Artificial Intelligence
 Logic 1: Syntax, Semantics and CNF

Jendrik Seipp

Linköping University

Questions?

post feedback and ask questions anonymously at
https://padlet.com/jendrikseipp/tddc17

Introduction

Motivation: Logic

■ allows to model problems and represent knowledge

- allows to derive conclusions from knowledge (reasoning)
- basics for general problem descriptions and solving strategies e.g., automated planning
we restrict to the (simple) form of propositional logic

Reasoning Example

Adam and Berta are in a pizzeria.
Waiter: "Who ordered Margherita?"
Adam: "It's mine."
\leadsto Waiter gives Adam the pizza.
Waiter: "Who ordered Quattro Stagioni?"

Reasoning Examples

Syntax

Propositions and Sentences

■ a proposition is an atomic statements over the world, e.g.

- AM
- BM

■ cell-1-1-is-1

- cell-1-1-is-2
- propositions with logical connectives
like "and" (\wedge), "or" (\vee), "not" (\neg)
form sentences (or propositional formulas), e.g.,
■ ($\mathrm{AM} \vee \mathrm{BM}$)
- ($\neg \mathrm{AQ} \rightarrow \mathrm{BQ})$
- $\neg($ cell-1-1-is-1 \wedge cell-1-2-is-1) \wedge

$$
\neg(\text { cell-1-1-is-1 } \wedge \text { cell-1-3-is-1 }) \wedge \ldots
$$

Syntax

let Σ be an alphabet of propositions
(e.g., $\{P, Q, R\}$ or $\left\{X_{1}, X_{2}, X_{3}, \ldots\right\}$)

Definition (sentences)
■ T ("always-true") and \perp ("always-false") are sentences

- every proposition in Σ is an atomic sentence
- if φ is a sentence, then $\neg \varphi$ is a sentence (negation)
- if φ and ψ are sentences, then so are
- $(\varphi \wedge \psi)$ (conjunction)
- $(\varphi \vee \psi)$ (disjunction)
- $(\varphi \rightarrow \psi)$ (implication)
- $(\varphi \leftrightarrow \psi)$ (biconditional)
binding strength: $(\neg)>(\wedge)>(\vee)>(\rightarrow)>(\leftrightarrow)$
(redundant parentheses may be omitted)

Reasoning Example

[each pizza has exactly one owner]
[each person ordered exactly one pizza]

Reasoning Example

[each pizza has exactly one owner]
$\mathrm{AM} \leftrightarrow \neg \mathrm{BM}$
$\mathrm{AQ} \leftrightarrow \neg \mathrm{BQ}$
[each person ordered exactly one pizza]

Reasoning Example

[each pizza has exactly one owner]
$\mathrm{AM} \leftrightarrow \neg \mathrm{BM}$
$\mathrm{AQ} \leftrightarrow \neg \mathrm{BQ}$
[each person ordered exactly one pizza]
$\mathrm{AM} \leftrightarrow \neg \mathrm{AQ}$
$B M \leftrightarrow \neg B Q$

Semantics

Semantics: Intuition

a sentence can be true or false, depending on the truth values of the propositions

■ a proposition p is either true or false, and the truth value of p is determined by an interpretation
■ the truth value of a sentence follows from the truth values of the propositions

Example

$\varphi=(P \vee Q) \wedge R$
■ if P and Q are false, then φ is false (independent of the truth value of R)

- if P and R are true, then φ is true (independent of the truth value of Q)

Semantics: Formally

■ defined over interpretations I: $\Sigma \rightarrow\{\mathbf{T}, \mathbf{F}\}$
■ interpretation I: assignment of propositions in Σ
■ when is a sentence φ true under interpretation I? symbolically: When does $I=\varphi$ hold?

Note: The AIMA book calls all interpretations "models", but we want to say " I is a model of φ " or "I models φ ".

Semantics: Formally

Definition $(I \mid=\varphi)$

- I = T
-I $\vDash \vDash$
- $I \| P$ iff $I(P)=\mathbf{T} \quad$ for $P \in \Sigma$

■ $I \not \vDash P$ iff $I(P)=\mathbf{F} \quad$ for $P \in \Sigma$

- I $=\neg \varphi$ iff $I \not \vDash \varphi$

■ I $=(\varphi \wedge \psi)$ iff $I=\varphi$ and $I=\psi$
■ I = $(\varphi \vee \psi)$ iff $I \vDash=\varphi$ or $I=\psi$
■ I $=(\varphi \rightarrow \psi)$ iff $I \not \vDash \varphi$ or $I=\psi$
■ I $\mid=(\varphi \leftrightarrow \psi)$ iff $I \vDash \varphi$ and $I \mid=\psi$ or $I \not \vDash \varphi$ and $I \not \vDash \psi$
■ I $=\Phi$ for a set of sentences Φ iff $I \vDash \varphi$ for all $\varphi \in \Phi$

Examples

Example (Interpretation I)

$I=\{P \mapsto \mathbf{T}, Q \mapsto \mathbf{T}, R \mapsto \mathbf{F}, S \mapsto \mathbf{F}\}$

Which sentences are true under l?

■ $\varphi_{1}=\neg(P \wedge Q) \wedge(R \wedge \neg S)$. Does $I=\varphi_{1}$ hold?

- $\varphi_{2}=(P \wedge Q) \wedge \neg(R \wedge \neg S)$. Does $I \mid=\varphi_{2}$ hold?
- $\varphi_{3}=(R \rightarrow P)$. Does $I /=\varphi_{3}$ hold?

Terminology

Definition (satisfiable etc.)

a sentence φ is called
■ satisfiable if there is an interpretation I such that $I \vDash \varphi$

- unsatisfiable if φ is not satisfiable

■ falsifiable if there is an interpretation I such that I $\vDash \varphi$

- valid (= a tautology) if $I \mid=\varphi$ for all interpretations I

Definition (logical equivalence)

sentences φ and ψ are called logically equivalent $(\varphi \equiv \psi)$ if for all interpretations $I: I \mid=\varphi$ iff $I \mid=\psi$.

Truth Tables

How to determine automatically if a given sentence is (un)satisfiable, falsifiable, valid?
\leadsto simple method: truth tables
example: Is $\varphi=((P \vee H) \wedge \neg H) \rightarrow P$ valid?

P	H	$P \vee H$	$((P \vee H) \wedge \neg H)$	$((P \vee H) \wedge \neg H) \rightarrow P$
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}

$I \mid=\varphi$ for all interpretations $I \sim \varphi$ is valid.
What about satisfiability, falsifiability, unsatisfiability?
Drawback of truth tables: exponential size in the number of propositions

Example

Fill out the truth table for the following formula:

$$
\varphi=(A \vee \neg B) \rightarrow B
$$

A	B	$A \vee \neg B$	$(A \vee \neg B) \rightarrow B$
\mathbf{T}	\mathbf{T}		
\mathbf{T}	\mathbf{F}		
\mathbf{F}	\mathbf{T}		
\mathbf{F}	\mathbf{F}		

Example

Fill out the truth table for the following formula:

$$
\varphi=(A \vee \neg B) \rightarrow B
$$

A	B	$A \vee \neg B$	$(A \vee \neg B) \rightarrow B$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}

Conjunctive Normal Form

CNF: Terminology

Definition (literal)

If $P \in \Sigma$, then the sentences P and $\neg P$ are called literals.
P is called positive literal, $\neg P$ is called negative literal.
The complementary literal to P is $\neg P$ and vice versa.
For a literal ℓ, the complementary literal to ℓ is denoted with $\bar{\ell}$.

Definition (clause)

A disjunction of 0 or more literals is called a clause.
The empty clause \perp is also written as \square.
Clauses consisting of only one literal are called unit clauses.

Conjunctive Normal Form

Definition (conjunctive normal forms)
A sentence φ is in conjunctive normal form (CNF, clause form) if φ is a conjunction of 0 or more clauses:

$$
\varphi=\bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m_{i}} e_{i, j}\right)
$$

Normal Forms

for every sentence, there is a logically equivalent sentence in CNF

Conversion to CNF

important rules for conversion to CNF:

- $(\varphi \leftrightarrow \psi) \equiv(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)$
- $(\varphi \rightarrow \psi) \equiv(\neg \varphi \vee \psi)$
- $\neg(\varphi \wedge \psi) \equiv(\neg \varphi \vee \neg \psi)$
- $\neg(\varphi \vee \psi) \equiv(\neg \varphi \wedge \neg \psi)$
- $\neg\urcorner \varphi \equiv \varphi$
- $((\varphi \wedge \psi) \vee \eta) \equiv((\varphi \vee \eta) \wedge(\psi \vee \eta))$
$((\leftrightarrow)$-elimination)
$((\rightarrow)$-elimination)
(De Morgan)
(De Morgan)
(double negation) (distributivity)
there are sentences φ for which every logically equivalent sentence in CNF is exponentially longer than φ

Example

Convert the following formula into CNF:

$$
\varphi=(\neg P \vee Q) \rightarrow R
$$

Example

Convert the following formula into CNF:

$$
\varphi=(\neg P \vee Q) \rightarrow R
$$

- $(\neg P \vee Q) \rightarrow R$
(2) $\neg(\neg P \vee Q) \vee R$
© ($\neg \neg P \wedge \neg Q) \vee R$
(3) $(P \wedge \neg Q) \vee R$
© $(P \vee R) \wedge(\neg Q \vee R)$
[$(\rightarrow$)-elimination]
[De Morgan]
[double negation]
[distributivity]

Summary

Summary

- Propositional logic forms the basis for a general representation of problems and knowledge.
■ Propositions (atomic formulas) are statements over the world which cannot be divided further.

■ Propositional formulas combine atomic formulas with $\neg, \wedge, \vee, \rightarrow$ or \leftrightarrow to form more complex statements.
■ Interpretations determine which atomic formulas are true and which ones are false.

- important terminology:
- model

■ satisfiable, unsatisfiable, falsifiable, valid

- logically equivalent
- conjunctive normal form

