Artificial Intelligence Logic 1: Syntax, Semantics and CNF

Jendrik Seipp

Linköping University

based on slides by Thomas Keller and Malte Helmert (University of Basel)

Introduction	Syntax	Semantics	CNF	Summary
0000	0000	00000000	00000	00
	_			

Questions?

post feedback and ask questions anonymously at

https://padlet.com/jendrikseipp/tddc17

Introduction		
•000		

Introduction

Introduction	Syntax	Semantics	CNF	Summary
○●○○	0000	0000000	00000	00

Motivation: Logic

- allows to model problems and represent knowledge
- allows to derive conclusions from knowledge (reasoning)
- basics for general problem descriptions and solving strategies e.g., automated planning

we restrict to the (simple) form of propositional logic

. . .

Semantics

CNF 00000

Reasoning Example

Adam and Berta are in a pizzeria.

Waiter: "Who ordered Margherita?" Adam: "It's mine." → Waiter gives Adam the pizza.

Waiter: "Who ordered Quattro Stagioni?"

Semantics 00000000 CNF 0000 Summary 00

Reasoning Examples

Introduction	Syntax	Semantics	CNF	Summary
0000	●000	00000000	00000	00

Syntax

Syntax		
0000		

Propositions and Sentences

a proposition is an atomic statements over the world, e.g.

- AM
- BM
- cell-1-1-is-1
- cell-1-1-is-2
- propositions with logical connectives like "and" (∧), "or" (∨), "not" (¬) form sentences (or propositional formulas), e.g.,
 - $\blacksquare (AM \lor BM)$
 - $\blacksquare \ (\neg AQ \to BQ)$
 - ¬(cell-1-1-is-1 ∧ cell-1-2-is-1)∧ ¬(cell-1-1-is-1 ∧ cell-1-3-is-1) ∧ ...

Introduction 0000	Syntax 00●0	Semantics 00000000	CNF 00000	Summary 00
Synta	X			
let (e.ક્	Σ be an alphabet of prop g., {P, Q, R} or { X_1, X_2, X_3 ,	positions })		
Det	finition (sentences)			
	■ ⊤ ("always-true") and .	⊥ ("always-false") ar	re sentences	
	every proposition in Σ	is an atomic senten	се	
	if $arphi$ is a sentence, then	$\neg arphi$ is a sentence (r	negation)	
	if $arphi$ and ψ are sentenc	es, then so are		
	• $(\varphi \land \psi)$ (conjuncti	on)		
	$(\varphi \lor \psi) \text{ (disjunction)}$	on)		
	$ (\varphi \to \psi) (\text{Implicat}) $	1011)		

• $(\varphi \leftrightarrow \psi)$ (biconditional)

binding strength: $(\neg) > (\land) > (\lor) > (\rightarrow) > (\leftrightarrow)$

(redundant parentheses may be omitted)

Semantics 00000000 CNF 0000 Summary 00

Reasoning Example

[each pizza has exactly one owner]

[each person ordered exactly one pizza]

Reasoning Example

[each pizza has exactly one owner]

 $\begin{array}{l} \mathsf{AM} \leftrightarrow \neg \mathsf{BM} \\ \mathsf{AQ} \leftrightarrow \neg \mathsf{BQ} \end{array}$

[each person ordered exactly one pizza]

Reasoning Example

[each pizza has exactly one owner]

 $\texttt{AM} \leftrightarrow \neg\texttt{BM}$

 $\texttt{AQ} \leftrightarrow \neg \texttt{BQ}$

[each person ordered exactly one pizza]

 $\texttt{AM} \leftrightarrow \neg\texttt{AQ}$

 $\texttt{BM} \leftrightarrow \neg\texttt{BQ}$

Introduction	Syntax	Semantics	CNF	Summary
0000	0000	●0000000	00000	00

Semantics

Introduction	Syntax	Semantics	CNF	Summary
0000	0000	○●○○○○○○	00000	00

Semantics: Intuition

a sentence can be true or false,

depending on the truth values of the propositions

- a proposition p is either true or false, and the truth value of p is determined by an interpretation
- the truth value of a sentence follows from the truth values of the propositions

Example

$$\varphi = (P \lor Q) \land R$$

- if P and Q are false, then φ is false (independent of the truth value of R)
- if P and R are true, then φ is true (independent of the truth value of Q)

Introduction	Syntax	Semantics	CNF	Summary
0000	0000	00●00000	00000	00

Semantics: Formally

- defined over interpretations $I : \Sigma \to {\mathbf{T}, \mathbf{F}}$
- interpretation *I*: assignment of propositions in Σ
- when is a sentence φ true under interpretation *I*? symbolically: When does *I* |= φ hold?

Note: The AIMA book calls all interpretations "models", but we want to say "I is a model of φ " or "I models φ ".

Introduction	Syntax	Semantics	CNF	Summary
0000	0000	00000000	00000	00

Semantics: Formally

Definition ($I \models \varphi$)

- I ⊨ ⊤
- 1 |≠ ⊥
- $\blacksquare I \models P \text{ iff } I(P) = \mathbf{T} \qquad \text{for } P \in \Sigma$
- $\blacksquare I \not\models P \text{ iff } I(P) = \mathbf{F} \qquad \text{for } P \in \Sigma$
- $\blacksquare \ \mathit{I} \models \neg \varphi \text{ iff } \mathit{I} \not\models \varphi$

I
$$\models$$
 ($\varphi \land \psi$) iff I $\models \varphi$ and I $\models \psi$

I
$$\models$$
 ($\varphi \lor \psi$) iff I $\models \varphi$ or I $\models \psi$

I
$$\models$$
 ($\varphi \rightarrow \psi$) iff I $\not\models \varphi$ or I $\models \psi$

$$\blacksquare I \models (\varphi \leftrightarrow \psi) \text{ iff } I \models \varphi \text{ and } I \models \psi \text{ or } I \not\models \varphi \text{ and } I \not\models \psi$$

I $\models \Phi$ for a set of sentences Φ iff $I \models \varphi$ for all $\varphi \in \Phi$

Introduction	Syntax	Semantics	CNF	Summary
0000	0000	0000●000	00000	00

Examples

Example (Interpretation I)

 $I = \{P \mapsto \mathbf{T}, Q \mapsto \mathbf{T}, R \mapsto \mathbf{F}, S \mapsto \mathbf{F}\}$

Which sentences are true under *I*?

•
$$\varphi_1 = \neg (P \land Q) \land (R \land \neg S)$$
. Does $I \models \varphi_1$ hold?

•
$$\varphi_2 = (P \land Q) \land \neg (R \land \neg S)$$
. Does $I \models \varphi_2$ hold?

•
$$\varphi_3 = (R \rightarrow P)$$
. Does $I \models \varphi_3$ hold?

Introduction	Syntax	Semantics	CNF	Summary
0000	0000	00000●00	00000	00

Terminology

Definition (satisfiable etc.)

- a sentence φ is called
 - **satisfiable** if there is an interpretation *I* such that $I \models \varphi$
 - unsatisfiable if φ is not satisfiable
 - **falsifiable** if there is an interpretation *I* such that $I \not\models \varphi$
 - valid (= a tautology) if $I \models \varphi$ for all interpretations I

Definition (logical equivalence)

sentences φ and ψ are called logically equivalent ($\varphi \equiv \psi$) if for all interpretations *I*: $I \models \varphi$ iff $I \models \psi$.

Introduction	Syntax	Semantics	CNF	Summary
0000	0000	000000●0	00000	00

Truth Tables

How to determine automatically if a given sentence is (un)satisfiable, falsifiable, valid?

ightarrow simple method: truth tables

example: Is $\varphi = ((P \lor H) \land \neg H) \rightarrow P$ valid?

Р	н	$P \lor H$	$((P \lor H) \land \neg H)$	$((P \lor H) \land \neg H) \to P$
F	F	F	F	Т
F	Т	т	F	Т
Т	F	Т	т	т
Т	Т	Т	F	т

 $I \models \varphi$ for all interpretations $I \rightsquigarrow \varphi$ is valid.

What about satisfiability, falsifiability, unsatisfiability? Drawback of truth tables: exponential size in the number of propositions

Introduction	Syntax	Semantics	CNF	Summary
0000	0000	0000000●	00000	00
Example				

Fill out the truth table for the following formula:

$$\varphi = (\mathsf{A} \lor \neg \mathsf{B}) \to \mathsf{B}$$

Α	В	$A \lor \neg B$	$(A \lor \neg B) \to B$
T	Т		
T	F		
F	Т		
F	F		

Introduction	Syntax	Semantics	CNF	Summary
0000	0000	0000000●	00000	00
Example				

Fill out the truth table for the following formula:

$$\varphi = (\mathsf{A} \lor \neg \mathsf{B}) \to \mathsf{B}$$

Α	В	$A \lor \neg B$	$(A \lor \neg B) \to B$
Т	Т	Т	т
Т	F	Т	F
F	Т	F	т
F	F	Т	F

Introduction	Syntax	Semantics	CNF	Summary
0000	0000	00000000	●0000	00

Conjunctive Normal Form

Introduction	Syntax	Semantics	CNF	Summary
0000	0000	00000000	O●OOO	00

CNF: Terminology

Definition (literal)

If $P \in \Sigma$, then the sentences P and $\neg P$ are called literals.

P is called positive literal, $\neg P$ is called negative literal.

The complementary literal to P is \neg P and vice versa.

For a literal ℓ , the complementary literal to ℓ is denoted with $\overline{\ell}$.

Definition (clause)

A disjunction of 0 or more literals is called a clause. The empty clause \perp is also written as \Box . Clauses consisting of only one literal are called unit clauses.

Conjunctive Normal Form

Definition (conjunctive normal forms)

A sentence φ is in conjunctive normal form (CNF, clause form) if φ is a conjunction of 0 or more clauses:

$$\varphi = \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{m_i} \ell_{i,j}\right)$$

Introduction	Syntax	Semantics	CNF	Summary
0000	0000	00000000	000●0	00

Normal Forms

for every sentence, there is a logically equivalent sentence in CNF

Conversion to CNF	
important rules for conversion to CNF:	
$ (\varphi \leftrightarrow \psi) \equiv (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi) $	$((\leftrightarrow)$ -elimination)
$ (\varphi \to \psi) \equiv (\neg \varphi \lor \psi) $	((\rightarrow)-elimination)
$ \neg (\varphi \land \psi) \equiv (\neg \varphi \lor \neg \psi) $	(De Morgan)
$ \neg (\varphi \lor \psi) \equiv (\neg \varphi \land \neg \psi) $	(De Morgan)
$\blacksquare \neg \neg \varphi \equiv \varphi$	(double negation)
$ ((\varphi \land \psi) \lor \eta) \equiv ((\varphi \lor \eta) \land (\psi \lor \eta)) $	(distributivity)

there are sentences φ for which every logically equivalent sentence in CNF is exponentially longer than φ

Introduction	Syntax	Semantics	CNF	Summary
0000	0000	00000000	0000●	00
Example				

Convert the following formula into CNF:

$$\varphi = (\neg P \lor Q) \to R$$

Introduction	Syntax	Semantics	CNF	Summary
0000	0000	00000000	0000●	00
Example				

Convert the following formula into CNF:

$$\varphi = (\neg P \lor Q) \to R$$

$$\bigcirc (P \land \neg Q) \lor R$$

 $\bigcirc (P \lor R) \land (\neg Q \lor R)$

[(→)-elimination] [De Morgan] [double negation] [distributivity]

Introduction	Syntax	Semantics	CNF	Summary
0000	0000	00000000	00000	●0

Summary

Introduction	Syntax	Semantics	CNF	Summary
0000	0000	00000000	00000	○●
Summary				

- Propositional logic forms the basis for a general representation of problems and knowledge.
- Propositions (atomic formulas) are statements over the world which cannot be divided further.
- Propositional formulas combine atomic formulas with ¬, ∧, ∨, → or ↔ to form more complex statements.
- Interpretations determine which atomic formulas are true and which ones are false.
- important terminology:
 - model
 - satisfiable, unsatisfiable, falsifiable, valid
 - logically equivalent
 - conjunctive normal form