
TDDC73
Lecture 4

Outline

• Building components/api

• Mini-project

• Testing

• Grade 5

Advanced API Design &
Component Architecture

Implementing Reusable Widgets for Modern UI SDKs

Principle 2: Composition > Inheritance

The "Has-A" Relationship

In modern frameworks (React, Flutter, Compose), we avoid inheriting from a

BaseButton. Instead, we compose smaller primitives.

Flexibility: A Card isn't a special type of View; it's a Container that has a

shadow and a border radius.

The Slot Pattern: Don't limit your component. A Button shouldn't just

take a String label. It should take a Child widget. This allows users to put

Icons, Rows, or Images inside your button.

Composition
Over Inheritance

A shift in perspective for building scalable, maintainable UI systems.

Inheritance ("Is-a")

Models relationships as a strict hierarchy. A

specialized class is a type of a general class.

Composition ("Has-a")

Models relationships by combining smaller,

independent parts. A class has a set of behaviors

or components.

class RedButton extends Button

// Inherits all Button behavior

Button icon label

return Box Box

The Core Paradigm Shift

The problem with object-oriented languages is

they've got all this implicit environment that

they carry around with them. You wanted a

banana but what you got was a gorilla holding

the banana and the entire jungle.

— Joe Armstrong, Creator of Erlang

"

The Composition
Solution

Think of Composition like LEGO blocks.

You don't extend a "Brick" to make a "Wall". You

compose multiple Bricks together.

This allows you to build complex structures from

simple, interchangeable, and reusable atomic units

without worrying about a strict ancestry.

How do you build a car?

If you want to change the engine, you just swap the

engine component. You don't need to redefine the entire

taxonomy of the vehicle.

Inheritance: Car extends Vehicle. SportCar extends

Car. RedSportCar extends SportCar.

Composition: A Car has an Engine. A Car has

Wheels. A Car has a PaintJob.

Analogy: The Car

Flexibility

Combine behaviors dynamically

at runtime. You aren't locked

into a structure defined at

compile-time.

Reusability

Small, focused components

(like a specialized Avatar) can

be reused anywhere, inside any

container.

Maintainability

Testing small, independent

components is easier than

testing a monolithic class with a

massive inheritance chain.

Why It Wins for UI

Start Flattened: Avoid extending classes unless absolutely necessary. Default to creating

a new component that uses others.

Use Hooks/Mixins: Share logic (state, effects) through composition primitives (like React

Hooks) rather than base classes.

Keep Components Atomic: A component should do one thing well. If it grows too large,

break it down.

Inversion of Control: Pass children or render props into components so the parent

decides what to render, while the child decides how to wrap it.

Best Practices

The Component Contract

Props (Input)

Data passed down from the

parent. These should be

immutable. Changes in

props trigger a re-render.

label, isEnabled, style

Events (Output)

How the component

communicates up. Use

callbacks or lambdas. Never

modify parent state directly.

onClick(), onValueChange(v)

Slots (Children)

Content projection. The

ability to wrap other

components. This is critical

for generic containers.

children, content, builder

Low-Level Drawing & Interaction

The Canvas

For custom shapes that

aren't just rectangles, you

use the Canvas API. This is

"Immediate Mode"

rendering.
drawCircle(), drawLine(), drawPath()

Gesture Detection

Raw input handling involves

tracking the pointer lifecycle.

onDown -> onMove -> onUp/onCancel

Hit Testing

Determining which

component receives the

event. Usually handled by

the framework's layout tree.

TDDC73 Mini Project
A Guide to Achieving Grade 3

Building Your Own Interaction SDK

What is the Project?

In the 2025/2026 curriculum,. It is no just about building an app; it is about architecture. You will

create a Reusable Mini SDK and a corresponding Example Application.

Grade 3 Requirements

The Library

Create a standalone library

containing at least two high-

level interaction patterns.

The App

Build a functioning example

application that imports and

uses your library.

Functionality

The code must work, be bug-

free, and clearly demonstrate

the interaction patterns.

Architecture: Library vs. App

Separation of Concerns

The core challenge for Grade 3 is architectural separation.

• The Library: Contains generic, reusable logic (e.g., "A

Carousel"). It knows nothing about your specific data

(e.g., "Sushi Menu").
• The App: Consumes the library and provides the

specific context and data.

Ready to Build?

This project is your chance to practice real-world

software architecture.

Focus on creating clean, reusable interfaces. A well-

designed library is a powerful tool in any

developer's portfolio.

Good luck!

Final Takeaways

Design APIs that are declarative, predictable, and composable.

Separate Concerns: Layouts handle position; Leaf nodes handle drawing.

Hoist State to make components reusable and testable.

Test the Contract: Your UI tests should verify that props correctly update

the view and events are fired.

Quality Assurance:
UI Testing vs. Unit Testing

Strategies for Robust Interaction Programming

Unit Testing

Testing individual functions or classes in

isolation. It verifies logic, algorithms, and

data transformations.
"Does the calculateTotal() function return the right

number?"

UI Testing

Testing the application as a black box

through the user interface. It verifies

workflows, rendering, and integration.
"Can the user log in and see the dashboard?"

The Testing Spectrum

Feature Unit Testing UI Testing

Scope Single Function/Class Full Application Flow

Speed Milliseconds Seconds to Minutes

Environment Virtual / Node.js Real Device / Browser

Fragility Low (Stable) High (Breaks on UI changes)

Cost Cheap Expensive

Deep Dive Comparison

1. Find

Locate the element on the

screen.

2. Act

Simulate a user interaction.

3. Assert

Verify the resulting state.

Anatomy of a UI Test

How you find elements determines how brittle your test is.

Bad Locators

Relying on implementation details.

Breaks if you change layout or styling.

Good Locators

Relying on user semantics.

Resilient to refactoring.

• xpath: /div[2]/div[4]/button

• css: .btn-primary-blue

• getByText("Submit")

• getByRole("button", name: "Submit")

• testID: "submit-order-btn"

Locators: Finding Elements

Never Sleep

Using sleep(1000) is bad practice. It slows down

tests and isn't reliable (what if it takes 1001ms?).

Use Polling/Await

Modern frameworks provide mechanisms to wait

until a condition is met.

Synchronization

The test runner must synchronize with the UI

thread to know when animations/requests are

done.

The "Wait" Problem

The Problem

If your UI test hits

the real backend

server, it will be

slow and flaky

(what if the server

is down?).

The Solution: Mocking

Intercept network requests and return fake, predictable data.

This makes UI tests Deterministic.

Hermetic Testing

Summary Checklist
Unit Testing UI Testing

Test logic in isolation

Mock everything else

Run on every commit

Test critical user journeys

Use resilient locators

Handle async/animations

Why UI Testing?

UI tests verify that the visual interface behaves

as expected when a user interacts with it.

Catch Regressions: Ensure new code

doesn't break existing flows.

User Confidence: Verify the critical paths

(Login, Checkout) work.

Documentation: Tests act as live

documentation for feature behavior.

The Frameworks

Flutter

Uses flutter_test.

Tests run directly in the Dart VM.

Extremely fast and deterministic.

React Native

Uses RNTL & Jest.

Simulates the component tree.

Focuses on user-centric queries.

Jetpack Compose

Uses ui-test-junit4.

Interacts with the Semantics tree.

Runs on device or emulator.

Flutter Testing

Flutter tests interact with a virtual widget tree.

Finder: find.text(), find.byType()

Interaction: tester.tap(), tester.enterText()

Lifecycle: tester.pump() (advances one frame)

Flutter: Interaction Example

Note the explicit await tester.pump() required to process the state change.

React Native Testing

Relies on React Native Testing Library (RNTL)

running on Jest.

Render: Creates a virtual DOM for testing.

Screen: Global object to query elements.

FireEvent: Simulates press, changeText, scroll.

RNTL: Interaction Example

RNTL encourages testing inputs and outputs (user perspective) rather than internal state.

Jetpack Compose

Tests are strictly UI-based, interacting with the

Semantics Tree.

Rule: createComposeRule() sets up the

environment.

Finders: onNodeWithText, onNodeWithTag.

Actions: performClick, performTextInput.

Compose: Interaction Example

Compose tests sync automatically with the UI clock, reducing the need for manual waits.

Key Differences

Feature Flutter React Native Jetpack Compose

Environment Headless Dart VM Node / Jest (JSDOM) Android Device / Emulator

Sync/Async Async (await pump) Mostly Sync (some Async) Sync (Auto-waiting)

Selection Widget Finder Queries (Text, Role) Semantics Matchers

Primary Tool flutter_test @testing-library/react-native ui-test-junit4

Best Practices

Test User Behavior: Query by Text or

Accessibility Label, not by internal

implementation details.

Avoid Flakiness: Don't use hardcoded sleep

timers. Use the framework's synchronization

(pump, findBy).

Page Object Model: If your tests get

complex, create "Robot" classes to abstract

the interaction logic.

Good Finder

onNodeWithText("Sub

mit")

Bad Finder

childAt(3).childAt(0)

Grade 5:
Build Your Own SDK

How to think like a Framework Architect

The Consumer Mindset

Normally, you think: "I need a button." You grab a pre-

made component. You don't care how it draws itself

or how it knows it was clicked.

The Architect Mindset

Now, you think: "I need a distinct region of the screen

that intercepts touch events and repaints itself when

pressed."

You stop using Widgets and start using Primitives.

The Mental Shift

The Logic

A Vertical Stack is just a loop.

1 Keep track of a yOffset (cursor).

2 Tell each child it has infinite vertical space, but

limited width.

3 After the child measures itself, place it at the

current yOffset.

4 Increment yOffset by the child's height.

Deep Dive: Implementing VStack

VStack {

Text("Always visible")

if showDetails {

Text("Details")
Text("More information")

}

Text("Also always visible")

}

Your layout components must be generic. Do not hardcode "Button" inside your Stack.

Bad

Hardcoding children makes the component

useless for anything else.

Good

Accept an array of any widget type (Nodes).

The "Child" Slot

The Event Loop

How does a "Button" know it's clicked?

1 Hit Test: When the screen is touched, the

framework checks which nodes overlap that

coordinate (z-index matters!).

2 Dispatch: The event is sent to the top-most

node.

3 State Update: The node sets isPressed = true.

4 Re-render: The node requests a repaint to

show the "pressed" color.

Handling Interaction

Infinite Layout Loops

Parent asks Child for size →

Child asks Parent for size →

Parent asks Child... Crash.

Fix: Ensure one direction of

constraints (Down) and one

direction of sizing (Up).

Hit Test Failures

Buttons not clicking? You

might be drawing outside

your bounds, or a transparent

container is sitting on top of

your button.

Coordinate confusion

Remember: (0,0) is usually

relative to the Parent, not the

Screen. Transform

coordinates when moving

down the tree.

Common Pitfalls

2 UI Components: (e.g., Button, Card). Must

use Canvas/View primitives.

2 Layouts: (e.g., VStack, HStack). Must

implement the measure/place protocol.

Example App: A working app that imports

your library and builds a UI.

No High-Level Widgets: `Scaffold` or

`Column ̀found in your library code = Fail.

→

→

→

→

Submission Checklist

Image Sources

https://cdn.processon.io/admin/knowledge/article_content_img/67ecf9cf45b96a5aedca958c.png

Source: www.processon.io

https://solace.com/wp-content/uploads/2023/04/event-mesh-as-architectural-pattern_pic-05.png

Source: solace.com

https://media.geeksforgeeks.org/wp-content/uploads/20240618105149/User-Interface-Design-Infograph.webp

Source: www.geeksforgeeks.org

https://miro.medium.com/1*Hno_QgZ5umpSDdhkzV96Aw.png

Source: medium.com

https://cdn.prod.website-files.com/64e895a2f8733943c6d0ddef/65ae4850adc11b901b05fe95_Code%20Snippets%20UI%20Element%20-%20uinkits.svg

Source: www.uinkits.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

