
•

•

•

•

• Introduction to machine learning

• Supervised learning, unsupervised learning, reinforcement learning

• Deep Learning

• Reinforcement learning

AI-program
written by

programmers

Computer

Knowledge added
by domain experts

Computer

General solver
written by

programmers

Training data
added by domain

experts

Computer

General
learning system

written by
programmers

Algorithmic Knowledge-based Learning-based
(Pattern-based)

Given a task, mathematically encoded via some performance metric, a
machine can improve its performance by learning from experience (data)

From the agent perspective:

2024-09-23 4

World

Input (Sensors)

Output (Actuators)

Performance Metric

Agent

• Arthur Samuel (1959). Machine Learning: Field of study that gives computers the

ability to learn without being explicitly programmed.

• Tom Mitchell (1998) Well-posed Learning Problem: A computer program is said to

learn from experience E with respect to some task T and some performance

measure P, if its performance on T, as measured by P, improves with experience E.

• Suppose your email program watches which emails you do or do not mark as spam

and based on that learns how to better filter spam.

• Experience E is Watching you label emails as spam or not spam.

• Task T is Classifying emails as spam or not spam.

• Performance P is The number (or fraction) of emails correctly classified as

spam/not spam.

2024-09-23 5

• Machine Learning is a branch of artificial intelligence that provides the
computer system the ability to progressively learn and improve its
performance on handling various tasks without being explicitly
programmed to perform all the task.

• Another definition of Machine Learning explains it as: the process of trying
to deduce unknown values from known values.

Data Learning
Algorithm

Model

Data Learning
Algorithm

Model

Linear regression

https://sebastianraschka.com/Articles/2014_intro_supervised_learning.html

https://sebastianraschka.com/Articles/2014_intro_supervised_learning.html

https://sebastianraschka.com/Articles/2014_intro_supervised_learning.h
tml

https://sebastianraschka.com/Articles/2014_intro_supervised_learning.html
https://sebastianraschka.com/Articles/2014_intro_supervised_learning.html

Classification Regression Generative

• Supervised learning

• Given input-output examples
f(X)=Y, learn the function f().

• Unsupervised learning

• Given input examples, find
patterns such as clusters

• Reinforcement learning

• Select and execute an action, get
feedback, update policy (what
action to do in which state).

https://www.techleer.com/articles/203-machine-
learning-algorithm-backbone-of-emerging-technologies/

https://www.techleer.com/articles/203-machine-learning-algorithm-backbone-of-emerging-technologies/
https://www.techleer.com/articles/203-machine-learning-algorithm-backbone-of-emerging-technologies/

T. Mitchell, M. Jordan:
“Most of the recent progress in
machine learning involves mapping
from a set of inputs to a set of
outputs.”

In unsupervised learning

• Neither a correct answer/output, nor a reward is given

• Task is to find some structure in the data

• Performance metric is some reconstruction error of patterns compared to the input

data distribution

Examples:

• Clustering – When the data distribution is confined to lie in a small number of

“clusters” we can find these and use them instead of the original representation, e.g.

bigger recommender system (news, ads, etc.)

• Dimensionality Reduction – Finding a suitable lower dimensional representation

while preserving as much information as possible, e.g. image/video compression

Recent trend: Found structure can be used to generate new data (content)!

2024-09-23 17

• Not directly applicable to the agent perspective as there is no clear way to
encode a goal or behavior

• However, the techniques can be useful as a preprocessing step in other
learning approaches

o If fewer dimensions or a few clusters can accurately describe the data,
big computational wins can be made

• It is also frequently used for visualization as smaller representations are
easier to visualize on a computer screen

• To keep this brief, we will not go into any further detail on unsupervised
learning

2024-09-23 18

2024-09-23 19

(Bishop, 2006)
Two-dimensional continuous input

• Original faces were down sampled to save space but still remain majority features.

2024-09-23 20

Remember, in Supervised Learning:

• Given tuples of training data consisting of (x,y) pairs

• The objective is to learn to predict the output y’ for a new input x’

Formalized as searching for approximation to unknown function y = f(x), given N
examples of x and y: (x1,y1), … ,(xn,yn)

Two major classes of supervised learning

• Classification – Output are discrete category labels

• Example: Detecting disease, y = “healthy” or “ill”

• Regression – Output are numeric values

• Example: Predicting temperature, y = 15.3 degrees

In either case, input data xi could be vector valued and discrete, continuous or mixed.
Example: x1 = (12.5, “cat”, true).

2024-09-23 22

Living area (x) Price (y)

2 104 399 900

1 600 329 900

2 400 369 000

1 416 232 000

… …

𝑁 training instances of the form (𝑥, 𝑦)

• Modelling assumption

The relation between housing area and price
can be described in terms of an affine function.

affine = linear function + intercept (bias)

• Learning task

Find the ‘best’ affine function – the function that minimizes the total
distance to the data points.

distance measure: mean squared error

input value

slope

predicted
output

bias

Living area (x1) # bedrooms (x2) Price (y)

2 104 3 399 900

1 600 3 329 900

2 400 3 369 000

1 416 2 232 000

… …

training set = design matrix 𝑿, target vector 𝒚

𝑿 𝒚

input matrix (N-by-F)

weight vector (F-by-1)

predicted
output

bias

N = number of training examples, F = number of features (independent variables)

• Choose parameters such that the total distance between the corresponding
hyperplane and the data points is minimal.

as measured by mean squared error

• This problem has an exact solution that can be found using the method of
least squares.

• An inexact (numerical) but more general method to solve the problem is to
use gradient descent.

model parameters target output value

predicted output value

Later, it will be convenient to divide by 2N instead of by N.

𝜽≔ 𝜽 − large value 𝜽≔ 𝜽 + small value

𝜽≔ 𝜽 − ∇MSE(𝜽) 𝜽≔ 𝜽 − ∇MSE(𝜽)

• Step 0: Start with an arbitrary value for the parameters 𝜽.

• Step 1: Compute the gradient of the loss function, ∇𝐿(𝜽).

• Step 2: Update the parameters 𝜽 as follows: 𝜽≔ 𝜽 − 𝛼 ∇𝐿(𝜽)

The parameter 𝛼 is the learning rate.

• Repeat step 1–2 until the error is sufficiently low.

‘Follow the gradient into the valley of error.’

Substituting L2 loss into the generic update rule, we get

This can be more succinctly expressed as

• For large training sets, even taking a single step in the gradient descent
algorithm will take a lot of time.

• The idea behind stochastic gradient descent (SGD) is to estimate the gradient

by computing it on a small set of samples.

def minibatches(x, y, batch_size):

random_indices = np.random.permutation(np.arange(x.shape[0]))

for i in range(0, x.shape[0] - batch_size + 1, batch_size):

batch_indices = random_indices[i:i+batch_size]

yield x[batch_indices], y[batch_indices]

• Stochastic gradient descent (SGD) provides a very general framework for
pushing model parameters towards small loss.

• SGD and its variants are probably the most widely used optimization
algorithms for deep learning.

• What is crucial for the applicability of SGD is that both the model function
and the loss function are differentiable.

One can sometimes use sub-gradient methods.

• In the case of convex loss functions such as mean squared error, gradient
descent is guaranteed to find an optimal solution.

• Most loss functions are not convex, and there is no guarantee that gradient
descent will arrive at even a local minimum.

• In practice however, neural networks work surprisingly well when trained
with stochastic gradient descent.

momentum, parameter initialisation, regularisation, …

http://www.it.uu.se/edu/course/homepage/sml/

http://www.it.uu.se/edu/course/homepage/sml/

http://www.it.uu.se/edu/course/homepage/sml/

http://www.it.uu.se/edu/course/homepage/sml/

http://www.it.uu.se/edu/course/homepage/sml/

http://www.it.uu.se/edu/course/homepage/sml/

http://www.it.uu.se/edu/course/homepage/sml/

http://www.it.uu.se/edu/course/homepage/sml/

http://www.it.uu.se/edu/course/homepage/sml/

http://www.it.uu.se/edu/course/homepage/sml/

http://www.it.uu.se/edu/course/homepage/sml/

http://www.it.uu.se/edu/course/homepage/sml/

Can be seen as searching for an approximation to unknown function y = f(x) given N

examples of x and y: (x1,y1), … ,(xn,yn)

Want the algorithm to generalize from training examples to new inputs x’, so that

y’=f(x’) is “close” to the correct answer

1. An input “feature” vector xi of examples is constructed by mathematically

encoding relevant problem data

• Examples of such (xi, yi) make up the training set

2. A model (or hypothesis) for f(x) is selected with some parameters

3. A loss function is selected that defines “closeness” to correct answers

4. The model is trained on the examples by searching for its parameters that minimize

loss on the training set (i.e. are “close” to unknown f(x))

2024-09-23 45

Want to learn f(x) = y given N examples of x and y: (x1,y1), … ,(xn,yn)

Most standard algorithms work on real number variables

• If inputs x or outputs y contain categorical values like “book” or “car”, we need to encode
them with numbers

• With only two classes we get y in {0,1}, called binary classification

• Classification into multiple classes can be reduced to a sequence of binary one-vs-all
classifiers

• The variables may also be structured as text, audio, image or video data

Finding a suitable feature representation can be non-trivial, but there are standard
approaches for the common domains

• With sufficient data, features can also be learned (deep learning, later…)

2024-09-23 46

One of the early successes of ML was learning spam filters

Spam classification example:

2024-09-23 47

Each mail is an input, some mails are flagged as

spam or not spam to create training examples.

Bag of Words Feature Vector:

Encode the existence of a fixed set of relevant

key words in each mail as the feature vector.

xi = wordsi =

yi = 1 (spam) or 0 (not spam)

Simply learn f(x)=y using suitable classifier!

Feature Exists?

“Customer” 1 (Yes)

“Dollar” 0 (No)

“Fund” 0

“Accept” 1

“Bank” 0

…. …

I. Construct a feature vector xi to be used with examples of yi

II. Select a model and train it on examples (search for a good approximation to the
unknown function)

Fictional example: Smartphone app that learns desired ring volume based on examples of
volume and background noise level

Feature vector xi = (Noise dB), yi = (Volume %)

2024-09-23 48

• Select the familiy of linear

functions:

• Train the algorithm by searching for

a line that fits the data well

…but how does ”training” really work?

• Recap: Want to find approximation h(x) to the unknown function f(x)
• As an example, let it to be the family of linear functions:

• The model has two parameters: (line slope and offset)
• How do we find parameters that result in a good approximation h?

2024-09-23 49

Three poor
linear
hypotheses

Feature vector xi = (Noise in dB), outputs yi = (Volume %)

How do we find parameters w that result in a good approximation ?

• Need a performance metric for function approximations of unknown f(x)

• Loss functions

• Minimize deviation against the N example data points from f(x)

• For regression one common choice is a sum square loss function:

• Why square loss? Negative difference is as bad as positive

• Search in continuous domains like w is known as optimization

• (if unfamiliar, see Ch4.2 Local Search in Continuous Spaces in course book AI: A
Modern Approach)

2024-09-23 50

How do we find parameters w that minimize the loss?

• Optimization approaches iteratively move in the direction that
decreases the loss function L(w)

• Simple and popular approach: gradient descent

2024-09-23 51

Negative gradient points
down in loss function

Step size (learning rate)

• Google Colab at: http://bit.ly/2maVQKY

• Run top box to install dependencies (30s), then scroll to ML Example 1

• NOTE: Need to be signed in to a Google account. Might need to save or
download workbook to run it.

http://bit.ly/2maVQKY

I. Construct a feature vector xi to be used with examples of yi

II. Select a model and train it on examples (search for a good approximation to the
unknown function)

Fictional example: Smartphone app that learns if silent mode should be on/off at different
levels of background noise and light

Feature vector xi = (Noise, Light level), yi = {“silent on”, “silent off”}

2024-09-23 53

• Again, can select the familiy of linear

functions. However, now outputs y have to

be transformed to the interval [0,1]

• Can classify new inputs according to how

close output is to 0 or 1.

• For linear models, the decision boundary

will still be a straight line.

• How to transform standard models to classification?

• Squared error does not make sense when target output discrete set {0,1}

• Could use custom loss functions for classification

• Minimize number of missclassifications (unsmooth w.r.t. parameter changes)

• Maximize information gain (used in decision trees, see book)

• However, requires specialized parameter search methods

• Instead: Make outputs probabilities [0,1] by
squashing predicted numeric outputs via sigmoid (”S”)

Pr(y=”1”|X) = g(model(x))

use soft-max (see book)

Classify as
”1”

Classify as
”0”

-∞ ∞

• Same Google Colab as before: http://bit.ly/2maVQKY

• Run top box to install dependencies (30s), then scroll down to ML
Example 2

• NOTE: May need to be signed in to a Google account

http://bit.ly/2maVQKY

Limitations

• Local optimization of loss is greedy – Gets stuck in local minima unless the loss function
is convex w.r.t. w, i.e. there is only one minima.

• Linear models are convex, however most more advanced models are vulnerable to
getting stuck in local minima.

• Care should be taken when training such models by using for example random restarts
and picking the least bad minima.

2024-09-23 56

If we happen to start in red

area, optimization will get

stuck in a bad local minima!

Advantages

• Linear algorithms are simple and computationally efficient

• For both regression and classification

• Training them is a convex optimization problem, i.e. one is guaranteed to find the best hypothesis
in the space of linear hypothesis

• Can be extended by non-linear feature transformations

Disadvantages

• The hypothesis space is very restricted, it cannot handle non-linear relations well

Still widely used in applications

• Recommender Systems – Initial Netflix Cinematch was a linear regression, before their $1 million
competition to improve it. Rather simple and are appropriate for small systems.

• Often a good place to start...

• At the core of many big internet services. Ad systems at Twitter, Facebook, Google etc...

2024-09-23 57

Supervised Learning:

Mathematically, can be seen as finding an approximation to an unknown function y = f(x) given N
examples of x and y

Two perspectives:

• Deterministic Models

• Search for a suitable function y = h(x)

• What we have looked at so far, the most common approach

• Example: In classification something may be either A or B, never in-between, regression gives
an exact answer like 15.3

• Probabilistic Models

• Search for a suitable probability distribution like P(Y|X)

• When we also want to predict the uncertainty

• Example: P(Y=“Healthy”|X) = 0.7 and P(Y=“Cancer”|X) = 0.3

• In a spam filter we might prefer to get a spam too many than to trash that important mail from
your boss…

2024-09-23 58

Day Outlook Temp Humidity Wind Play

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

Outlook = Sunny,
Humidity = Normal,
Wind = Weak

1. A := the "best" decision attribute for next node

2. Assign A as decision attribute for node

3. For each value of A, create new descendant of node

4. Sort training examples to leaf nodes

5. If training examples perfectly classified, then stop, else iterate over the
new leaf nodes

• Entropy measures the impurity of a sample of training examples S:
Entropy(S) := v -pv log2 pv

• Gain(S,A) the expected reduction in entropy due to sorting on A:
Gain(S,A) := Entropy(S) - vA(Entropy(Sv) |Sv |/|S |)

• The ID3 hypothesis space is complete

• It outputs a single hypothesis

• No back-tracking

• Statistically-based search choices

• Uses a minimalist approach

• Overfitting often occur

• Rules post pruning

• Convert tree into set of rules, one rule for each path.

• Prune each rule by removing conditions that result in a reduction of the estimated
error.

• Sort the rules by their estimated accuracy.

• Information gain not always suitable

• Only nominal attributes can be used

• Missing values have to be handled

• Instances described by attribute-value pairs

• Target function is discrete valued

• Disjunctive hypothesis may be required

• Possible noisy training data

Training
Data

Learning
Algorithm

Model

Model
Validation

Data Metric

https://en.wikipedia.org/wiki/Precision_and_recall

https://en.wikipedia.org/wiki/Precision_and_recall

Trainin
g Data

Learning
Algorith

m

Model
Validatio

n Data
Test
Data

• We train a model by minimizing its error on the training data.

optimization

• The training error is different from the generalization error – the expected

value of the error on previously unseen inputs.

• We can estimate the generalization error of a model by measuring its test
error – the error on a held-out test set.

held-out = not seen during training

GBC Section 5.2

• Assumption 1: The examples in the training set and the test set are mutually

independent.

• Assumption 2: The examples in the training set and the test set are

identically distributed.

sampled from the same data generating distribution

• Under these assumptions, the expected test error is greater than or equal
to the expected training error.

GBC Section 5.2

• Underfitting

The model is unable to obtain a sufficiently low error on the training set.
The model is not expressive enough.

• Overfitting

The gap between the training error and the test error is too large. The
model is over-optimized for the training data.

memorises noise

GBC Section 5.2

appropriate underfitting overfitting

polynomial of
degree 2

polynomial of
degree 1

polynomial of
degree 30

GBC Section 5.2

appropriate underfitting overfitting

polynomial of
degree 2

polynomial of
degree 1

polynomial of
degree 30

GBC Section 5.2

http://www.it.uu.se/edu/course/homepage/sml/

http://www.it.uu.se/edu/course/homepage/sml/

• Models can overfit if you have too many parameters in relation to the
training set size.

• Example: 9th degree polynomial regression model (10 parameters) on 15 data
points:

• This is not a local minima during training, it is the best fit possible on the given
training examples!

• The trained model captured ”noise” in data, variations independent of f(x)

2024-09-23 79

Green: True function (unknown)

Blue: Training examples (noisy!)

Red: Trained model

(Bishop, 2006)

• Noise are small variations in the data due to ignored or unknown variables, that cannot be

predicted via chosen feature vector x

• Example: Predict the temperature based on season and time-of-day. What about atmospheric

changes like a cold front? As they are not included in the model, nor entirely captured by other

input features, their variation will show up as seemingly random noise for the model!

• With low proportion of examples vs. model parameters, training can also mistake the variation that

unmodeled variables cause in y as coming from variables x that are included. This is known as

“overfitting”.

• Since this x->y relationship was merely chance, the model will not generalize well to future

situations

• It is usually impossible to include all variables affecting the target y’s

• Overfitting is important to guard against!

2024-09-23 80

• See the interactive example of ANN training again http://playground.tensorflow.org/

• 2D input x -> 1D y (binary classification or regression)

Exercise:

• Pick the bottom-left data set, two (Gaussian) clusters

• Make a flexible network, e.g. 2 hidden layers w/ 8 neurons each

• Activation ”Sigmoid”

• Set ”Ratio of training to test data” to 10%

• Max out noise

• Train for a while, can adjust ”learning rate” e.g. 0.3

• Compare result to ”Show test data”

• How well does this model generalize? Very bad

Up next: How do we fix it?

http://playground.tensorflow.org/

er
ro

r

model capacity

underfitting
zone

overfitting
zone

generalization gap

S
o

u
rc

e
:

G
B

C
 F

ig
u

re
 5

.3

generalisation error

training error

• Averaged over all possible data-generating distributions, every learning
algorithm has the same generalisation error.

Wolpert (1996)

• This means that there is no universal learning algorithm or absolute best
learning algorithm.

• We need to make assumptions about the kinds of data-generating
distributions we encounter in practice.

GBC Section 5.2.1

• One way to tailor a learning algorithm to a specific task and to prevent it
from overfitting is to use regularization.

• Regularization refers to modifications intended to reduce the
generalization error but not the training error of an algorithm.

• A standard example is L2-regularization, where we give preference to

parameter vectors with smaller Euclidean norms.

GBC Section 5.2.2

http://www.it.uu.se/edu/course/homepage/sml/

http://www.it.uu.se/edu/course/homepage/sml/

http://www.it.uu.se/edu/course/homepage/sml/

http://www.it.uu.se/edu/course/homepage/sml/

http://www.it.uu.se/edu/course/homepage/sml/

http://www.it.uu.se/edu/course/homepage/sml/

• In conclusion, we want to avoid unnecessarily complex models

• This is a fairly general concept throughout science and is often referred to as
Ockham’s Razor:

“Pluralitas non est ponenda sine necessitate”

-Willian of Ockham

“Everything should be kept as simple as possible, but no simpler.”

-Albert Einstein (paraphrased)

• There are several mathematically principled ways to penalize model
complexity during training, e.g. regularization, which we will not cover here.

• A simple approach is to use a separate validation set with examples that are
only used for evaluating models of different complexity.

2024-09-23 88

• This is called a hold-out validation set as we keep the data away from
the training phase

• Measuring performance (loss) on such a validation set is a better metric
of actual generalization error to unseen examples

• With the validation set we can compare models of different complexity
to select the one which generalizes best, for model selection.

• Examples could be polynomial models of different order, the number of
neurons or layers in an ANN etc.

2024-09-23 89

Validation SetTraining Set

Given example data:

• We have seen that having a validation set will lead to a more accurate
estimation of generalization error to use for model selection

• However, by extensively using the validation set for model selection we can
also contaminate it (overfitting model against the data in the validation set)

• To combat this one usually sets aside a separate test set

• This test set is not used during training or model selection

• It is basically locked away in a safe and only brought out in the end to get a
fair estimate of final generalization error

2024-09-23 90

Validation SetTraining Set

Given example data:

Test Set

Best choice Overfitting

• As the number of parameters increases, the size of the hypothesis space also increases, allowing a

better fit to training data

• However, at some point it is sufficiently flexible to capture the underlying patterns. Any more

will just capture noise, leading to worse generalization to new examples!

• Do we need to train and test many

models of different complexity?

• Various tricks to avoid this

2024-09-23 91

Example: Prediction error vs. model complexity

over many (simulated) data sets. (Hastie et al.,

2009)

Red: Validation set (generalization) error

Blue: Training set error

• A setting of a machine learning algorithm that is not adapted by the
algorithm itself is called a hyperparameter.

typical example: learning rate

• Some settings need to be hyperparameters because adapting them during
training would lead to overfitting.

such as parameters related to the model’s capacity

• To tune hyperparameters, we need a separate validation set, or need to use
cross-validation.

GBC Section 5.3

https://medium.com/microsoft-design/how-to-recognize-exclusion-in-
ai-ec2d6d89f850

• Dataset bias – When the data used to train
machine learning models doesn’t represent the
diversity of the customer base.

• Association bias – When the data used to train a
model reinforces and multiplies a cultural bias.

• Automation bias – When automated decisions
override social and cultural considerations.

• Interaction bias – When humans tamper with AI
and create biased results.

• Confirmation bias – When oversimplified
personalization makes biased assumptions for a
group or an individual.

https://medium.com/microsoft-design/how-to-recognize-exclusion-in-ai-ec2d6d89f850
https://medium.com/microsoft-design/how-to-recognize-exclusion-in-ai-ec2d6d89f850

C M Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Hastie, T., Tibshirani, R. and Friedman, J.H. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Second Edition,
Springer, 2009.

Which are two good (but fairly advanced) books on the topic.

2024-09-23 96

www.ida.liu.se/~TDDC17

	Slide 1: TDDC17 LE9 HT2024 Machine Learning I
	Slide 2: Outline of Machine Learning Lectures
	Slide 3: Algorithmic, Knowledge-Based and Learning-Based AI
	Slide 4: To Define Machine Learning
	Slide 5: To Define Machine Learning
	Slide 6: Machine Learning
	Slide 7: Machine Learning
	Slide 8: Machine Learning
	Slide 9: The Importance of Feature Selection
	Slide 10: Classification
	Slide 11: Model Types
	Slide 12: Types of Machine Learning
	Slide 13: Supervised learning
	Slide 14
	Slide 15: Map over Methods
	Slide 16: Unsupervised Learning
	Slide 17: Unsupervised Learning at a Glance
	Slide 18: Unsupervised Learning at a glance II
	Slide 19: Unsupervised Learning Example: Clustering – Continuous Data
	Slide 20: Unsupervised example
	Slide 21: Supervised Learning
	Slide 22: Formalizing Supervised Learning
	Slide 23: Linear regression with one variable
	Slide 24: Linear regression with one variable
	Slide 25: Linear regression with one variable
	Slide 26: Linear regression with several variables
	Slide 27: Linear regression with several variables
	Slide 28: Learning problem
	Slide 29: Mean squared error (L2)
	Slide 30: Mean squared error (L2)
	Slide 31: Gradient descent: Intuition
	Slide 32: Gradient descent: Intuition
	Slide 33: Gradient descent
	Slide 34: Gradient update rule for linear regression
	Slide 35: Stochastic gradient descent
	Slide 36: The unreasonable effectiveness of SGD
	Slide 37: The unreasonable effectiveness of SGD
	Slide 39: Linear Regression
	Slide 40: Linear Regression
	Slide 41: Linear Regression
	Slide 42: Linear Regression
	Slide 43: Linear Regression Example
	Slide 44: Linear Regression Example
	Slide 45: Classical Supervised Learning in Practice
	Slide 46: Feature Vector Construction
	Slide 47: Feature Vector Example for Text - Bag of Words
	Slide 48: Selecting Models: Linear Regression Example
	Slide 49: Training a Learning Algorithm
	Slide 50: Training a Learning Algorithm – Loss Functions
	Slide 51: Training a Learning Algorithm – Optimization
	Slide 52: Worked Example – Linear Regression
	Slide 53: What about categorical outputs (classification)?
	Slide 54: Classifier Training – Loss Functions II
	Slide 55: Worked Example – Binary Classification via Linear Logistic Regression
	Slide 56: Training a Learning Algorithm – Limitations
	Slide 57: Linear Models in Summary
	Slide 58: What about models with uncertainty?
	Slide 59: Supervised Learning – Decision Tree Learning
	Slide 60: Decision Tree Learning
	Slide 61: Example
	Slide 62: Top-Down Induction of DT
	Slide 63: Selecting the "Best" Attribute
	Slide 64: Information Gain
	Slide 65: Selecting the "Best" Attribute
	Slide 66: ID3 as Hypothesis Space Search
	Slide 67: Problems With ID3
	Slide 68: When to Consider Decision Trees
	Slide 69: Evaluating Machine Learning Methods
	Slide 70: Training, Validation, and Test Data
	Slide 71: Precision and Recall
	Slide 72: Machine Learning Process
	Slide 73: Training error and generalization error
	Slide 74: How can we hope to perform well on the test set?
	Slide 75: Underfitting and overfitting
	Slide 76: Underfitting and overfitting
	Slide 77: Underfitting and overfitting
	Slide 78: Machine Learning Pitfall - Overfitting
	Slide 79: Machine Learning Pitfall - Overfitting
	Slide 80: Overfitting – Where Does the Noise Come From?
	Slide 81: Overfitting - Demo
	Slide 82: Relationship between model capacity and error
	Slide 83: ‘No free lunch’ theorems
	Slide 84: Regularization
	Slide 85: Regularization
	Slide 86
	Slide 87: Regularization
	Slide 88: Model Selection – Choosing Between Models
	Slide 89: Model Selection – Hold-out Validation
	Slide 90: Measuring Final Generalization Error
	Slide 91: Model Selection – Selection Strategy
	Slide 92: Hyperparameters and validation sets
	Slide 93: Cross-validation
	Slide 94: Bias
	Slide 95
	Slide 96: Cited figures from…
	Slide 97: TDDC17 AI LE9 HT2024: Introduction to machine learning Unsupervised learning Supervised learning Evaluating machine learning methods

