TDDC73
Lecture 4

Outline

Building components/api
Mini-project

Testing

Grade 5

Advanced API Designh &
Component Architecture

Implementing Reusable Widgets for Modern Ul SDKs

The SDK Mindset

Building for Developers

{

— >
\‘ @)]
x’@v‘

Abstraction —— Flexibility - Safety

Hiding complexity behind The user (developer) needs to Preventing invalid states through
clean interfaces. control content and style. type safety and constraints.

Principle 1: Clarity & Affordance

Your APl is the “User Interface” for the developer. It should be intuitive and self-documenting.

- ;
Bad API %) Good API

new Button("Click Me",

\ n ® "
(/_\e) Button(label: "Click Me",
true, (‘Q@ enabled: true,
OxFF0000 o \’ color: Colors.Red
\

) N)

Naming: Use standard verbs/nouns. onClick is better than doAction. isVisible is better than show
(boolean vs verb).

Defaults: Use ‘Convention over Configuration'. A button should look like a button without 20 parameters.

OAUIRGY

Predictability: If a prop is called color, it should change the background, not the text.

Principle 2: Composition > Inheritance

The "Has-A" Relationship

In modern frameworks (React, Flutter, Compose), we avoid inheriting from a

BaseButton. Instead, we compose smaller primitives.

> Flexibility: A Card isn't a special type of View; it's a Container that has a

shadow and a border radius.

’ The Slot Pattern: Don't limit your component. A Button shouldn't just
take a String label. It should take a Child widget. This allows users to put

lcons, Rows, or Images inside your button.

Composition
Over Inheritance

A shift in perspective for building scalable, maintainable Ul systems.

The Core Paradigm Shift

Inheritance ("Is-a") Composition ("Has-a")
Models relationships as a strict hierarchy. A Models relationships by combining smaller,
specialized class is a type of a general class. independent parts. A class has a set of behaviors

or components.

class RedButton extends Button 1 Button({ icon, label }) {

return <Box>{icon} {label} Box>;

The problem with object-oriented languages is
they've got all this implicit environment that
they carry around with them. You wanted a

banana but what you got was a gorilla holding
the banana and the entire jungle.

— Joe Armstrong, Creator of Erlang

The Composition
Solution

Think of Composition like LEGO blocks.

You don't extend a "Brick" to make a "Wall". You

compose multiple Bricks together.

This allows you to build complex structures from
simple, interchangeable, and reusable atomic units

without worrying about a strict ancestry.

Analogy: The Car

How do you build a car?

Inheritance: Car extends Vehicle. SportCar extends

Car. RedSportCar extends SportCar.

Composition: A Car has an Engine. A Car has

Wheels. A Car has a PaintJob.

If you want to change the engine, you just swap the
engine component. You don't need to redefine the entire

taxonomy of the vehicle.

Adopted by Modern Frameworks

Modern libraries like React, Vue, and Flutter are built

entirely on the principle of composition.

React: "Components" compose other components e

via props.children.

4 Flutter: "Widget composition" is the core

architecture. Everything is a widget inside a widget.

Why It Wins for Ul

X

Flexibility

Combine behaviors dynamically
at runtime. You aren't locked
into a structure defined at

compile-time.

Reusability

Small, focused components
(like a specialized Avatar) can
be reused anywhere, inside any

container.

y <

Maintainability

Testing small, independent
components is easier than
testing a monolithic class with a

massive inheritance chain.

Best Practices

¥ Start Flattened: Avoid extending classes unless absolutely necessary. Default to creating
a new component that uses others.

¥ Use Hooks/Mixins: Share logic (state, effects) through composition primitives (like React
Hooks) rather than base classes.

¥ Keep Components Atomic: A component should do one thing well. If it grows too large,
break it down.

v

Inversion of Control: Pass children or render props into components so the parent

decides what to render, while the child decides how to wrap it.

The Component Contract

)
Props (Input)

Data passed down from the
parent. These should be
immutable. Changes in

props trigger a re-render.

label, isEnabled, style

‘

Events (Output)

How the component
communicates up. Use
callbacks or lambdas. Never

modify parent state directly.

onClick(), onValueChange(v)

[\
Slots (Children)

Content projection. The
ability to wrap other
components. This is critical

for generic containers.

children, content, builder

Implementing Layouts: The Hard Part

For Grade 5, you must implement a layout (e.g.,
VStack). This requires understanding the Layout
Protocol.

> 1. Constraints Down: The parent tells the child:

"You can be at most 300px wide."

> 2.Measure: The child calculates its desired size

based on its content and the constraints.

> 3.Size Up: The child reports its size back to the

parent.

> 4.Place: The parent positions the child (X, y).

e .
Parent —_ S—— Parent
<«— Max width —» pre
Size: (x.y)
¢ ‘ ¢ 200x100
~ z =) d 2 R (.
Child Child Child
oy e ['
| 8’8‘ > -
;‘6‘1’ Messure || o CJ
v — o o
\. Y, - _J \. 7
2. Measure 3. Size Up 4. Place
The child calculates its The child reports its The parent positions
desired size based on size back to the the child (x, y).
its content and the parent.

constraints.

State: Controlled vs. Uncontrolled

State Hoisting
To make a component reusable, it should often be

stateless (Controlled).

(

o - —
[—

._

=l
i e

S
- L

Uncontrolled (Bad for reuse): A toggle switch
that manages its own isOn state. The parent can't
force it to turn off.

)
aE

isOn (prop)

Parent
/ Truth

F

onToggle (event)

Controlled (Good):
The switch takes isOn as a prop and emits
onToggle. The parent owns the truth.

?
".

?

’

Case Study: The "Smart" Button

: : 3. State o , P 4. Slot
Implementing the Logic ol staielProseeil kT Renders props.child

. : to drive visual feedback S Ice theicontainer.
How do we build a button from scratch using (scale/opacity).

low-level primitives? b

1 Container: A simple box (View/Div) for structure. 7= Ry # \’ ’

2 Gesture Detector: Wraps the box to catch raw 7 - :

pointer events. - L h U _ » Smart Button
3. State: Internal state isPressed to drive visual ~ 10 PN =
feedback (scale/opacity). : \\ =

4 Slot: Renders props.child inside the container.

S\ X 4. slot

1. Container \ "1 Renders props.child
A simple box (View/Div) T AN “ inside the container.

for structure.

Low-Level Drawing & Interaction

R4 b S

~
The Canvas Gesture Detection Hit Testing
For custom shapes that Raw input handling involves Determining which
aren't just rectangles, you tracking the pointer lifecycle. component receives the
use the Canvas API. This is onDown -> onMove -> onUp/onCancel event. Usually handled by
"Immediate Mode" the framework's layout tree.
rendering.

drawCircle(), drawLine(), drawPath()

TDDC73 Mini Project

A Guide to Achieving Grade 3

Building Your Own Interaction SDK

What is the Project?

In the 2025/2026 curriculum,. It is no just about building an app; it is about architecture. You will

create a Reusable Mini SDK and a corresponding Example Application.

Grade 3 Requirements

<
==

The Library

Create a standalone library
containing at least two high-

level interaction patterns.

O
The App

Build a functioning example
application that imports and

uses your library.

V4
Functionality

The code must work, be bug-
free, and clearly demonstrate

the interaction patterns.

Architecture: Library vs. App

Separation of Concerns

The core challenge for Grade 3 is architectural separation.

* The Library: Contains generic, reusable logic (e.g, "A
Carousel”). It knows nothing about your specific data
(e.g. "Sushi Menu").

" The App: Consumes the library and provides the

specific context and data.

What is an ‘Interaction Pattern’?

Not Basic Widgets

g

(inpur)

{ Button

A '‘Button’ or 'Input’ is too simple. These are
low-level widgets provided by the OS.

~N

a

_

High-Level Patterns

o—-0-0—_—-

18 ==

Complex, stateful components that manage
their own behavior. Think 'Carousel’,
‘Accordion’, ‘Wizard', or 'Swipe-to-Delete List'.

Example 1: The Carousel

A classic pattern

(.

A classic pattern suitable for Grade 3.

e Internal State: Tracks the currentindex.

e Props: Accepts an array of items
(images/views).

e Interaction: User swipes or clicks
arrows to change the visible item.

. Key: The Carousel handles the transition
Qloglc the App provides the images.

Example 2: The Accordion

(

A classic pattern.

Behavior
« A list of headers where clicking one expands its
content while optionally collapsing others.

Why it works for Grade 3
« It requires managing state (which ID is open?)
and animation (expanding height), making it a
perfect candidate for a high-level pattern.

Section 3

Project Structure
Organizing Your Code o =

Your repository should clearly | Beposiion '

distinguish between the SDK and the
Example App. Do not mix them.

e /sdk or /lib: Your reusable code .{ Reusable | { Demo Applcation |

Components J

=% goes here. No hardcoded app data! |\ e ﬂ { Spestiviens
\ e /example or /app: The demo : | - App0ata

\Kapplication that imports from ../sdk. | No Hardcoded Data | imports from./sdk | |

/%/\ \ —_———
‘\ \\ .\I \ ‘l.‘

S TSN

Flexibility

Don't hardcode colors or sizes. Allow the

Data Agnostic

Your component should accept generic data.
developer to pass them as props. Use ‘props.data’ or ‘children’ instead of fetching

specific URLs inside the library.

API Design: Events & Callbacks

R — S

Communicating Upwards Example: Handling the Event

Event / Callback
Smart App

// Good Pattern: App handles the logic
<MyComponent onMove={(index) => {
console.log("User moved to", index);

+r />

Your library components are "dumb”
about the business logic. They notify the
"smart" app when things happen.

Use callback functions (events) to signal
user actions.

Recommended Workflow

G Scaffold Q Draft 0 Verify
Set up the folder Build the component Move the logic to the Import it back into the
structure with separate inside the App first to Library folder. Replace App. Does it still work?

Library and App test functionality. hardcoded data with Is it generic?

folders. props.

Documentation Matters

E README.md: Even for Grade 3, you must explain how to use your library.
EE Imagine you are handing this to another developer. Clear documentation is
= often the difference between a confusing project and a passing grade.

4 ——)

v= Props List

Explain what configuration
options are available.

Installation

How to run the example.

@ Usage

Code snippets showing
how to import and use
your components.

Common Grade 3 Pitfalls

Tight Coupling

L

Ce=)

I|\

Tight Coupling
Mistake: Importing "App" files
into your “Library”. The Library

must never depend on the App.

Hardcoded Data
Hieon|
| props |

Hardcoded Data

Mistake: The Carousel

component fetches "sushi.json"

internally. It should accept

data via props.

Broken State

N74. .18

AD 71N>

Broken State

Mistake: The component

works once but fails if you
navigate away and back. Test

the lifecycle!

Submission Checklisti s

\-
//' f “ww

Ready to Build?

This project is your chance to practice real-world

software architecture.

Focus on creating clean, reusable interfaces. A well-
designed library is a powerful tool in any

developer's portfolio.

Good luck!

SNEIRELCEEVE
v Design APIs that are declarative, predictable, and composable.
v Separate Concerns: Layouts handle position; Leaf nodes handle drawing.
v Hoist State to make components reusable and testable.

v Test the Contract: Your Ul tests should verify that props correctly update

the view and events are fired.

Quality Assurance:
Ul Testing vs. Unit Testing

Strategies for Robust Interaction Programming

The Testing Spectrum

</>Unit Testing

Testingindividual functions or classesin
isolation. It verifies logic, algorithms, and

data transformations.
"Does the calculateTotal() function return the right

number?"

[UI Testing

Testingthe application as a black box
through the userinterface. It verifies

workflows, rendering, and integration.
"Cantheuserloginandsee the dashboard?"

Unit Testing: The Foundation

o

Characteristics

®

Fast:

Runs in milliseconds.

Isolated:

No database, no
network, no screen.

___.:/—*7'

A
—-\(

Precise:
When it fails, you know
exactly which line of
code is broken.

~)
/
|’/ O

I —

Ul Testing: The User Perspective

Characteristics

— .
e ———

Integrated:
Tests the real app
runningon a
device/simulator.

N~ ———

Slow:
Needs to boot the app,
wait for animations,
etc.

Broad:

Verifies that database,
API, and Ul all work
together.

» ‘ ~

The Testing Pyramid

Structure your Strategy

Because Ul tests are slow and
expensive to maintain, they
should be the tip of the

pyramid, not the base. 20% Integration Tests
Component interaction.

70% Unit Tests

10% UI/E2E Tests

Critical user journeys.

L —

Fast feedback loop.

— '

Deep Dive Comparison

Feature

Scope

Speed

Environment

Fragility

Cost

Unit Testing

Single Function/Class

Milliseconds

Virtual /Node.js

Low (Stable)

Cheap

Ul Testing

Full Application Flow

Seconds to Minutes

Real Device /Browser

High (Breaks on Ul changes)

Expensive

The Challenge: Flakiness

Why do Ul Tests fail?

Environment:
A system popup covers
the screen.

Timing:
Test tries to click

before the buttonis

drawn. >
False Negative
—— X The code is fine, but the test failed 3
! 3 i because of lag.
| | CC— -2 \
’(2-() 1 \ S RS /
Network: Animations: N
APl call takes SOOms Elementis moving while ,

longer than usual. test tries to click.

Anatomy of a Ul Test

Q b

1. Find 2. Act
Locate the elementonthe Simulate a userinteraction.
tester.tap(button)
screen.

find.byText("Login")

&

3. Assert

Verify the resulting state.

expect(home) .toBeVisible()

Locators: Finding Elements

How you find elements determines how brittle your test is.

v'Good Locators
XBadLocators

Relying onuser semantics.
Relying onimplementation details.

* getByText("Submit”)
* xpath: /div[2]/div[4]/button
. * getByRole("button”, name: "Submit")
css: .btn-primary-blue
* testID: "submit-order-btn"
Breaks if you change layout or styling.
Resilient to refactoring.

The "Wait" Problem

Never Sleep

Using sleep(1000) isbad practice. It slows down

testsandisn't reliable (what if it takes 1001ms?).

Use Polling/Await

Modern frameworks provide mechanisms to wait

untila conditionis met.

// Flutter await tester.pumpAndSettle(); // Playwright / JS
await expect(loc).toBeVisible(); // " Avto-retries for 5s

Synchronization

The test runner must synchronize with the Ul
thread to know when animations/requestsare

done.

Page Object Model (POM)

———

Design Pattern for Maintainability | ﬁl o

$v% Don't scatter locators (selectors) across every 2™)| eaceoseer [N @

,,,,,,,,,,
,,,,,,

test file. _~ :
&2 Create aclass that represents a Page. The test 4
interacts with the class methods, not the

HTML/Widgets directly.

- LOGIN_PAGE

P —— \
o F;

%5 Benefit: If the 'Login’ button ID changes, you

only fix it in one place (the Page Object), notin
50 tests.

Hermetic Testing

The Problem The Solution: Mocking

If your Ul test hits Intercept network requestsandreturnfake, predictable data.

thereal backend

server. it will be intercept('GET', '/api/user', { body: { name: "Test User" } });

slow and flaky

(what if the server This makes Ul tests Deterministic.

isdown?).

Summary Checklist

Unit Testing

VY Testlogicinisolation
vY'"Mock everything else

Y'Run on every commit

Ul Testing

VTest critical userjourneys
V'Useresilient locators

Y Handle async/animations

Why Ul Testing?

Ul tests verify that the visual interface behaves

as expected when a user interacts with it.

Catch Regressions: Ensure new code

doesn't break existing flows.

User Confidence: Verify the critical paths

(Login, Checkout) work.

Documentation: Tests act as live

documentation for feature behavior.

The Frameworks

|

Flutter

Uses flutter_test.

Tests run directly in the Dart VM.

Extremely fast and deterministic.

@

React Native

Uses RNTL & Jest.

Simulates the component tree.

Focuses on user-centric queries.

AR

Jetpack Compose

Uses ui-test-junit4.

Interacts with the Semantics tree.

Runs on device or emulator.

Flutter Testing

Flutter tests interact with a virtual widget tree.

Finder find.text(), find.byType()
Interaction tester.tap(), tester.enterText()

Lifecycle tester.pump() (advances one frame)

// The key concept is the "WidgetTester"
testWidgets('My Test', (tester) async {
// 1. Build the widget
await tester.pumpWidget(MyApp());

// 2. Find widgets
final titleFinder = find.text('Welcome');

// 3. Verify
expect(titleFinder, findsOneWidget);
});

Flutter: Interaction Example

testWidgets('Add item to list', (WidgetTester tester) async {
// 1. Render UI

await tester.pumpWidget(const TodoListApp());

// 2. Simulate User Input
await tester.enterText(find.byType(TextField), 'Buy Milk');
await tester.tap(find.byIcon(Icons.add));

// 3. Rebuild (Important in Flutter!)
await tester.pump();

S/ 4. Assertion

expect(find.text('Buy Milk'), findsOneWidget);
DK

Note the explicit await tester.pump() required to process the state change.

React Native Testing

Relies on React Native Testing Library (RNTL)
running on Jest.

Render Creates a virtual DOM for testing.

Screen Global object to query elements.

FireEvent Simulates press, changeText, scroll.

import { render, screen } from '@testing-
library/react-native';

test('renders correctly', () = {
/7 1. Render
render(<WelcomeScreen />);

/7 2. Query & Assert
const header = screen.getByText('Welcome');
expect(header).toBeTruthy();

1);

RNTL: Interaction Example

test('submits form data', () = {
const onSubmit = jest.fn();
const { getByText, getByPlaceholderText } = render(
<Form onSubmit={onSubmit} />

);

// 1. Input Text
fireEvent.changeText(getByPlaceholderText('Username'), 'JohnDoe');

// 2. Press Button
fireEvent.press(getByText('Submit'));

// 3. Verify Function Call
expect(onSubmit).toHaveBeenCalledwWith({ username: 'JohnDoe' });

});

RNTL encourages testing inputs and outputs (user perspective) rather than internal state.

Jetpack Compose

Tests are strictly Ul-based, interacting with the
Semantics Tree.
Rule createComposeRule() sets up the

environment.

Finders onNodeWithText, onNodeWithTag.

Actions performClick, performTextlnput.

aget:Rule
val rule = createComposeRule()

aTest

fun myTest() {
// 1. Set Content
rule.setContent { MyApp() }

// 2. Assert
rule.onNodeWithText("Welcome")
.assertIsDisplayed()

Compose: Interaction Example

aTest
fun verifyCounterIncrement() {
// 1. Load the UI
rule.setContent { CounterScreen() }

// 2. Verify Initial State
rule.onNodeWithText("Count: 0").assertIsDisplayed()

// 3. Perform Action
rule.onNodeWithContentDescription("Increment Button")

.performClick()

// 4. Verify New State
rule.onNodeWithText("Count: 1").assertIsDisplayed()

Compose tests sync automatically with the Ul clock, reducing the need for manual waits.

Key Differences

Feature Flutter React Native Jetpack Compose

Environment Headless Dart VM Node / Jest (JSDOM) Android Device / Emulator

Sync/Async Async (await pump) Mostly Sync (some Async) Sync (Auto-waiting)

Selection Widget Finder Queries (Text, Role) Semantics Matchers

Primary Tool flutter_test @testing-library/react-native ui-test-junit4

Best Practices

W Test User Behavior: Query by Text or
Accessibility Label, not by internal

implementation details.

W Avoid Flakiness: Don't use hardcoded sleep
timers. Use the framework's synchronization

(pump, findBy).

% Page Object Model: If your tests get
complex, create "Robot" classes to abstract

the interaction logic.

¥ Good Finder
onNodeWithText("Sub

mit")

Bad Finder
childAt(3).childAt(0)

Grade 5:
Build Your Own SDK

How to think like a Framework Architect

The Mental Shift

©The Consumer Mindset A:The Architect Mindset

Normally, you think: Ineeda button.” You grab a pre- Now, you think: “Ineed a distinct region of the screen

, : : hatinter ints i
made component. You donit care how it draws itself thatintercepts touch events and repaints itself when

or how it knows it was clicked. pressed.

You stop using Widgets and start using Primitives.

Your Toolbox (The Primitives)

.«.
i STRICTLY FORBIDDEN: High-level widgets (Scaffold, Column, e I8
n=—J Card, etc.)are OFF-LIMITS. You MUST use primitives. / \
’ =
FLUTTER REACT NATIVE COMPOSE

’/ DRAW I CustomPaint / Canvas] (View (StyleSheet)

@b TOUCH [GestureDetector } [Pressable

{Canvas / DrawScope]

[Modifier.pointerInput

[Layout Composable j

Gy G S

..:l. LAYOUT LCustomMultiChildLayoﬂ t/iew (Flexbox)

The Widget Tree

Everythingis a Node

Your SDK is essentially a tree management system.

> Leaf Nodes: The Ulcomponents (Button, Label).
They draw pixels.

- Branch Nodes: The Layouts (VStack, Padding).
They don't draw; they calculate positions for their

children.
> Root Node: The entry point of your app.

f{ rooT NoDE |
W\ (Entry Point) /J
8 \ ,' /",

BRANCH NODES

’ . (VStack, Padding) £) ‘

Text Label Text Label Text Label Text Label
S~ | | S EARNODES TRRELS! |

(Button, Label)

The Layout Protocol: Constraints

i ==ac=--

.{

-
;
|

i

1. Constraints Down 2. Sizes Up 3. Position Set

Layout is a negotiation. The The child calculatesits needs The parent receives the size,
parent tells the child: "You based on the constraints. decidesonan(X,Y)

canbe as smallas O, but no “Okay, | have text that is 50px coordinate, and places the
biggerthan 300px." wide, solneed 50px." child.

Never assume asize. Always
respect the incoming The child reports this size

constraints. back to the parent.

Visualizing the Pass

The "Single Pass" Rule

Efficient Ul frameworks do layoutin O(n). You

traverse the tree down to pass constraints, and up to

pass sizes.

" ParentWidth = max ChildWidths
ParentHeight = ¥ ChildHeights

]

CONSTRAINTS
~ (Down)

Deep Dive: Implementing VStack

VStack {
Text("Always visible")

if showDetails {
Text("Details")
Text("More information")

}

Text("Also always visible")

}

The Logic

AVertical Stackisjust aloop.

1 Keep track of ayOffset (cursor).

2 Telleachchildit hasinfinite vertical space, but

limited width.

3 Afterthe child measuresitself, placeit at the

current yOffset.

4 Increment yOffset by the child's height.

The "Child" Slot

Yourlayout components must be generic. Do not hardcode "Button” inside your Stack.

OBad v Good

Hardcoding children makes the component ,
Acceptanarray of any widget type (Nodes).

useless foranything else.

VStack(children: [Widget])
VStack(Button, Button)

Handling Interaction

The Event Loop

How does a "Button" know it's clicked?

1 HitTest: Whenthe screenis touched, the T 4
framework checks whichnodes overlap that | |H]:$ ___________
coordinate (z-index matters!). - ;'4% | _
@
2 Dispatch: The eventis sent to the top-most ‘ [v—f,,_ﬁ] (i 12 @@ uw%

node.

3 State Update: The node setsisPressed =true.

4 Re-render: The node requestsa repaint to

show the "pressed" color.

Common Pitfalls

C

Infinite Layout Loops

Parent asks Child forsize »
Child asks Parent for size >

Parent asks Child... Crash.

Fix: Ensure one direction of
constraints (Down) and one

direction of sizing (Up).

~

v'

Hit Test Failures

Buttons not clicking? You
might be drawing outside
your bounds, or a transparent
containeris sitting ontop of

your button.

4
4
Coordinate confusion

Remember: (0,0)is usually
relative to the Parent, not the
Screen. Transform
coordinates when moving

downthe tree.

Submission Checklist

> 2UlComponents: (e.g., Button, Card). Must

use Canvas/View primitives.

> 2Llayouts:(e.g., VStack, HStack). Must

implement the measure/place protocol.

> Example App: Aworking app thatimports
your library and builds a Ul.

> No High-Level Widgets: ‘Scaffold or

‘Column” found inyourlibrary code = Fail.

Image Sources

https://cdn.processon.io/admin/knowledge/article_content_img/67ecf9cf45b96a5aedca958c.png

Source:

https://solace.com/wp-content/uploads/2023/04/event-mesh-as-architectural-pattern_pic-05.png

Source:

https://media.geeksforgeeks.org/wp-content/uploads/20240618105149/User-Interface-Design-Infograph.webp

Source:

https://miro.medium.com/1*Hno_QgZ5umpSDdhkzV96Aw.png

Source:

https://cdn.prod.website-files.com/64e895a2f8733943c6d0ddef/65ae4850adc11b901b05fe95_Code % 20Snippets % 20Ul % 20Element % 20 - % 20uinkits.svg

Source:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

