Artificial Intelligence

Logic 2: Reasoning

Jendrik Seipp

Linköping University

Reasoning

Reasoning: Intuition

- often, we have a (set of) sentence(s) (a knowledge base)
- that represents our knowledge of the world
- knowledge bases usually only represent an incomplete description of the world
- \longrightarrow we want to know if other sentences follow logically

What does this mean?

Reasoning: Intuition

- **assume** knowledge base $\Phi = \{P \lor Q, R \lor \neg P, S\}$
- Φ represents sentence $(P \lor Q) \land (R \lor \neg P) \land S$
- S holds in every interpretation where Φ is true What about P, Q and R?
- \rightarrow consider all interpretations where Φ is true:

Р	Q	R	S
F	T	F	T
F	T	T	T
Т	F	Т	T
T	T	T	T

Reasoning: Intuition

Reasoning

- assume knowledge base $\Phi = \{P \lor Q, R \lor \neg P, S\}$
- \blacksquare Φ represents sentence $(P \lor Q) \land (R \lor \neg P) \land S$
- S holds in every interpretation where Φ is true What about P, Q and R?
- \rightarrow consider all interpretations where Φ is true:

Р	Q	R	S
F	Т	F	T
F	Т	Т	T
Т	F	Т	T
Т	Т	Т	T

- the sentence $Q \vee R$ holds in all interpretations where Φ is true
- therefore, " $Q \lor R$ follows logically from Φ "

Reasoning: Formally

Definition (logical consequence)

Let Φ be a set of sentences. A sentence ψ follows logically from Φ (in symbols: $\Phi \models \psi$) if all models for Φ are also models for ψ .

in other words: for each interpretation *I*, if $I \models \varphi$ for all $\varphi \in \Phi$, then also $I \models \psi$

How can we automatically compute whether $\Phi \models \psi$?

- one possibility: build a truth table
- Are there "better" possibilities that (potentially) avoid generating the whole truth table?

Reasoning: Deduction Theorem

Proposition (deduction theorem)

Let Φ be a finite set of sentences and let ψ be a sentence. Then

$$\Phi \models \psi \quad \textit{iff} \quad (\bigwedge_{\varphi \in \Phi} \varphi) \to \psi \ \textit{is a tautology}.$$

Reasoning

consequence of deduction theorem: reasoning can be reduced to testing validity

Algorithm

Question: Does $\Phi \models \psi$ hold?

- test if $(\bigwedge_{\varphi \in \Phi} \varphi) \to \psi$ is tautology
- 2 if yes, then $\Phi \models \psi$, otherwise $\Phi \not\models \psi$

In the following: Can we test for validity "efficiently", i.e., without computing the whole truth table?

Resolution

Sets of Clauses

for the rest of this chapter:

- we assume sentences in CNF
- clause represented as a set C of literals
- \blacksquare sentence represented as a set \triangle of clauses

Example

Let $\varphi = (P \vee Q) \wedge \neg P$.

- $\blacksquare \varphi$ in conjunctive normal form
- $\blacksquare \varphi$ consists of clauses $(P \lor Q)$ and $\neg P$
- \blacksquare representation of φ as set of sets of literals: $\{\{P,Q\}, \{\neg P\}\}\}$

careful: distinguish □ (empty clause) vs. Ø (empty set of clauses)

Resolution: Idea

- consequence of deduction theorem:
 reasoning can be reduced to testing validity
- observation: sentence φ valid iff $\neg \varphi$ unsatisfiable
- testing for validity can be reduced to testing unsatisfiability

Resolution: Idea

- \blacksquare method to test sentence φ for unsatisfiability
- **idea**: derive new sentences from φ that follow logically from φ
- if empty clause \square can be derived $\rightsquigarrow \varphi$ unsatisfiable

The Resolution Rule

$$\frac{C_1 \cup \{\boldsymbol{\ell}\}, C_2 \cup \{\bar{\boldsymbol{\ell}}\}}{C_1 \cup C_2}$$

- "from $C_1 \cup \{\ell\}$ and $C_2 \cup \{\bar{\ell}\}$, we can conclude $C_1 \cup C_2$ "
- $C_1 \cup C_2$ is resolvent of parent clauses $C_1 \cup \{\ell\}$ and $C_2 \cup \{\bar{\ell}\}$.
- \blacksquare the literals ℓ and $\bar{\ell}$ are called resolution literals, the corresponding proposition is called resolution variable
- resolvent follows logically from parent clauses

Reasoning in the Pizzeria

Original formulas:

[each pizza has exactly one owner]

 $AM \leftrightarrow \neg BM$

 $AQ \leftrightarrow \neg BQ$

[each person ordered exactly one pizza]

 $AM \leftrightarrow \neg AQ$

 ${\tt BM} \leftrightarrow \neg {\tt BQ}$

Reasoning in the Pizzeria

CNF:

[each pizza has exactly one owner]

 $AM \lor BM$, $\neg AM \lor \neg BM$

 $AQ \lor BQ$, $\neg AQ \lor \neg BQ$

[each person ordered exactly one pizza]

 $AM \vee AQ$, $\neg AM \vee \neg AQ$

 $BM \lor BQ$, $\neg BM \lor \neg BQ$

Reasoning in the Pizzeria

CNF:

[each pizza has exactly one owner]

 $AM \lor BM$, $\neg AM \lor \neg BM$

 $AQ \lor BQ$, $\neg AQ \lor \neg BQ$

[each person ordered exactly one pizza]

 $AM \lor AQ$, $\neg AM \lor \neg AQ$

 $BM \lor BQ$, $\neg BM \lor \neg BQ$

Adam ordered Margherita \sim add to KB:

Resolution over knowledge base:

 $\neg AM \lor \neg AQ$ with $AM \leadsto \neg AQ$

 $AQ \lor BQ$ with $\neg AQ \leadsto BQ$

Waiter knows that Berta ordered the Quattro Stagioni pizza.

Let
$$\Delta = \{ \{A, \neg B, C\}, \{A, \neg C\}, \{\neg A, E\}, \{B, E\} \}$$
.
Does $\Delta \models E$ hold?

solution:

- test if the following is a tautology: $(A \lor \neg B \lor C) \land (A \lor \neg C) \land (\neg A \lor E) \land (B \lor E) \rightarrow E$
- equivalently: test if the following is unsatisfiable: $(A \lor \neg B \lor C) \land (A \lor \neg C) \land (\neg A \lor E) \land (B \lor E) \land \neg E$
- \blacksquare ... (resolution steps: \rightsquigarrow blackboard)

Let
$$\Delta = \{ \{A, \neg B, C\}, \{A, \neg C\}, \{\neg A, E\}, \{B, E\} \}$$
.
Does $\Delta \models E$ hold?

solution:

- test if the following is a tautology: $(A \lor \neg B \lor C) \land (A \lor \neg C) \land (\neg A \lor E) \land (B \lor E) \rightarrow E$
- equivalently: test if the following is unsatisfiable: $(A \lor \neg B \lor C) \land (A \lor \neg C) \land (\neg A \lor E) \land (B \lor E) \land \neg E$
- ... (resolution steps: ~> blackboard)
- observation: empty clause □ can be derived, hence Λ' unsatisfiable
- \blacksquare consequently $\Delta \models E$

Exercise

Use the resolution method to show that $\psi = C \land \neg D$ follows logically from $\phi = \{\{A, B, C\}, \{\neg A, \neg B, D\}, \{A, \neg B, C\}, \{B, C, D\}, \{\neg D, F\}, \{E, \neg F\}, \{\neg D, \neg E\}\}$, i.e., $\phi \models \psi$.

Compare the number of required resolution steps to the size (number of rows) of a truth table that verifies the same statement.

Exercise Solution

$$\phi = \{ \{A, B, C\}, \{\neg A, \neg B, D\}, \{A, \neg B, C\}, \{B, C, D\}, \{\neg D, F\}, \{E, \neg F\}, \{\neg D, \neg E\} \}$$

$$\psi = C \land \neg D$$

Testing if $\phi \models \psi$ is equivalent to testing if $\phi \rightarrow \psi$ is a tautology. We use resolution to show that ϕ and the negation of ψ is not satisfiable. Hence, first add $\neg \psi$ to ϕ , i.e., $\phi' = \phi \cup \{\neg C, D\}$.

- (1) From $\{A, \neg B, C\}$ and $\{\neg A, \neg B, D\}$ we get $\{\neg B, C, D\}$,
- (2) from which with $\{B, C, D\}$ we get $\{C, D\}$.
- (3) From $\{\neg D, F\}$ and $\{E, \neg F\}$ we get $\{\neg D, E\}$.
- (4) from which with $\{\neg D, \neg E\}$ we get $\{\neg D\}$.
- (5) from which with $\{\neg C, D\}$ we get $\{\neg C\}$.
- (6) from which with $\{C, D\}$ we get $\{D\}$,
- (7) from which with $\{\neg D\}$ we get the empty clause \square .

Therefore, ϕ' is unsatisfiable and hence $\phi \models \psi$.

We use 7 resolution steps compared to a truth table with $2^6 = 64$ interpretations (= rows).

Resolution: Discussion

- if a sentence φ can be derived from Δ , then $\Delta \models \varphi$ (resolution is sound)
- but $\Delta \models \varphi$ does not imply that φ can be derived from Δ (resolution is not complete)
- however: resolution is a complete proof method to test sentences for unsatisfiability
 - (i.e., Δ is unsatisfiable iff \Box can be derived from Δ)
- in the worst case, resolution proofs can take exponential time
- a good strategy to determine next resolution step is needed

DPLL

Propositional Logic: Algorithmic Problems

main problems:

- reasoning ($\Theta \models \varphi$?): Does the sentence φ follow logically from the sentences Θ ?
- equivalence $(\varphi \equiv \psi)$: Are the sentences φ and ψ logically equivalent?
- satisfiability (SAT): Is sentence φ satisfiable? If yes, find a model for φ .

Propositional Logic: Algorithmic Problems

main problems:

- reasoning ($\Theta \models \varphi$?): Does the sentence φ follow logically from the sentences Θ ? Is $\Theta \cup \{\neg \varphi\}$ is unsatisfiable?
- equivalence $(\varphi \equiv \psi)$: Are the sentences φ and ψ logically equivalent? Are both $\varphi \land \neg \psi$ and $\psi \land \neg \varphi$ unsatisfiable?
- satisfiability (SAT): Is sentence φ satisfiable? If yes, find a model for φ .

The Satisfiability Problem

The Satisfiability Problem (SAT)

given:

sentence in conjunctive normal form

usually represented as pair $\langle V, \Delta \rangle$:

- V set of propositional variables (propositions)
- A set of clauses over V

find:

- satisfying model
- or proof that no model exists

SAT is a famous NP-complete problem (Cook 1971; Levin 1973).

SAT vs. CSP

SAT can be considered as constraint satisfaction problem:

- CSP variables = propositions
- domains = {F, T}
- constraints = clauses

However, we often have constraints that affect > 2 variables.

Due to this relationship, all ideas for CSPs are applicable to SAT:

- search
- inference
- variable and value orders

The DPLL Algorithm

The DPLL algorithm (Davis/Putnam/Logemann/Loveland) corresponds to backtracking with inference for CSPs.

- recursive call $DPLL(\Delta, I)$ for clause set Δ and partial interpretation I
- result is consistent extension of I; unsatisfiable if no such extension exists
- first call $DPLL(\Delta, \emptyset)$

Inference and Orders in DPLL

- simplify: after assigning value d to variable v, simplify all clauses that contain v → forward checking (for constraints of potentially higher arity)
- unit clause heuristic: variables that occur in clauses without other variables (unit clauses) are assigned immediately
 → minimum remaining values variable order
- pure symbol heuristic: variables that always occur with the same "sign" (pure variables) are assigned immediately

The DPLL Algorithm: Pseudo-Code

```
function DPLL(\Delta, I):
if \sqcap \in \Lambda:
                                                   [empty clause exists → unsatisfiable]
     return unsatisfiable
else if \Lambda = \emptyset:
                                [no clauses left → interpretation I satisfies sentence]
     return /
else if there is a pure variable \{v\} in \Delta
                                                                    [pure symbol heuristic]
     or a unit clause \{v\} or \{\neg v\} in \Delta:
                                                                      [unit clause heuristic]
     let v be such a variable and d the associated truth value
     return DPLL(simplify(\Delta, v, d), I \cup \{v \mapsto d\})
else:
     select some variable v which occurs in \Delta
     for each d \in \{F, T\} in some order:
          \Delta' := simplify(\Delta, v, d)
          I' := DPLL(\Delta', I \cup \{v \mapsto d\})
          if l' \neq unsatisfiable
                return /
     return unsatisfiable
```

The DPLL Algorithm: simplify

function simplify (Δ, v, d)

let ℓ be the literal for v that is satisfied by $v \mapsto d$

 $\Delta' := \{C \mid C \in \Delta \text{ such that } \ell \notin C\}$ $\Delta'' := \{C \setminus \{\bar{\ell}\} \mid C \in \Delta'\}$

return Δ''

- Remove clauses containing ℓ \rightarrow clause is satisfied by $v \mapsto d$
- Remove $\bar{\ell}$ from remaining clauses \rightarrow clause has to be satisfied with other variable

$$\Delta = \{ \{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\} \}$$

$$\Delta = \{ \{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\} \}$$

• pure symbol heuristic: $W \mapsto \mathbf{F}$

$$\Delta = \{ \{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\} \}$$

• pure symbol heuristic: $W \mapsto \mathbf{F}$ $\{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}\}$

$$\Delta = \{ \{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\} \}$$

- pure symbol heuristic: $W \mapsto \mathbf{F}$ $\{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}\}$
- a unit clause heuristic: $Z \mapsto \mathbf{T}$

$$\Delta = \{ \{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\} \}$$

- pure symbol heuristic: $W \mapsto \mathbf{F}$ $\{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}\}$
- unit clause heuristic: $Z \mapsto \mathbf{T}$ $\{\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}$

$$\Delta = \{ \{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\} \}$$

- o pure symbol heuristic: $W \mapsto \mathbf{F}$ $\{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$
- unit clause heuristic: $Z \mapsto \mathbf{T}$ $\{\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}$
- splitting on variable X:

$$\Delta = \big\{ \big\{ \neg W, X, \neg Z \big\}, \big\{ \neg W, Y \big\}, \big\{ X, Y, \neg Z \big\}, \big\{ \neg X, \neg Y \big\}, \big\{ Z \big\}, \big\{ X, \neg Y \big\} \big\}$$

- pure symbol heuristic: $W \mapsto \mathbf{F}$ $\{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}\}$
- unit clause heuristic: $Z \mapsto \mathbf{T}$ $\{\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}$
- splitting on variable X:

2a.
$$X \mapsto \mathbf{F}$$
 $\{\{Y\}, \{\neg Y\}\}$

$$\Delta = \{ \{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\} \}$$

- pure symbol heuristic: $W \mapsto \mathbf{F}$ $\{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}\}$
- unit clause heuristic: $Z \mapsto \mathbf{T}$ $\{\{X,Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}$
- splitting on variable X:
- 2a. $X \mapsto \mathbf{F}$ $\{\{Y\}, \{\neg Y\}\}$
- 3a. unit clause heuristic: $Y \mapsto T$ $\{\Box\}$

$$\Delta = \{ \{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\} \}$$

- opure symbol heuristic: $W \mapsto \mathbf{F}$ $\{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}\}$
- unit clause heuristic: $Z \mapsto \mathbf{T}$ $\{\{X,Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}$
- splitting on variable X:

2a.
$$X \mapsto \mathbf{F}$$
 2b. $X \mapsto \mathbf{T}$ $\{\{Y\}, \{\neg Y\}\}$

3a. unit clause heuristic: $Y \mapsto T$ $\{\Box\}$

$$\Delta = \{ \{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\} \}$$

- opure symbol heuristic: $W \mapsto \mathbf{F}$ $\{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}\}$
- unit clause heuristic: $Z \mapsto \mathbf{T}$ $\{\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}$
- splitting on variable X:

2a.
$$X \mapsto \mathbf{F}$$
 $\{\{Y\}, \{\neg Y\}\}$

3a. unit clause heuristic:
$$Y \mapsto T$$
 $\{\Box\}$

2b.
$$X \mapsto \mathbf{T}$$
 $\{\{\neg Y\}\}$

3b. unit clause heuristic:
$$Y \mapsto \mathbf{F}$$
 {}

$$\Delta = \{ \{\neg W, X, \neg Z\}, \{\neg W, Y\}, \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\} \}$$

- o pure symbol heuristic: $W \mapsto F$ $\{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}\}$
- unit clause heuristic: $Z \mapsto T$ { $\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}$
- splitting on variable X:

2a.
$$X \mapsto \mathbf{F}$$
 $\{\{Y\}, \{\neg Y\}\}$

3a. unit clause heuristic:
$$Y \mapsto \mathbf{T}$$
 $\{\Box\}$

2b.
$$X \mapsto \mathbf{T}$$
 $\{\{\neg Y\}\}$

3b. unit clause heuristic:
$$Y \mapsto F$$
 {}

Properties of DPLL

- DPLL is sound and complete
- DPLL computes a model where φ is true if such a model exists
 - some variables possibly remain unassigned in the solution I;
 their values can be chosen arbitrarily
- time complexity in general exponential
- → important in practice: good variable order and additional inference methods (in particular clause learning)
 - best known SAT algorithms are based on DPLL

Summary

- Reasoning: the formula ψ follows from the set of formulas Φ if all models of Φ are also models of ψ .
- Reasoning can be reduced to testing validity (with the deduction theorem).
- Testing validity can be reduced to testing unsatisfiability.
- Resolution can be applied to formulas in conjunctive normal form.
 → can be used to test if a set of clauses is unsatisfiable.
- DPLL: systematic backtracking search with unit propagation
- DPLL successful in practice