Artificial Intelligence

Logic 2: Reasoning

Jendrik Seipp

Linköping University

based on slides by Thomas Keller and Malte Helmert (University of Basel)

DPLL on Horn Formulas

Reasoning

Reasoning: Intuition

- often, we have a (set of) sentence(s) (a knowledge base)
- that represents our knowledge of the world
- knowledge bases usually only represent an incomplete description of the world
- \sim we want to know if other sentences follow logically

What does this mean?

Reasoning: Intuition

- assume knowledge base $\Phi = \{P \lor Q, R \lor \neg P, S\}$
- Φ represents sentence $(P \lor Q) \land (R \lor \neg P) \land S$
- S holds in every interpretation where Φ is true What about P, Q and R?
- $\rightsquigarrow~$ consider all interpretations where Φ is true:

Р	Q	R	S
F	Т	F	Т
F	Т	Т	Т
Т	F	Т	Т
Т	Т	Т	Т

Reasoning: Intuition

- assume knowledge base $\Phi = \{P \lor Q, R \lor \neg P, S\}$
- Φ represents sentence $(P \lor Q) \land (R \lor \neg P) \land S$
- S holds in every interpretation where Φ is true What about P, Q and R?
- $\rightsquigarrow~$ consider all interpretations where Φ is true:

Р	Q	R	S
F	Т	F	Т
F	Т	Т	Т
Т	F	Т	Т
Т	Т	Т	Т

- the sentence $Q \lor R$ holds in all interpretations where Φ is true
- therefore, " $Q \lor R$ follows logically from Φ "

Reasoning: Formally

Definition (logical consequence)

Let Φ be a set of sentences. A sentence ψ follows logically from Φ (in symbols: $\Phi \models \psi$) if all models for Φ are also models are also models for ψ .

in other words: for each interpretation *I*, if $I \models \varphi$ for all $\varphi \in \Phi$, then also $I \models \psi$

How can we automatically compute whether $\Phi \models \psi$?

- one possibility: build a truth table
- Are there "better" possibilities that (potentially) avoid generating the whole truth table?

DPLL on Horn Formulas

Reasoning: Deduction Theorem

Proposition (deduction theorem)

Let Φ be a finite set of sentences and let ψ be a sentence. Then

$$\Phi \models \psi \quad iff \quad (\bigwedge_{\varphi \in \Phi} \varphi) \rightarrow \psi \text{ is a tautology.}$$

Reasoning

consequence of deduction theorem:

reasoning can be reduced to testing validity

Algorithm

Question: Does $\Phi \models \psi$ hold?

) test if
$$(igwedge_{\pmb{arphi}\in \pmb{\Phi}} \pmb{arphi}) o \pmb{\psi}$$
 is tautology

2 if yes, then $\Phi \models \psi$, otherwise $\Phi \not\models \psi$

In the following: Can we test for validity "efficiently",

i.e., without computing the whole truth table?

DPLL on Horn Formulas

Resolution

Sets of Clauses

for the rest of this chapter:

- we assume sentences in CNF
- clause represented as a set C of literals
- sentence represented as a set △ of clauses

Example

Let $\varphi = (P \lor Q) \land \neg P$.

- lacksquare φ in conjunctive normal form
- φ consists of clauses ($P \lor Q$) and $\neg P$
- representation of *φ* as set of sets of literals: {{*P*, *Q*}, {¬*P*}}

careful: distinguish \Box (empty clause) vs. \emptyset (empty set of clauses)

Resolution: Idea

- consequence of deduction theorem: reasoning can be reduced to testing validity
- observation: sentence φ valid iff $\neg \varphi$ unsatisfiable
- testing for validity can be reduced to testing unsatisfiability

Resolution: Idea

- method to test sentence φ for unsatisfiability
- lacksim idea: derive new sentences from m arphi that follow logically from m arphi
- if empty clause \square can be derived $\rightsquigarrow arphi$ unsatisfiable

The Resolution Rule

$$\frac{C_1 \cup \{\ell\}, C_2 \cup \{\bar{\ell}\}}{C_1 \cup C_2}$$

- "from $C_1 \cup \{\ell\}$ and $C_2 \cup \{\bar{\ell}\}$, we can conclude $C_1 \cup C_2$ "
- $C_1 \cup C_2$ is resolvent of parent clauses $C_1 \cup \{\ell\}$ and $C_2 \cup \{\bar{\ell}\}$.
- the literals l and l are called resolution literals, the corresponding proposition is called resolution variable
- resolvent follows logically from parent clauses

DPLL on Horn Formulas

Reasoning in the Pizzeria

Original formulas:

[each pizza has exactly one owner]

 $\texttt{AM} \leftrightarrow \neg\texttt{BM}$

 $\texttt{AQ} \leftrightarrow \neg \texttt{BQ}$

[each person ordered exactly one pizza]

 $\texttt{AM} \leftrightarrow \neg\texttt{AQ}$

 $\texttt{BM} \leftrightarrow \neg\texttt{BQ}$

DPLL on Horn Formulas

Reasoning in the Pizzeria

DNF:

[each pizza has exactly one owner] $AM \lor BM$, $\neg AM \lor \neg BM$

 $AQ \lor BQ$, $\neg AQ \lor \neg BQ$

[each person ordered exactly one pizza]

 $\begin{array}{l} AM \lor AQ, \neg AM \lor \neg AQ \\ BM \lor BQ, \neg BM \lor \neg BQ \end{array}$

DPLL on Horn Formulas

Reasoning in the Pizzeria

DNF:

[each pizza has exactly one owner] AM \lor BM, \neg AM \lor \neg BM AQ \lor BQ, \neg AQ \lor \neg BQ

[each person ordered exactly one pizza]

 $\begin{array}{l} AM \lor AQ, \neg AM \lor \neg AQ \\ BM \lor BQ, \neg BM \lor \neg BQ \end{array}$

Adam ordered Margherita \rightsquigarrow add to KB: AM

Resolution over knowledge base:

```
\neg AM \lor \neg AQ with AM \leadsto \neg AQ
```

 $AQ \lor BQ$ with $\neg AQ \rightsquigarrow BQ$

Waiter knows that Berta ordered the Quattro Stagioni pizza.

Example

Let
$$\Delta = \{ \{A, \neg B, C\}, \{A, \neg C\}, \{\neg A, E\}, \{B, E\} \}.$$

Does $\Delta \models E$ hold?

solution:

- test if the following is a tautology: $(A \lor \neg B \lor C) \land (A \lor \neg C) \land (\neg A \lor E) \land (B \lor E) \rightarrow E$
- equivalently: test if the following is unsatisfiable: $(A \lor \neg B \lor C) \land (A \lor \neg C) \land (\neg A \lor E) \land (B \lor E) \land \neg E$
- ... (resolution steps: \rightsquigarrow blackboard)

Example

Let
$$\Delta = \{ \{A, \neg B, C\}, \{A, \neg C\}, \{\neg A, E\}, \{B, E\} \}.$$

Does $\Delta \models E$ hold?

solution:

- test if the following is a tautology: $(A \lor \neg B \lor C) \land (A \lor \neg C) \land (\neg A \lor E) \land (B \lor E) \rightarrow E$
- equivalently: test if the following is unsatisfiable: $(A \lor \neg B \lor C) \land (A \lor \neg C) \land (\neg A \lor E) \land (B \lor E) \land \neg E$
- ... (resolution steps: \rightsquigarrow blackboard)
- observation: empty clause □ can be derived, hence Δ' unsatisfiable
- consequently $\Delta \models E$

Reasoning	Resolution	DPLL	DPLL on Horn Formulas
000000	000000●00	000000000	

Exercise

Use the resolution method to show that $\psi = C \land \neg D$ follows logically from $\phi = \{\{A, B, C\}, \{\neg A, \neg B, D\}, \{A, \neg B, C\}, \{B, C, D\}, \{\neg D, F\}, \{E, \neg F\}, \{\neg D, \neg E\}\}$, i.e., $\phi \models \psi$.

Compare the number of required resolution steps to the size (number of rows) of a truth table that verifies the same statement.

Exercise Solution

 $\phi = \{ \{A, B, C\}, \{\neg A, \neg B, D\}, \{A, \neg B, C\}, \{B, C, D\}, \{\neg D, F\}, \{E, \neg F\}, \{\neg D, \neg E\} \}$ $\psi = C \land \neg D$

Testing if $\phi \models \psi$ is equivalent to testing if $\phi \rightarrow \psi$ is a tautology. We use resolution to show that ϕ and the negation of ψ is not satisfiable. Hence, first add $\neg \psi$ to ϕ , i.e., $\phi' = \phi \cup \{\neg C, D\}$. (1) From $\{A, \neg B, C\}$ and $\{\neg A, \neg B, D\}$ we get $\{\neg B, C, D\}$, (2) from which with $\{B, C, D\}$ we get $\{C, D\}$. (3) From $\{\neg D, F\}$ and $\{E, \neg F\}$ we get $\{\neg D, E\}$. (4) from which with $\{\neg D, \neg E\}$ we get $\{\neg D\}$. (5) from which with $\{\neg C, D\}$ we get $\{\neg C\}$. (6) from which with $\{C, D\}$ we get $\{D\}$. (7) from which with $\{\neg D\}$ we get the empty clause \Box . Therefore, ϕ' is unsatisfiable and hence $\phi \models \psi$.

We use 7 resolution steps compared to a truth table with $2^6 = 64$ interpretations (= rows).

Resolution: Discussion

- if a sentence φ can be derived from Δ , then $\Delta \models \varphi$ (resolution is sound)
- but $\Delta \models \varphi$ does not imply that φ can be derived from Δ (resolution is not complete)
- however: resolution is a complete proof method to test sentences for unsatisfiability

(i.e., Δ is unsatisfiable iff \Box can be derived from Δ)

- in the worst case, resolution proofs can take exponential time
- a good strategy to determine next resolution step is needed

DPLL •000000000 DPLL on Horn Formulas

DPLL

Propositional Logic: Algorithmic Problems

main problems:

• reasoning ($\Theta \models \varphi$?):

Does the sentence φ follow logically from the sentences Θ ?

• equivalence ($\varphi \equiv \psi$):

Are the sentences φ and ψ logically equivalent?

satisfiability (SAT):

Is sentence φ satisfiable? If yes, find a model for φ .

Propositional Logic: Algorithmic Problems

main problems:

• reasoning ($\Theta \models \varphi$?):

Does the sentence φ follow logically from the sentences Θ ? Is $\Theta \cup \{\neg \varphi\}$ is unsatisfiable?

• equivalence ($\varphi \equiv \psi$):

Are the sentences φ and ψ logically equivalent? Are both $\varphi \land \neg \psi$ and $\psi \land \neg \varphi$ unsatisfiable?

satisfiability (SAT):

Is sentence φ satisfiable? If yes, find a model for φ .

The Satisfiability Problem

The Satisfiability Problem (SAT)

given:

sentence in conjunctive normal form

usually represented as pair $\langle V, \Delta \rangle$:

- V set of propositional variables (propositions)
- Δ set of clauses over V

find:

satisfying model

or proof that no model exists

SAT is a famous NP-complete problem (Cook 1971; Levin 1973).

SAT vs. CSP

SAT can be considered as constraint satisfaction problem:

- CSP variables = propositions
- domains = {**F**, **T**}
- constraints = clauses

However, we often have constraints that affect > 2 variables.

Due to this relationship, all ideas for CSPs are applicable to SAT:

- search
- inference
- variable and value orders

The DPLL Algorithm

The DPLL algorithm (Davis/Putnam/Logemann/Loveland) corresponds to backtracking with inference for CSPs.

recursive call DPLL(Δ , *I*)

for clause set Δ and partial interpretation I

- result is consistent extension of *I*;
 unsatisfiable if no such extension exists
- first call $DPLL(\Delta, \emptyset)$

Inference and Orders in DPLL

 simplify: after assigning value d to variable v, simplify all clauses that contain v

ightarrow forward checking (for constraints of potentially higher arity)

- unit clause heuristic: variables that occur in clauses without other variables (unit clauses) are assigned immediately
 minimum remaining values variable order
- pure symbol heuristic: variables that always occur with the same "sign" (pure variables) are assigned immediately

The DPLL Algorithm: Pseudo-Code

```
function DPLL(\Delta, I):
if \Box \in \Lambda:
                                                    [empty clause exists \rightarrow unsatisfiable]
     return unsatisfiable
else if \Lambda = \emptyset:
                                 [no clauses left \rightarrow interpretation I satisfies sentence]
     return /
else if there is a pure variable \{v\} in \Delta
                                                                       [pure symbol heuristic]
     or a unit clause \{v\} or \{\neg v\} in \Delta:
                                                                         [unit clause heuristic]
     let v be such a variable and d the associated truth value
     return DPLL(simplify(\Delta, v, d), I \cup \{v \mapsto d\})
else:
     select some variable v which occurs in \Delta
     for each d \in {F, T} in some order:
           \Delta' := simplify(\Delta, v, d)
           I' := \text{DPLL}(\Delta', I \cup \{v \mapsto d\})
           if l' \neq unsatisfiable
                return l'
     return unsatisfiable
```

The DPLL Algorithm: simplify

function simplify(Δ , v, d)

let ℓ be the literal for v that is satisfied by $v \mapsto d$ $\Delta' := \{C \mid C \in \Delta \text{ such that } \ell \notin C\}$ $\Delta'' := \{C \setminus \{\overline{\ell}\} \mid C \in \Delta'\}$ **return** Δ''

Remove clauses containing ℓ

ightarrow clause is satisfied by $v\mapsto d$

- Remove $\bar{\ell}$ from remaining clauses
 - \rightsquigarrow clause has to be satisfied with other variable

Reasoning	Resolution	DPLL	DPLL on Horn Formulas
000000	00000000	0000000000	0000

Example

$$\Delta = \{\{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

Reasoning	Resolution	DPLL	DPLL on Horn Formulas
000000	00000000	00000000●0	
Example			

$$\Delta = \{\{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

• pure symbol heuristic: $W \mapsto \mathbf{F}$

Reasoning	Resolution	DPLL	DPLL on Horn Formulas
000000	00000000	0000000000	
Example			

 $\Delta = \{\{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$

 $\{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$

25/30

1 pure symbol heuristic: $W \mapsto \mathbf{F}$

Reasoning	Resolution	DPLL	DPLL on Horn Formulas
000000	00000000	0000000000	0000
Example			

$$\Delta = \{\{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

- pure symbol heuristic: $W \mapsto \mathbf{F}$ {{X, Y, ¬Z}, {¬X, ¬Y}, {Z}, {X, ¬Y}}
- **a** unit clause heuristic: $Z \mapsto \mathbf{T}$

Reasoning	Resolution	DPLL	DPLL on Horn Formulas
000000	00000000	00000000000	0000
Example			

$$\Delta = \{\{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

- pure symbol heuristic: $W \mapsto \mathbf{F}$ {{X, Y, ¬Z}, {¬X, ¬Y}, {Z}, {X, ¬Y}}
- unit clause heuristic: $Z \mapsto \mathbf{T}$ { $\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}$ }

Reasoning	Resolution	DPLL	DPLL on Horn Formulas
DOOOOO	00000000	0000000000	
Example			

$$\Delta = \{\{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

- pure symbol heuristic: $W \mapsto \mathbf{F}$ {{X, Y, ¬Z}, {¬X, ¬Y}, {Z}, {X, ¬Y}}
- unit clause heuristic: $Z \mapsto \mathbf{T}$ { $\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}$ }
- splitting on variable X:

Reasoning	Resolution	DPLL	DPLL on Horn Formulas
DOOOOO	00000000	0000000000	0000
Example			

$$\Delta = \{\{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

- pure symbol heuristic: $W \mapsto \mathbf{F}$ {{X, Y, ¬Z}, {¬X, ¬Y}, {Z}, {X, ¬Y}}
- unit clause heuristic: $Z \mapsto \mathbf{T}$ { $\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}$ }
- splitting on variable X:

2a. $X \mapsto \mathbf{F}$ {{Y}, {¬Y}}

Reasoning	Resolution	DPLL	DPLL on Horn Formulas
DOOOOO	00000000	0000000000	

$$\Delta = \{\{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

- pure symbol heuristic: $W \mapsto \mathbf{F}$ {{X, Y, ¬Z}, {¬X, ¬Y}, {Z}, {X, ¬Y}}
- unit clause heuristic: $Z \mapsto \mathbf{T}$ { $\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}$ }
- splitting on variable X:

2a. $X \mapsto \mathbf{F}$ {{Y}, {¬Y}}

Example

3a. unit clause heuristic: $Y \mapsto \mathbf{T}$ { \Box }

leasoning	Resolution	DPLL	DPLL on Horn Formulas
000000	00000000	0000000000	0000

$$\Delta = \{\{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

- pure symbol heuristic: $W \mapsto \mathbf{F}$ {{X, Y, ¬Z}, {¬X, ¬Y}, {Z}, {X, ¬Y}}
- unit clause heuristic: $Z \mapsto \mathbf{T}$ { $\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}$ }
- splitting on variable X:
- 2a. $X \mapsto \mathbf{F}$ 2b. $X \mapsto \mathbf{T}$ $\{\{Y\}, \{\neg Y\}\}$ $\{\{\neg Y\}\}$
- 3a. unit clause heuristic: $Y \mapsto \mathbf{T}$ { \Box }

Example

Reasoning	Resolution	DPLL	DPLL on Horn Formulas
	00000000	0000000000	0000
Example			

$$\Delta = \{\{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

- pure symbol heuristic: $W \mapsto \mathbf{F}$ {{X, Y, ¬Z}, {¬X, ¬Y}, {Z}, {X, ¬Y}}
- unit clause heuristic: $Z \mapsto \mathbf{T}$ { $\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}$ }
- splitting on variable X:

2a. $X \mapsto \mathbf{F}$ {{Y}, {¬Y}}

3a. unit clause heuristic: $Y \mapsto \mathbf{T}$ { \Box }

- $\begin{array}{ll} \text{2b.} & X \mapsto \mathbf{T} \\ & \{\{\neg Y\}\}\end{array}$
- 3b. unit clause heuristic: $Y \mapsto \mathbf{F}$ {}

Reasoning	Resolution	DPLL	DPLL on Horn Formulas
	00000000	0000000000	0000
Example			

$$\Delta = \{\{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

- pure symbol heuristic: $W \mapsto \mathbf{F}$ {{X, Y, ¬Z}, {¬X, ¬Y}, {Z}, {X, ¬Y}}
- unit clause heuristic: $Z \mapsto T$ { $\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}$ }
- splitting on variable X:

2a. $X \mapsto \mathbf{F}$ {{Y}, {¬Y}}

3a. unit clause heuristic: $Y \mapsto \mathbf{T}$ { \Box } 2b. X → T {{¬Y}}
3b. unit clause heuristic: Y → F {}

Properties of DPLL

- DPLL is sound and complete
- DPLL computes a model where φ is true if such a model exists
 - some variables possibly remain unassigned in the solution *I*; their values can be chosen arbitrarily
- time complexity in general exponential
- → important in practice: good variable order and additional inference methods (in particular clause learning)
 - best known SAT algorithms are based on DPLL

DPLL on Horn Formulas

Horn Formulas

important special case: Horn formulas

Definition (Horn formula)

A Horn clause is a clause with at most one positive literal, i.e., of the form

```
\neg x_1 \lor \cdots \lor \neg x_n \lor y \text{ or } \neg x_1 \lor \cdots \lor \neg x_n
```

(n = 0 is allowed.)

A Horn formula is a propositional formula in conjunctive normal form that only consists of Horn clauses.

- foundation of logic programming (e.g., PROLOG)
- critical in many kinds of practical reasoning problems

DPLL on Horn Formulas

DPLL on Horn Formulas

Proposition (DPLL on Horn formulas)

If the input formula φ is a Horn formula, then the time complexity of DPLL is polynomial in the length of φ .

Summary

- Reasoning: the formula ψ follows from the set of formulas Φ if all models of Φ are also models of ψ .
- Reasoning can be reduced to testing validity (with the deduction theorem).
- Testing validity can be reduced to testing unsatisfiability.
- Resolution can be applied to formulas in conjunctive normal form. → can be used to test if a set of clauses is unsatisfiable.
- DPLL: systematic backtracking search with unit propagation
- DPLL successful in practice, polynomial on Horn formulas