Artificial Intelligence

Logic 2: Reasoning

Jendrik Seipp

Linkdping University

based on slides by Thomas Keller and Malte Helmert (University of Basel)

Reasoning
©00000

Reasoning

2/30

Reasoning ! > DPLL on Horn Formulas

[e] lelelele]

Reasoning: Intuition

m often, we have a (set of) sentence(s) (a knowledge base)
m that represents our knowledge of the world

m knowledge bases usually only represent
an incomplete description of the world

m ~~ we want to know if other sentences follow logically

What does this mean?

3/30

Reasoning] 1 DP| DPLL on Horn Formulas

[e]e] lelele]

Reasoning: Intuition

m assume knowledge base ® = {PV Q,RV —-P,S}
m O represents sentence (PV Q) A(RV =P) AS

m S holds in every interpretation where @ is true
What about P, Q and R?

~> consider all interpretations where @ is true:

H

R A A
- |- -
== | =™
|||

4/30

Reasoning Res 1 DP| DPLL on Horn Formulas

[e]e] lelele]

Reasoning: Intuition

m assume knowledge base ® = {PV Q,RV —-P,S}
m O represents sentence (PV Q) A(RV =P) AS

m S holds in every interpretation where @ is true
What about P, Q and R?

~> consider all interpretations where @ is true:

—|—|-|-|H

- T - -

IR

R A A

m the sentence Q V R holds in all interpretations where & is true

m therefore, “Q V R follows logically from &”

4/30

Reasoning €] DP DPLL on Horn Formulas

[e]e]e] Jele]

Reasoning: Formally

Definition (logical consequence)

Let ® be a set of sentences. A sentence y follows logically
from & (in symbols: ® |= y) if all models for P are also models
are also models for .

in other words: for each interpretation |,
ifl |= ¢ forallp € ®,thenalso | |= y

How can we automatically compute whether @ |= y?
m one possibility: build a truth table

m Are there “better” possibilities that (potentially) avoid generating
the whole truth table?

5/30

Reasoning P DPLL on Horn Formulas

[e]e]e]e] Je]

Reasoning: Deduction Theorem

Proposition (deduction theorem)

Let ® be a finite set of sentences and let y be a sentence. Then

b=y iff (/\ @) — y is a tautology.
peED

6/30

Reasoning DP DPLL on Horn Formulas

[e]e]elele]]

Reasoning

consequence of deduction theorem:
reasoning can be reduced to testing validity

Question: Does @ |= y hold?

Q testif (Ayeo @) — W istautology
@ ifyes, then ® |= y, otherwise ® |~ v

In the following: Can we test for validity “efficiently”,
i.e., without computing the whole truth table?

7/30

Resolution
©00000000

Resolution

8/30

Resolution DP! DPLL on Horn Formulas

0®0000000

Sets of Clauses

for the rest of this chapter:
B we assume sentences in CNF
m clause represented as a set C of literals

B sentence represented as a set A of clauses

Leto = (PV Q) A —P.

B ¢ in conjunctive normal form

m (¢ consists of clauses (P V Q) and =P

m representation of ¢ as set of sets of literals: {{P, Q}, {—=P}}

careful: distinguish O (empty clause) vs. @ (empty set of clauses)

9/30

Resolution
008000000

DPLL on Horn Formulas

Resolution: Idea

m consequence of deduction theorem:
reasoning can be reduced to testing validity

m observation: sentence ¢ valid iff =¢ unsatisfiable
m testing for validity can be reduced to testing unsatisfiability

Resolution: Idea
m method to test sentence ¢ for unsatisfiability

m idea: derive new sentences from ¢ that follow logically from ¢

m if empty clause O can be derived ~» ¢ unsatisfiable

10/30

Resolution
000800000

DPLL on Horn Formulas

The Resolution Rule

GuU{ehu{e
GUG

m “from C; U {€} and G, U {£€}, we can conclude C; U G,"
B C, UG, is resolvent of parent clauses C; U {£} and G, U {£}.

m the literals € and £ are called resolution literals,
the corresponding proposition is called resolution variable

m resolvent follows logically from parent clauses

11/30

Reasoning in the Pizzeria
Original formulas:
[each pizza has exactly one owner]

AM & —-BM
AQ < -BQ

[each person ordered exactly one pizzal
AM & —AQ
BM < —BQ

12/30

Resolution
feYeYeleY Yolelete)

Reasoning in the Pizzeria
DNF:

[each pizza has exactly one owner]
AM Vv BM, -AM V —BM
AQ V BQ, -AQ v —BQ

[each person ordered exactly one pizza]
AM V AQ, -AM V -AQ
BM Vv BQ, -BM Vv —-BQ

12/30

Resolution
feYeYeleY Yolelete)

Reasoning in the Pizzeria
DNF:

[each pizza has exactly one owner]
AM Vv BM, —AM V —BM
AQ VvV BQR, -AQ VvV —BQ

[each person ordered exactly one pizza]
AM V AQ, -AM V -AQ
BM Vv BQ, -BM Vv —-BQ

Adam ordered Margherita ~» add to KB:
AM

Resolution over knowledge base:
=AM V —=AQ with AM ~ —AQ
AQ v BQ with —AQ ~» BQR

Waiter knows that Berta ordered the Quattro
Stagioni pizza.
12/30

Resolution DP DP Horn Formulas

[e]e]ele]e] Jolele]

Example

Let A = {{A, =B, C}, {A, —C}, {—A,E}, {B,E}}.
Does A |= E hold?

solution:

m test if the following is a tautology:
(AV-BVCA(AV-C)A(-AVE)A(BVE) —>E

m equivalently: test if the following is unsatisfiable:
(AV-BVCAAV-C)A(-AVE)A(BVE)A-E

m ... (resolution steps: ~» blackboard)

13/30

Resolution DP! DPLL on Horn Formulas

[e]e]ele]e] Jolele]

Example

Let A = {{A, =B, C},{A, ~C},{-A, E}, {B,E}}.
Does A |= E hold?

solution:
m test if the following is a tautology:
(AV-BVCOAAV-CA(-AVE)A(BVE)—>E
m equivalently: test if the following is unsatisfiable:
(AV-BVC AAV-C)A(-AVE)A(BVE)A-E
m ... (resolution steps: ~» blackboard)

m observation: empty clause O can be derived,
hence A’ unsatisfiable

m consequently A |= E

13/30

000000 e00

Resolution DP! DPLL on Horn Formulas

Exercise

Use the resolution method to show that y = C A =D follows logically
from ¢ = {{A’ B, C}’ {_'A’ -B, D}’ {A’ —B, C}a {B’ C’ D}y {_'D’ F}r {E> _'F}r
{-D,—E}},ie, @ E w.

Compare the number of required resolution steps to the size (number of
rows) of a truth table that verifies the same statement.

14/30

Resolution

000000080

Exercise Solution

¢ = {{A, B, C}, {—|A, -B, D}, {A, -B, C}, {B, C, D}, {—|D, F}, {E, —|F}, {—|D, —|E}}
v =CA-D

Testing if ¢ |= w is equivalent to testing if ¢ — y is a tautology. We use
resolution to show that ¢ and the negation of y is not satisfiable. Hence,
firstadd —y to ¢, i.e,, ¢’ = ¢ U {—=C, D}.

(1) From {A, =B, C} and {-A, -B, D} we get {-B, C, D},

(2) from which with {B, C, D} we get {C, D}.

(3) From {-D, F} and {E, =F} we get {-D, E},

() from which with {=D, =E}} we get {-D},

(5) from which with {—=C, D} we get {—~C}.

(6) from which with {C, D} we get {D},

(7) from which with {=D} we get the empty clause 0.

Therefore, ¢’ is unsatisfiable and hence ¢ |= y.

We use 7 resolution steps compared to a truth table with 2° = 64

interpretations (= rows).
15/30

Resolution DP! DPLL on Horn Formulas

00000000e

Resolution: Discussion

m if a sentence ¢ can be derived from A, then A |= ¢
(resolution is sound)

m but A |= ¢ does not imply that ¢ can be derived from A
(resolution is not complete)

m however: resolution is a complete proof method to test sentences
for unsatisfiability
(i.e., A is unsatisfiable iff O can be derived from A)

® in the worst case, resolution proofs can take exponential time

® a good strategy to determine next resolution step is needed

16/30

DPLL
0000000000

DPLL

17/30

DPLL DPLL on Horn Formulas

[e] lelelelelele]e]e]

Propositional Logic: Algorithmic Problems

main problems:

m reasoning (© |= ¢?):
Does the sentence ¢ follow logically from the sentences ©?

m equivalence (¢ = y):
Are the sentences ¢ and y logically equivalent?

m satisfiability (SAT):
Is sentence ¢ satisfiable? If yes, find a model for ¢.

18/30

DPLL DPLL on Horn Formulas

[e] lelelelelele]e]e]

Propositional Logic: Algorithmic Problems

main problems:
m reasoning (© |= ¢?):
Does the sentence ¢ follow logically from the sentences ©?
Is© U {—¢} is unsatisfiable?
m equivalence (¢ = y):
Are the sentences ¢ and y logically equivalent?
Are both ¢ A =y and y A = unsatisfiable?

m satisfiability (SAT):
Is sentence ¢ satisfiable? If yes, find a model for ¢.

18/30

DPLL DPLL on Horn Formulas

[e]e] lelelelele]e]e}

The Satisfiability Problem

The Satisfiability Problem (SAT)

given:
sentence in conjunctive normal form

usually represented as pair (V, A):
m V set of propositional variables (propositions)

m A set of clauses over V

find:

m satisfying model

m or proof that no model exists

SAT is a famous NP-complete problem (Cook 1971; Levin 1973).

19/30

DPLL

DPLL on Horn Formulas

0008000000

SAT vs. CSP

SAT can be considered as constraint satisfaction problem:
m CSPvariables = propositions
m domains = {F, T}
m constraints = clauses

However, we often have constraints that affect > 2 variables.

Due to this relationship, all ideas for CSPs are applicable to SAT:

m search
m inference

m variable and value orders

20/30

DPLL DPLL on Horn Formulas

0000800000

The DPLL Algorithm

The DPLL algorithm (Davis/Putnam/Logemann/Loveland)
corresponds to backtracking with inference for CSPs.

m recursive call DPLL(A, 1)
for clause set A and partial interpretation |

m result is consistent extension of I;
unsatisfiable if no such extension exists

m first call DPLL(A, @)

21/30

DPLL DPLL on Horn Formulas

0000080000

Inference and Orders in DPLL

m simplify: after assigning value d to variable v,
simplify all clauses that contain v
~» forward checking (for constraints of potentially higher arity)

m unit clause heuristic: variables that occur in clauses without other
variables (unit clauses) are assigned immediately
~» minimum remaining values variable order

m pure symbol heuristic: variables that always occur with the same
“sign” (pure variables) are assigned immediately

22/30

DPLL DPLL on Horn Formulas

0000008000

The DPLL Algorithm: Pseudo-Code

function DPLL(A, I):

if 0 € A: [empty clause exists ~> unsatisfiable]
return unsatisfiable

elseif A = @: [no clauses left ~» interpretation | satisfies sentence]
return |

else if there is a pure variable {v} in A [pure symbol heuristic]
or a unit clause {v} or {-v} in A: [unit clause heuristic]

let v be such a variable and d the associated truth value
return DPLL(simplify(A, v, d), U {v — d})
else:

select some variable v which occurs in A
for each d € {F, T} in some order:

A’ := simplify(A, v, d)

I’ := DPLL(A’, 1 U {v — d})

if I’ #+ unsatisfiable

return

return unsatisfiable

23/30

DPLL DP Horn Formulas

0000000800

The DPLL Algorithm: simplify

function simplify(A, v, d)

let £ be the literal for v that is satisfied by v +— d
A’ :={C| C e Asuchthat ¢ ¢ C}

A ={c\{€}|ceNN}

return A"

m Remove clauses containing €
~> clause is satisfied by v — d

m Remove ¢ from remaining clauses
~> clause has to be satisfied with other variable

24/30

DPLL DPLL on Horn Formulas

0000000080

Example

A= {{—|W, X, —|Z}, {—|W, Y}, {X, Y, —|Z}, {—|X, —|Y}, {Z}, {X, —|Y}}

25/30

DPLL DPLL on Horn Formulas

0000000080

Example

A= {{—|W, X, —|Z}, {—|W, Y}, {X, Y, —|Z}, {—|X, —|Y}, {Z}, {X, —|Y}}

@ pure symbol heuristic: W +— F

25/30

DPLL DPLL on Horn Formulas

0000000080

Example

A= {{—|W, X, —|Z}, {—|W, Y}, {X, Y, —|Z}, {—|X, —|Y}, {Z}, {X, —|Y}}

@ pure symbol heuristic: W +— F
{{X,Y,ﬂZ},{ﬂX,ﬂY},{Z},{X,ﬂY}}

25/30

DPLL DPLL on Horn Formulas

0000000080

Example

A= {{—|W, X, —|Z}, {—|W, Y}, {X, Y, —|Z}, {—|X, —|Y}, {Z}, {X, —|Y}}

@ pure symbol heuristic: W +— F
{{X,Y,ﬂZ},{ﬂX,ﬂY},{Z},{X,ﬂY}}
@ unit clause heuristic: Z+— T

25/30

DPLL DPLL on Horn Formulas

0000000080

Example

A= {{—|W, X, —|Z}, {—|W, Y}, {X, Y, —|Z}, {—|X, —|Y}, {Z}, {X, —|Y}}

@ pure symbol heuristic: W +— F
{{X’ Y, _12}3 {_'X7 _'Y}9 {2}9 {X7 _'Y}}
@ unit clause heuristic: Z+— T

{{X’ Y}’ {_'X’ _'Y}’ {X’ _'Y}}

25/30

DPLL DPLL on Horn Formulas

0000000080

Example

A= {{—|W, X, —|Z}, {—|W, Y}, {X, Y, —|Z}, {—|X, —|Y}, {Z}, {X, —|Y}}

@ pure symbol heuristic: W +— F

(X, v, =z}, {=X, =Y} {2z}, {X, =v}}
@ unit clause heuristic: Z+— T

X v A{=X, -v}h {X, -v}}

© splitting on variable X:

25/30

DPLL DP Horn Formulas

0000000080

Example

A= {{—|W, X, —|Z}, {—|W, Y}, {X, Y, —|Z}, {—|X, —|Y}, {Z}, {X, —|Y}}

@ pure symbol heuristic: W +— F
(X, v, =z}, {=X, =Y} {2z}, {X, =v}}
@ unit clause heuristic: Z+— T
X v A{=X, -v}h {X, -v}}
© splitting on variable X:
2a. X— F

{rh A=Y}

25/30

DPLL DPLL on Horn Formulas

0000000080

Example

A= {{—|W, X, —|Z}, {—|W, Y}, {X, Y, —|Z}, {—|X, —|Y}, {Z}, {X, —|Y}}

@ pure symbol heuristic: W +— F

(X, v, =z}, {=X, =Y} {2z}, {X, =v}}
@ unit clause heuristic: Z+— T

X v A{=X, -v}h {X, -v}}

© splitting on variable X:
2a. X— F

{rh A=Y}

3a. unit clause heuristiccY — T

{o}

25/30

DPLL DPLL on Horn Formulas

0000000080

Example

A= {{—|W, X, —|Z}, {—|W, Y}, {X, Y, —|Z}, {—|X, —|Y}, {Z}, {X, —|Y}}

@ pure symbol heuristic: W +— F

(X, v, =z}, {=X, =Y} {2z}, {X, =v}}
@ unit clause heuristic: Z+— T

X v A{=X, -v}h {X, -v}}

© splitting on variable X:

2a. X—F 2b. X T
Hyh {=v}} {=Y}}
3a. unit clause heuristic: Y — T
{o}

25/30

DPLL DPLL on Horn Formulas

0000000080

Example

A= {{—|W, X, —|Z}, {—|W, Y}, {X, Y, —|Z}, {—|X, —|Y}, {Z}, {X, —|Y}}

@ pure symbol heuristic: W +— F

(X, v, =z}, {=X, =Y} {2z}, {X, =v}}
@ unit clause heuristic: Z+— T

X v A{=X, -v}h {X, -v}}

© splitting on variable X:

2a. X— F 2b. X —T
Hrh{=v}} {=v}}

3a. unit clause heuristiccY — T 3b. unit clause heuristic: Y — F
{o} {3

25/30

DPLL DPLL on Horn Formulas

0000000080

Example

A= {{—|W, X, —|Z}, {—|W, Y}, {X, Y, —|Z}, {—|X, —|Y}, {Z}, {X, —|Y}}

@ pure symbol heuristic: W +— F

(X, v, =z}, {=X, =Y} {2z}, {X, =v}}
@ unit clause heuristic: Z+— T

X v A{=X, -v}h {X, -v}}

© splitting on variable X:

2a. X—F 2b. X T
Hyh {=v}} {=Y}}

3a. unit clause heuristic: Y — T 3b. unit clause heuristic: Y — F
{o} {}

25/30

DPLL DPLL on Horn Formulas

000000000 e

Properties of DPLL

m DPLL is sound and complete

m DPLL computes a model where ¢ is true
if such a model exists

m some variables possibly remain unassigned in the solution I;
their values can be chosen arbitrarily

m time complexity in general exponential

~> important in practice: good variable order and
additional inference methods (in particular clause learning)

m best known SAT algorithms are based on DPLL

26/30

DPLL on Horn Formulas

[Jelele}

DPLL on Horn Formulas

27/30

DPLL on Horn Formulas

[e] lele}

Horn Formulas

important special case: Horn formulas

Definition (Horn formula)
A Horn clause is a clause with at most one positive literal,
i.e., of the form

X Ve Voxp Vyor—ixg VeV ax,

(n = 0is allowed.)

A Horn formula is a propositional formula in conjunctive normal form
that only consists of Horn clauses.

m foundation of logic programming (e.g., PROLOG)

m critical in many kinds of practical reasoning problems

28/30

DPLL on Horn Formulas
coeo

DPLL on Horn Formulas

Proposition (DPLL on Horn formulas)

If the input formula ¢ is a Horn formula, then
the time complexity of DPLL is polynomial in the length of ¢.

29/30

DPLL on Horn Formulas

[e]e]e]]

Summary

m Reasoning: the formula y follows from the set of formulas ¢
if all models of ® are also models of y.

m Reasoning can be reduced to testing validity
(with the deduction theorem).

m Testing validity can be reduced to testing unsatisfiability.

m Resolution can be applied to formulas in conjunctive normal form.
~> can be used to test if a set of clauses is unsatisfiable.

m DPLL: systematic backtracking search with unit propagation

B DPLL successful in practice, polynomial on Horn formulas

30/30

	Reasoning
	

	Resolution
	

	DPLL
	

	DPLL on Horn Formulas
	

