button on it’s Timeline process bar. Selected processes are marked by a bounding
box surrounding the process bar. Please select only process #0 at first because in the following a
window will be opened for all selected processes.

3.1.8 Process Timeline

• Click on Process Displays / Timeline to open a new timeline window for each selected process
(Figure 3.10). The new timeline chart displays a list of activity names on the left. The colored bars
to the right display the time intervals for which the selected process is executing the corresponding
activity.

• An interesting view can be activated by the context menu: Options / Guess Calls. It shows a
graphical calling tree representation of the activities of this process (Figure 3.11). The numbers on
the left side of the timeline represent a calling tree hierarchy level. The activities shown in the
timeline can be identified by aid of the color legend on the left side.

• The 10 time steps are easily recognised.

Figure 3.10 Process Displays – Timeline Default View

Figure 3.11 Process Display – Timeline, Guess Calls Mode

Analysing the NAS LU benchmark

26

3.1.9 Activity Chart

• The Process Displays / Activity Chart is completely analogous to the Global Displays /
Summaric Chart (see section 3.1.4). Compare the two.

• It is interesting to compare timings for individual processes with each other and with the global
mean values (new Vampir 2.0 feature). In order to compare timings, an Activity Chart has to be
saved as an ASCII file and reloaded by another Chart.

• Use the context menu of the Activity Chart for process 0 and select: Options / Store Values.
A file browser pops up and a directory and filename can be selected. Save the file under the name
Chart_0 (e.g.) in the directory VAMPIR-tutor/LU-trace (e.g.).

• Select process 7 and open Process Displays / Activity Chart. Note that the context menu
Comparison is deactivated.

• Open the context menu of the Activity Chart for process 7 and use the menu
Options / Load Values. A file browser pops up, and the file Chart_0 can be loaded that has
been stored before (see Figure 3.12).

• Assure that the context menu Comparison is active because two timings are to be compared.

• Activate Comparison / Difference in order to get the difference timing(7) – timing(0) for all
activities. Note that the histogram bars are all right directed independent of the sign of the
difference.

Exercise: employ Global Displays / Summaric Chart to generate a timing average over all processes
(see section 3.1.4) and store it to the file Chart_A (e.g.). Load it into the last Chart and try some of
the comparison modes.

Figure 3.12 Process Activity chart – comparison mode

Analysing the NAS LU benchmark

27

3.2 Summary

A brief survey over all Global Displays menus handled so far is as follows:

Timeline graphical display of time evolution for all processes. All
other displays can be related to the selected timeline
portion.

Summaric Chart timings summed over processes (suited for first profiling).

Activity Chart comparison of individual process timings (valuable for
evaluation of load balancing).

Communication Statistics statistics over global message passing lengths and rates
or individual messages.

A brief survey of all Process Displays menus is as follows:

Process Timeline shows inclusive timings for individual processes or a
graphical calling tree for all instrumented activities.

Process Activity Chart profiling for individual processes. Comparison for
individual process timings is gained by employing the
context menus Options / Store and Options / Load for
charts together with the context menu Comparison.

Analysing the NAS LU benchmark

28

3.3 Detailed Analysis for Timeline Sections

At this point all major display menus of Vampir have been shown. Now, in combination with zooming
they will be used to get a more detailed understanding of the underlying program.

At first, in the LU example, beginning and end of a single time step will be identified Then, the
structure of a time step will be analyzed in more detail. In particular, the technique of filtering will be
explained.

3.3.1 Identifying a Single Time Step of the LU Sample

• Select process 0 (click on the process bar). Reactivate Process Displays / Timeline together
with the context Options / Guess Calls.

• We have already identified 10 time steps. The highest hierarchy level (2) during the time stepping
is occupied by the driver routine ssor. After the rhs section the time evolution pattern repeats.

• Zoom into the fourth time step. It begins after the third call to rhs and ends after the fourth
occurrence of rhs (see Figure 3.13 and Figure 3.14).

Figure 3.13 Process Timeline Display – Default Mode

Figure 3.14 Process Timeline Display – Zoom In

Analysing the NAS LU benchmark

29

3.3.2 Structure of a Time Step

• Resume the original view of step 4 (Figure 3.14).

• To get more information, zoom further into the timeline. Depending on the zoom resolution, the
sections are either tagged by their name, by a symbolic number or just by a unique color. By
increasing the zoom depth, it is always possible to reveal the symbol name.

• In order to undo zooming type U on the keyboard.

• To undo all zooming type A.

• Three major code blocks can be identified: alternating calls to jacld and blts, alternating calls
to jacu and buts and rhs at the end.

• Use also Global Displays / Timeline in order to recognize these substructures.

• Exercise: zoom into time step 4 of Global Displays / Timeline, compare the time stamps with the
stamps of Process Displays / Timeline. Note: the single processes’ starting points of a time step
are not synchronized.

Analysing the NAS LU benchmark

30

3.3.3 Lower Tridiagonal Solvers (jacld, blts)

• Zoom into the first part of time step 4 with alternating calls to jacld and blts. Try to get about 4
to 5 occurrences of each routine per process (Figure 3.15).

• One sees a frequent occurrence MPI symbol 80. To find out which function symbol 80 stands for
use the Global Displays / Timeline context menu Identify State. Select this menu and click on
the symbol you want to know more about.

• Get more information about a single message: Select Identify Message in the context menu and
click on a message line.

• One of the two identification menus can be made permanent by using the context menu
Pointer Function. Dynamically updated with mouse movements, status / messages are analyzed
wherever the mouse points to.

Figure 3.15 Four stages of the forward wave (lower tridiagonal solver)

3.3.4 Exercises

• Analyze the message passing patterns of the 3 major blocks a time step consists of
(jacld/blts, jacu/buts, rhs). Use Global Displays / Comm. Statistics.

• Why are message passing rates highly non symmetric, especially for process 0 and process 1?

Analysing the NAS LU benchmark

31

• There is a sequential order in the starting point of the message passing patterns:
For blts ,the order is: 0 (1,4) (2,5) (3,6) 7.
For buts: 7 (3,6) (2,5) (1,4) 0.
Try to recognize these orders in the Timeline chart (hint: scroll to the beginning of the alternating
patterns).

3.3.5 Filtering

One major concept of Vampir is filtering of processes and messages. The resulting views become
clearer as activities of minor relevance are ignored.
• To filter a selection of processes, use the Global Displays / Filter Processes menu or select a

set of processes and use the timeline context menu: Options / Filter by Selection.

• To filter a selection of messages (different tags or communicators), use the timeline context menu:
Options / Filter Messages.

Figure 3.16 Filtering of process 0 and 1

3.4 Summary First Example

• Most of the major Vampir displays were presented by analyzing the NAS LU Benchmark. The
level of detail was increased step by step, beginning with a global view of the entire program. This
should be an appropriate approach in general.

• Zooming has been demonstrated in order to relate all views to a single time step or even more
detailed structures.

• Finally filtering has demonstrated how to get clearer views by concentrating on a selection of
processes.

Generation of Tracefiles (Matrix Multiply)

32

4 Generation of Tracefiles (Matrix Multiply)
There are basically two levels of tracefile generation:

• Default (achieved by just a modified link step, see section 4.2). All MPI_xxx
activities are traced, the remainder code is allover marked as “user code”.

• User defined. The user can select arbitrary code sections (and their symbol
names) to be traced. See section 4.3.

Some implementations allow for automatic instrumentation. This feature should be used with care
because tracefile size and runtime overhead may become considerable.

With a second example, parallel matrix multiply, both levels of tracefile generation will be
demonstrated now. Some brief explanation will be given about the usage of the corresponding
program.

An instrumented version of matmul source code is in VAMPIR-tutor/matmul-instr/. Some
sample tracefiles reside in VAMPIR-tutor/matmul-traces/. The digit in the tracefile name
corresponds to the exchange mode defined below.

4.1 Matrix Multiply (matmul)

The source of matmul is in the directory: VAMPIR-tutor/matmul.

• Compile the source code by using the makefile, which first has to be adapted to the current
machine.

• An input file controls the program execution. It requires the following five integer entries:

N M K ! (NxK) matrix multiplied by (KxM) matrix
output exchange ! file output mode, data exchange mode

• Output flag:

0: no output
1: matrices are printed in files (for diagnostics)

• Exchange mode:

The basic communication step is an exchange of parts of one matrix operand. The program of
three choice of how to perform these exchanges:

1: MPI_Isend / MPI_Recv / MPI_Wait
2: MPI_Sendrecv
3: MPI_Isend / MPI_Irecv / MPI_Waitall

Run matmul by typing: mpirun –np 4 matmul (the specific mechanism for running MPI programs
may be different on your machine. The line given above, however, is taken from the MPICH
implementation and is utilized by many vendors). The standard output will provide some timing
information.

Generation of Tracefiles (Matrix Multiply)

33

4.2 Linking with Vampirtrace library

• In order to link a MPI program to Vampirtrace one has to change the link line, typically like

f90 –o prg.x prg.o –L(LIB_PATH) -lmpi

into:

f90 –o prg.x prg.o –L$(LIB_PATH) –L$(VT_PATH) –lVT -lpmpi –lmpi

with VT_PATH = location of the library libVT.a

• Note that the order of libraries is important because the Vampirtrace library overwrites the MPI
functions of libmpi. The MPI standard demands the availability of the library libpmpi.a. which
provides different names (used by libVT) for the standard MPI interfaces. Consult the
Vampirtrace User’s Guide for more information (e.g. “C support”).

• Exercise: change the link line in makefile in order to link Vampirtrace in the way explained
above (inquire the path of libVT.a). Running the program will now generate a tracefile:
matmul.bpv.

• Transfer this tracefile to your workstation where the Vampir GUI (Graphical User’s Interface) is
installed.

• Load the tracefile by aid of the File / Open Tracefile menu. Use the Lu.cnf configuration file.

4.2.1 Exercises

• Find all MPI calls in the source file VAMPIR-tutor/matmul/matmul.f and relate them to your
tracefile. Why does the timing of process 0 differ substantially from that of other processes?

• Zoom into the matrix multiplication section (hint: the matrix multiply is done by subroutine pMxM.
This routine is enclosed by barriers.

• The matrix multiply is done in p-1 sweeps (p: number of processes). Find the beginning and the
end of one sweep in the tracefile.

• Try other exchange modes and other matrix sizes (new tracefiles). Is there a timing difference for
different exchange modes on your machine? It is interesting to compare the nonblocking
(exchange mode 1 or 3) with blocking communication (mode 2). Is your machine really able to
overlap message passing with CPU activity? Try to answer this question by using:
Global Displays / Communication Statistics and the runtime given on standard output.

4.3 User Defined Activities

In order to make tracefiles more intelligible it is useful to have user defined activities in addition to
mere MPI activity. It makes sense to start by instrumenting top level subroutines that consume most of
the time. The way of achieving this will be explained now.

Generation of Tracefiles (Matrix Multiply)

34

4.3.1 Vampirtrace API

• Definition of a symbol:
SUBROUTINE vtsymdef(code, symbol, class, err)
INTEGER code ! Symbol code (positive integer)
CHARACTER*(*) symbol ! Symbol name (e.g. init_exchange)
CHARACTER*(*) class ! Class of symbol (e.g. exchange)
INTEGER err ! Error code

• Start of tracing a symbol:
SUBROUTINE vtbegin(code, err)
INTEGER code ! Symbol code (positive integer)
INTEGER err ! Error code

• End of tracing a symbol:
SUBROUTINE vtbegin(code, err)
INTEGER code ! Symbol code (positive integer)
INTEGER err ! Error code

• Suspend tracing:
SUBROUTINE vttraceoff()
After a call to this routine all tracing will be ignored.

• Reactivate tracing:
SUBROUTINE vttraceoff()
This call is used to activate tracing again.

The latter two routines are useful for limiting the number of tracing events and therefore the tracefile
size (see also section 5).

4.3.2 Instrumentation of pMxM (1)

“Global” code instrumentation:

Symbols and their internal code are declared right after the initialization of MPI (MPI_Init). Begin
and end of every traced code block have to be marked with the corresponding symbol code:

PROGRAM matmul ! Main contains MPI_Init

...

! End of declarations

INTEGER vt_err
...

CALL MPI_INIT(ierr)
CALL vtsymdef(1, “pMxM”, “pMxM”, vt_err) !
Definition of symbols
CALL vtsymdef(....)

....
END

SUBROUTINE pMxM(...)

Generation of Tracefiles (Matrix Multiply)

35

INTEGER vt_err

CALL vtbegin(1, vt_err)

! Code to be timed

CALL vtend(1, vt_err)

END

This technique has the advantage that all symbol definitions reside in one central place. There is a
better overlook of which symbol codes are in use. The disadvantage is that definition and code blocks
are in different files.

4.3.3 Instrumentation of pMxM (2)

“Local” code intrumentation:

SUBROUTINE pMxM(....)

! End of declarations

INTEGER vt_err, vt_code
PARAMETER (vt_code = 1) ! Use different codes for other symbols
LOGICAL vt_not_def
DATA vt_not_def /.TRUE./
SAVE vt_not_def

IF (vt_not_def) THEN ! The symbol is only defined once
CALL vtsymdef(vt_code, “pMxM”, “pMxM”, vt_err)
vt_not_def = .FALSE.

ENDIF

CALL vtbegin(vt_code, vt_err)
! Code to be timed

CALL vtend(vt_code, vt_err)

This technique keeps the symbol declaration and the code block in the same file. The flag
vt_not_def is used to make sure that the declaration is called only once. The disadvantage is that
one has to look after the right symbol code values (When a symbol code is used twice the first
definition will be overwritten).

4.3.4 Instrumentation Hints

• To define or change the color of classes use the menu: Preferences / Activities / Colors.
• An instrumented program can be used without Vampirtrace by linking the dummy library

libVTnull.a found in the same location as libVT.a

• The C preprocessor may be exploited to switch between instrumented and non instrumented
versions of the code.

• Vampir overhead:
Compare the timings of original, MPI instrumented, User + MPI instrumented and “vtnull”
versions of matmul. Check the (expectedly low) overhead produced by the different scenarios.

Generation of Tracefiles (Matrix Multiply)

36

4.4 Summary

• The easiest method of generating a Vampir tracefile is to link the program with the Vampirtrace
library. All MPI activities are traced automatically.

• User defined tracing activities are gained by inserting certain Vampirtrace API calls in the source
code. These calls can be invalidated by aid of a dummy library.

Tracing “Real World” Programs

37

5 Tracing “Real World” Programs
Using Vampir for realistic large scale applications may introduce problems that have not been
discussed so far. One limiting factor is the availability of disk space on the parallel production machine
and the workstation where the Vampir GUI is supposed to run. Here are some hints of how to handle
such difficulties, if occur.

• Careful instrumentation
For a systematic instrumentation a conventional profiler may first be used to identify the routines
that consume most of the time. It is a good starting point to instrument the top level routines first.
After having achieved a good survey over the program’s time evolution interesting details may be
instrumented additionally.

• Suspend tracing
The most direct way to limit the tracefile size is to suspend tracing for non interesting sections of
the program. By a call of the Vampirtrace API routine vttraceoff(), all tracing is suspended
until resumption by a call of vttraceon(). It is often a good idea to suspend tracing of the
initialization phase as it was done in the LU example.

• Configuration file
There is another way of tracefile size reduction with no source code changes and recompilation. A
configuration file can be used to filter activities or symbols. The user can control the tracefile
generation by certain commands in the configuration file. The file is used when an appropriate
environment flag is set. An example is given now.

5.1 Using a Configuration File

A configuration file (e.g. vt_config) is used by Vampirtrace when the environment variable
VT_CONFIG is set:

export VT_CONFIG=vt_config ! ksh

setenv VT_CONFIG vt_config ! csh

The file vt_config may be named by an absolute or a relative path. A configuration file example is as
follows:

this is a comment
redirection of the tracefile to the /tmp directory
/tmp may provide more disk space
Tracefile name = /tmp/matmul_16.bpv
Logfile-name /tmp/matmul_16.bpv
suspend all MPI tracing
Activity MPI off
Single MPI symbols can be reactivated
Symbol MPI_Isend on

The configuration file shown above will change the default tracefile name e.g. matmul.bpv into
/tmp/matmul_16.bpv. It will suppress all MPI tracing other than MPI_Isend. Consult the
Vampirtrace User’s Guide for more information about the configuration file.

Vampir – Tips & Tricks

38

6 Vampir – Tips & Tricks

6.1 Filter Arbitrary Symbols

To get rid of unwanted symbols from all Vampir displays regardless of their associated activity, invoke
the symbol grouping dialog by selecting Preferences / Activities / Symbol Grouping from the main
menu. Select the unwanted symbol and chose “(none)” from the drop down box at the bottom of the
window. Now the remapped symbol will be suppressed in all Vampir displays. This means also that all
statistics are recalculated without the remapped symbols.

This is only a temporary mapping for the current Vampir session. To make it permanent it is necessary
to rewrite or save the actual tracefile. First verify that Vampir is in “Expert Mode”. Select File /
Save Tracefile from the main menu, activate the checkbox “Mod. Symbols”, chose a filename and
click on the OK button to save the trace data.

6.2 Highlight Messages in the Timeline

To highlight message lines inside the timeline display open the message style dialog via
Preferences / Messages / Display Style and define communicator, tag ranges and how to draw the
affected message lines. To emphasize long messages set the value in the Big Msg Limit input field to
a certain value (in bytes) so that all bigger messages are drawn with bold lines. These settings are
saved in the Vampir configuration file for future sessions.

6.3 Reduce Default Timeline Display Range

Analysing really huge tracefiles could be annoying because the visualisation of all trace events inside
timeline view takes a while. If you already know that only a particular interval is valuable, you can
configure Vampir to show only these interval by default. To set the interval open the timeline
preferences dialog Preferences / Displays / Timelines and select “Range” from the radio button
group “Default Timeline Range” and enter the start and end of the interval into the “from” and “to”
input boxes in the chosen units (clocks or seconds) and click on the “Apply” button to activate these
settings. Now if you re-open the timeline view, only the selected range is displayed.

Inside the timeline window the keyboard shortcut A or context menu Window Options / Adapt
switches back to the complete traced range, and the shortcut D or context menu Window Options /
Default goes back to the chosen timeline range.

Please keep in mind that Vampir will save these settings in the global configuration file. So in
future sessions the selected display range will lead to irritating displays especially in
conjunction with different tracefiles.

6.4 Use the Parallelism Display inside Global Timeline

To get a first impression of the degree of parallelism in your traced program activate the integrated
parallelism display inside the timeline window. To activate the integrated parallelism display select
Components / Parallelism Display from the timeline context menu. By default the activity MPI will be
shown. To change the visualised activity open the timeline window configuration dialog via
Preferences / Displays / Timeline and enter a desired activity into the textfield named Parallelism
Activity. After pressing the Apply button the new activity will be used inside timeline view.

Vampir – Tips & Tricks

39

6.5 Select Multiple Processes inside Timeline View

To select multiple process bars which are disposed in a row move the mouse pointer to the right or left
side of the timeline window, either above the process labels or activity legend, so that the mouse
pointer is beside the first process you wanted to select. Then press the left mouse button. While
keeping the button pressed, drag the mouse to the last process you wanted to select. Vampir will draw
a black line and when you release the mouse button all processes aside your line will be selected.

To deselect a single process click on the appropriate process bar with the left mouse button. To
deselect all processes click with your middle mouse button inside timeline window.

