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• Reinforcement learning



AI-program 
written by 

programmers

Computer

Knowledge added 
by domain experts

Computer

General solver 
written by 

programmers

Training data 
added by domain 

experts

Computer

General 
learning system 

written by 
programmers

Algorithmic Knowledge-based Learning-based
(Pattern-based)



Given a task, mathematically encoded via some performance metric, a 
machine can improve its performance by learning from experience (data)

From the agent perspective:
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• Arthur Samuel (1959). Machine Learning: Field of study that gives computers the 

ability to learn without being explicitly programmed. 

• Tom Mitchell (1998) Well-posed Learning Problem: A computer program is said to 

learn from experience E with respect to some task T and some performance 

measure P, if its performance on T, as measured by P, improves with experience E. 

• Suppose your email program watches which emails you do or do not mark as spam 

and based on that learns how to better filter spam. 

• Experience E is Watching you label emails as spam or not spam. 

• Task T is Classifying emails as spam or not spam.

• Performance P is The number (or fraction) of emails correctly classified as 

spam/not spam. 
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• Machine Learning is a branch of artificial intelligence that provides the 
computer system the ability to progressively learn and improve its 
performance on handling various tasks without being explicitly 
programmed to perform all the task.

• Another definition of Machine Learning explains it as: the process of trying 
to deduce unknown values from known values.
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Classification Regression Generative



• Supervised learning

• Given input-output examples 
f(X)=Y, learn the function f().

• Unsupervised learning

• Given input examples, find 
patterns such as clusters

• Reinforcement learning

• Select and execute an action, get 
feedback, update policy (what 
action to do in which state).

https://www.techleer.com/articles/203-machine-
learning-algorithm-backbone-of-emerging-technologies/ 
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T. Mitchell, M. Jordan:
“Most of the recent progress in 
machine learning involves mapping 
from a set of inputs to a set of 
outputs.” 









In unsupervised learning

• Neither a correct answer/output, nor a reward is given

• Task is to find some structure in the data

• Performance metric is some reconstruction error of patterns compared to the input 

data distribution

Examples: 

• Clustering – When the data distribution is confined to lie in a small number of 

“clusters” we can find these and use them instead of the original representation, e.g. 

bigger recommender system (news, ads, etc.)

• Dimensionality Reduction – Finding a suitable lower dimensional representation 

while preserving as much information as possible, e.g. image/video compression

Recent trend: Found structure can be used to generate new data (content)!
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• Not directly applicable to the agent perspective as there is no clear way to 
encode a goal or behavior

• However, the techniques can be useful as a preprocessing step in other 
learning approaches

o If fewer dimensions or a few clusters can accurately describe the data, 
big computational wins can be made

• It is also frequently used for visualization as smaller representations are 
easier to visualize on a computer screen

• To keep this brief, we will not go into any further detail on unsupervised 
learning
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(Bishop, 2006)
Two-dimensional continuous input



• Original faces were down sampled to save space but still remain majority features.
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Remember, in Supervised Learning:

• Given tuples of training data consisting of (x,y) pairs

• The objective is to learn to predict the output y’ for a new input x’

Formalized as searching for approximation to unknown function y = f(x), given N 
examples of x and y: (x1,y1), … ,(xn,yn)

Two major classes of supervised learning

• Classification – Output are discrete category labels 

• Example: Detecting disease, y = “healthy” or “ill”

• Regression – Output are numeric values 

• Example: Predicting temperature, y = 15.3 degrees

In either case, input data xi could be vector valued and discrete, continuous or mixed. 
Example: x1 = (12.5, “cat”, true). 
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Living area (x) Price (y)

2 104 399 900

1 600 329 900

2 400 369 000

1 416 232 000

… …

𝑁 training instances of the form (𝑥, 𝑦)



• Modelling assumption

The relation between housing area and price 
can be described in terms of an affine function.

affine = linear function + intercept (bias)

• Learning task

Find the ‘best’ affine function – the function that minimizes the total 
distance to the data points.

distance measure: mean squared error



input value

slope

predicted 
output

bias



Living area (x1) # bedrooms (x2) Price (y)

2 104 3 399 900

1 600 3 329 900

2 400 3 369 000

1 416 2 232 000

… …

training set = design matrix 𝑿, target vector 𝒚

𝑿 𝒚



input matrix (N-by-F)

weight vector (F-by-1)

predicted 
output

bias

N = number of training examples, F = number of features (independent variables)



• Choose parameters such that the total distance between the corresponding 
hyperplane and the data points is minimal.

as measured by mean squared error

• This problem has an exact solution that can be found using the method of 
least squares.

• An inexact (numerical) but more general method to solve the problem is to 
use gradient descent.



model parameters target output value

predicted output value

Later, it will be convenient to divide by 2N instead of by N.





𝜽≔ 𝜽 − large value 𝜽≔ 𝜽 + small value



𝜽≔ 𝜽 − ∇MSE(𝜽) 𝜽≔ 𝜽 − ∇MSE(𝜽)



• Step 0: Start with an arbitrary value for the parameters 𝜽.

• Step 1: Compute the gradient of the loss function, ∇𝐿(𝜽).

• Step 2: Update the parameters 𝜽 as follows:    𝜽≔ 𝜽 − 𝛼 ∇𝐿(𝜽)

The parameter 𝛼 is the learning rate.

• Repeat step 1–2 until the error is sufficiently low.

‘Follow the gradient into the valley of error.’



Substituting L2 loss into the generic update rule, we get

This can be more succinctly expressed as



• For large training sets, even taking a single step in the gradient descent 
algorithm will take a lot of time.

• The idea behind stochastic gradient descent (SGD) is to estimate the gradient 

by computing it on a small set of samples.

def minibatches(x, y, batch_size):

random_indices = np.random.permutation(np.arange(x.shape[0]))

for i in range(0, x.shape[0] - batch_size + 1, batch_size):

batch_indices = random_indices[i:i+batch_size]

yield x[batch_indices], y[batch_indices]



• Stochastic gradient descent (SGD) provides a very general framework for 
pushing model parameters towards small loss.

• SGD and its variants are probably the most widely used optimization 
algorithms for deep learning.

• What is crucial for the applicability of SGD is that both the model function 
and the loss function are differentiable.

One can sometimes use sub-gradient methods.



• In the case of convex loss functions such as mean squared error, gradient 
descent is guaranteed to find an optimal solution.

• Most loss functions are not convex, and there is no guarantee that gradient 
descent will arrive at even a local minimum.

• In practice however, neural networks work surprisingly well when trained 
with stochastic gradient descent.

momentum, parameter initialisation, regularisation, …
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Can be seen as searching for an approximation to unknown function y = f(x) given N 

examples of x and y: (x1,y1), … ,(xn,yn)

Want the algorithm to generalize from training examples to new inputs x’, so that 

y’=f(x’) is “close” to the correct answer

1. An input “feature” vector xi of examples is constructed by mathematically 

encoding relevant problem data

• Examples of such (xi, yi) make up the training set

2. A model (or hypothesis) for f(x) is selected with some parameters

3. A loss function is selected that defines “closeness” to correct answers

4. The model is trained on the examples by searching for its parameters that minimize 

loss on the training set (i.e. are “close” to unknown f(x))
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Want to learn f(x) = y given N examples of x and y: (x1,y1), … ,(xn,yn)

Most standard algorithms work on real number variables

• If inputs x or outputs y contain categorical values like “book” or “car”, we need to encode 
them with numbers

• With only two classes we get y in {0,1}, called binary classification 

• Classification into multiple classes can be reduced to a sequence of binary one-vs-all 
classifiers

• The variables may also be structured as text, audio, image or video data

Finding a suitable feature representation can be non-trivial, but there are standard 
approaches for the common domains

• With sufficient data, features can also be learned (deep learning, later…)
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One of the early successes of ML was learning spam filters

Spam classification example:

2024-09-23 47

Each mail is an input, some mails are flagged as 

spam or not spam to create training examples.

Bag of Words Feature Vector:

Encode the existence of a fixed set of relevant 

key words in each mail as the feature vector.

xi = wordsi =

yi = 1 (spam) or 0 (not spam)

Simply learn f(x)=y using suitable classifier!

Feature Exists?

“Customer” 1 (Yes)

“Dollar” 0 (No)

“Fund” 0

“Accept” 1

“Bank” 0

…. …



I. Construct a feature vector xi to be used with examples of yi

II. Select a model and train it on examples (search for a good approximation to the 
unknown function)

Fictional example: Smartphone app that learns desired ring volume based on examples of 
volume and background noise level 

Feature vector xi = (Noise dB), yi = (Volume %)
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• Select the familiy of linear 

functions:

• Train the algorithm by searching for 

a line that fits the data well

…but how does ”training” really work?



• Recap: Want to find approximation h(x) to the unknown function f(x)
• As an example, let it to be the family of linear functions:

• The model            has two parameters:                          (line slope and offset)
• How do we find parameters that result in a good approximation h?
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Three poor 
linear 
hypotheses

Feature vector xi = (Noise in dB), outputs yi = (Volume %)



How do we find parameters w that result in a good approximation           ?

• Need a performance metric for function approximations of unknown f(x)

• Loss functions

• Minimize deviation against the N example data points from f(x)

• For regression one common choice is a sum square loss function:

• Why square loss? Negative difference is as bad as positive

• Search in continuous domains like w is known as optimization 

• (if unfamiliar, see Ch4.2 Local Search in Continuous Spaces in course book AI: A 
Modern Approach)
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How do we find parameters w that minimize the loss?

• Optimization approaches iteratively move in the direction that 
decreases the loss function L(w)

• Simple and popular approach: gradient descent
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Negative gradient points 
down in loss function

Step size (learning rate)



• Google Colab at: http://bit.ly/2maVQKY

• Run top box to install dependencies (30s), then scroll to ML Example 1

• NOTE: Need to be signed in to a Google account. Might need to save or 
download workbook to run it. 

http://bit.ly/2maVQKY


I. Construct a feature vector xi to be used with examples of yi

II. Select a model and train it on examples (search for a good approximation to the 
unknown function)

Fictional example: Smartphone app that learns if silent mode should be on/off at different 
levels of background noise and light

Feature vector xi = (Noise, Light level), yi = {“silent on”, “silent off”}
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• Again, can select the familiy of linear 

functions. However, now outputs y have to 

be transformed to the interval [0,1]

• Can classify new inputs according to how 

close output is to 0 or 1.

• For linear models, the decision boundary 

will still be a straight line.



• How to transform standard models to classification?

• Squared error does not make sense when target output discrete set {0,1}

• Could use custom loss functions for classification

• Minimize number of missclassifications (unsmooth w.r.t. parameter changes)

• Maximize information gain (used in decision trees, see book)

• However, requires specialized parameter search methods

• Instead: Make outputs probabilities [0,1] by 
squashing predicted numeric outputs via sigmoid (”S”)

Pr(y=”1”|X) = g(model(x))

use soft-max (see book)

Classify as 
”1”

Classify as 
”0”

-∞ ∞



• Same Google Colab as before: http://bit.ly/2maVQKY 

• Run top box to install dependencies (30s), then scroll down to ML 
Example 2

• NOTE: May need to be signed in to a Google account

http://bit.ly/2maVQKY


Limitations 

• Local optimization of loss is greedy – Gets stuck in local minima unless the loss function 
is convex w.r.t. w, i.e. there is only one minima.

• Linear models are convex, however most more advanced models are vulnerable to 
getting stuck in local minima.

• Care should be taken when training such models by using for example random restarts 
and picking the least bad minima.
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If we happen to start in red 

area, optimization will get 

stuck in a bad local minima!



Advantages

• Linear algorithms are simple and computationally efficient

• For both regression and classification

• Training them is a convex optimization problem, i.e. one is guaranteed to find the best hypothesis 
in the space of linear hypothesis

• Can be extended by non-linear feature transformations

Disadvantages

• The hypothesis space is very restricted, it cannot handle non-linear relations well

Still widely used in applications

• Recommender Systems – Initial Netflix Cinematch was a linear regression, before their $1 million
competition to improve it. Rather simple and are appropriate for small systems.

• Often a good place to start...

• At the core of many big internet services. Ad systems at Twitter, Facebook, Google etc...
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Supervised Learning:

Mathematically, can be seen as finding an approximation to an unknown  function y = f(x) given N 
examples of x and y

Two perspectives:

• Deterministic Models

• Search for a suitable function y = h(x)

• What we have looked at so far, the most common approach

• Example: In classification something may be either A or B, never in-between, regression gives 
an exact answer like 15.3

• Probabilistic Models

• Search for a suitable probability distribution like P(Y|X)

• When we also want to predict the uncertainty 

• Example: P(Y=“Healthy”|X) = 0.7  and P(Y=“Cancer”|X) = 0.3

• In a spam filter we might prefer to get a spam too many than to trash that important mail from 
your boss…
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Day Outlook Temp Humidity Wind Play

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes



Outlook = Sunny, 
Humidity = Normal, 
Wind = Weak



1. A := the "best" decision attribute for next node

2. Assign A as decision attribute for node

3. For each value of A, create new descendant of node

4. Sort training examples to leaf nodes

5. If training examples perfectly classified, then stop, else iterate over the 
new leaf nodes





• Entropy measures the impurity of a sample of training examples S:  
Entropy(S) := v -pv log2 pv

• Gain(S,A) the expected reduction in entropy due to sorting on A:
Gain(S,A) := Entropy(S) - vA(Entropy(Sv) |Sv |/|S |)





• The ID3 hypothesis space is complete

• It outputs a single hypothesis

• No back-tracking

• Statistically-based search choices

• Uses a minimalist approach



• Overfitting often occur

• Rules post pruning

• Convert tree into set of rules, one rule for each path.

• Prune each rule by removing conditions that result in a reduction of the estimated 
error.

• Sort the rules by their estimated accuracy.

• Information gain not always suitable

• Only nominal attributes can be used

• Missing values have to be handled



• Instances described by attribute-value pairs

• Target function is discrete valued

• Disjunctive hypothesis may be required

• Possible noisy training data
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Algorithm
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Data Metric
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• We train a model by minimizing its error on the training data.

optimization

• The training error is different from the generalization error – the expected 

value of the error on previously unseen inputs.

• We can estimate the generalization error of a model by measuring its test 
error – the error on a held-out test set.

held-out = not seen during training

GBC Section 5.2



• Assumption 1: The examples in the training set and the test set are mutually 

independent.

• Assumption 2: The examples in the training set and the test set are 

identically distributed.

sampled from the same data generating distribution

• Under these assumptions, the expected test error is greater than or equal 
to the expected training error.

GBC Section 5.2



• Underfitting

The model is unable to obtain a sufficiently low error on the training set. 
The model is not expressive enough.

• Overfitting

The gap between the training error and the test error is too large. The 
model is over-optimized for the training data.

memorises noise

GBC Section 5.2



appropriate underfitting overfitting

polynomial of 
degree 2

polynomial of 
degree 1

polynomial of 
degree 30

GBC Section 5.2



appropriate underfitting overfitting

polynomial of 
degree 2

polynomial of 
degree 1

polynomial of 
degree 30

GBC Section 5.2
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• Models can overfit if you have too many parameters in relation to the 
training set size. 

• Example: 9th degree polynomial regression model (10 parameters) on 15 data 
points:

• This is not a local minima during training, it is the best fit possible on the given 
training examples!

• The trained model captured ”noise” in data, variations independent of f(x)
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Green: True function (unknown)

Blue: Training examples (noisy!)

Red: Trained model

(Bishop, 2006)



• Noise are small variations in the data due to ignored or unknown variables, that cannot be 

predicted via chosen feature vector x

• Example: Predict the temperature based on season and time-of-day. What about atmospheric 

changes like a cold front? As they are not included in the model, nor entirely captured by other 

input features, their variation will show up as seemingly random noise for the model!

• With low proportion of examples vs. model parameters, training can also mistake the variation that 

unmodeled variables cause in y as coming from variables x that are included. This is known as 

“overfitting”.

• Since this x->y relationship was merely chance, the model will not generalize well to future 

situations

• It is usually impossible to include all variables affecting the target y’s

• Overfitting is important to guard against!
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• See the interactive example of ANN training again http://playground.tensorflow.org/ 

• 2D input x -> 1D y (binary classification or regression)

Exercise:

• Pick the bottom-left data set, two (Gaussian) clusters

• Make a flexible network, e.g. 2 hidden layers w/ 8 neurons each

• Activation ”Sigmoid”

• Set ”Ratio of training to test data” to 10%

• Max out noise

• Train for a while, can adjust ”learning rate” e.g. 0.3

• Compare result to ”Show test data”

• How well does this model generalize? Very bad

Up next: How do we fix it?

http://playground.tensorflow.org/
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• Averaged over all possible data-generating distributions, every learning 
algorithm has the same generalisation error.

Wolpert (1996)

• This means that there is no universal learning algorithm or absolute best 
learning algorithm.

• We need to make assumptions about the kinds of data-generating 
distributions we encounter in practice.

GBC Section 5.2.1



• One way to tailor a learning algorithm to a specific task and to prevent it 
from overfitting is to use regularization.

• Regularization refers to modifications intended to reduce the 
generalization error but not the training error of an algorithm.

• A standard example is L2-regularization, where we give preference to 

parameter vectors with smaller Euclidean norms.

GBC Section 5.2.2
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• In conclusion, we want to avoid unnecessarily complex models

• This is a fairly general concept throughout science and is often referred to as 
Ockham’s Razor:

“Pluralitas non est ponenda sine necessitate”

-Willian of Ockham

“Everything should be kept as simple as possible, but no simpler.”

-Albert Einstein (paraphrased)

• There are several mathematically principled ways to penalize model 
complexity during training, e.g. regularization, which we will not cover here.

• A simple approach is to use a separate validation set with examples that are 
only used for evaluating models of different complexity.
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• This is called a hold-out validation set as we keep the data away from 
the training phase

• Measuring performance (loss) on such a validation set is a better metric 
of actual generalization error to unseen examples

• With the validation set we can compare models of different complexity 
to select the one which generalizes best, for model selection.

• Examples could be polynomial models of different order, the number of 
neurons or layers in an ANN etc.
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Validation SetTraining Set

Given example data:



• We have seen that having a validation set will lead to a more accurate 
estimation of generalization error to use for model selection

• However, by extensively using the validation set for model selection we can 
also contaminate it (overfitting model against the data in the validation set)

• To combat this one usually sets aside a separate test set

• This test set is not used during training or model selection

• It is basically locked away in a safe and only brought out in the end to get a 
fair estimate of final generalization error

2024-09-23 90

Validation SetTraining Set

Given example data:

Test Set



Best choice Overfitting

• As the number of parameters increases, the size of the hypothesis space also increases, allowing a 

better fit to training data

• However, at some point it is sufficiently flexible to capture the underlying patterns. Any more 

will just capture noise, leading to worse generalization to new examples!

• Do we need to train and test many 

models of different complexity?

• Various tricks to avoid this
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Example: Prediction error vs. model complexity 

over many (simulated) data sets. (Hastie et al., 

2009)

Red: Validation set (generalization) error

Blue: Training set error



• A setting of a machine learning algorithm that is not adapted by the 
algorithm itself is called a hyperparameter.

typical example: learning rate

• Some settings need to be hyperparameters because adapting them during 
training would lead to overfitting.

such as parameters related to the model’s capacity

• To tune hyperparameters, we need a separate validation set, or need to use 
cross-validation.

GBC Section 5.3





https://medium.com/microsoft-design/how-to-recognize-exclusion-in-
ai-ec2d6d89f850 

• Dataset bias – When the data used to train 
machine learning models doesn’t represent the 
diversity of the customer base. 

• Association bias – When the data used to train a 
model reinforces and multiplies a cultural bias.

• Automation bias – When automated decisions 
override social and cultural considerations. 

• Interaction bias – When humans tamper with AI 
and create biased results.

• Confirmation bias – When oversimplified 
personalization makes biased assumptions for a 
group or an individual.

https://medium.com/microsoft-design/how-to-recognize-exclusion-in-ai-ec2d6d89f850
https://medium.com/microsoft-design/how-to-recognize-exclusion-in-ai-ec2d6d89f850




C M Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Hastie, T., Tibshirani, R. and Friedman, J.H. The Elements of Statistical 
Learning: Data Mining, Inference, and Prediction. Second Edition, 
Springer, 2009.

Which are two good (but fairly advanced) books on the topic. 
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