Artificial Intelligence

Logic 1: Syntax, Semantics and CNF

Jendrik Seipp

Linköping University

Questions?

post feedback and ask questions anonymously at

https://padlet.com/jendrikseipp/tddc17

Introduction •000

Introduction

Motivation: Logic

Introduction



- allows to model problems and represent knowledge
- allows to derive conclusions from knowledge (reasoning)
- basics for general problem descriptions and solving strategies e.g., automated planning

we restrict to the (simple) form of propositional logic

Adam and Berta are in a pizzeria.

Waiter: "Who ordered Margherita?"

Adam: "It's mine."

 \sim Waiter gives Adam the pizza.

Waiter: "Who ordered Quattro Stagioni?"

•••

Syntax

Propositions and Sentences

- a proposition is an atomic statement over the world, e.g.
 - AM
 - BM
 - cell-1-1-is-1
 - cell-1-1-is-2
- propositions with logical connectives like "and" (\(\triangle)\), "or" (\(\triangle)\), "not" (¬) form sentences (or propositional formulas), e.g.,
 - \blacksquare (AM \vee BM)

 - \neg (cell-1-1-is-1 \land cell-1-2-is-1) \land \neg (cell-1-1-is-1 \land cell-1-3-is-1) \land ...

Syntax

let Σ be an alphabet of propositions (e.g., $\{P, Q, R\}$ or $\{X_1, X_2, X_3, \dots\}$)

Definition (sentences)

- T ("always-true") and ⊥ ("always-false") are sentences
- \blacksquare every proposition in Σ is an atomic sentence
- \blacksquare if φ is a sentence, then $\neg \varphi$ is a sentence (negation)
- \blacksquare if φ and ψ are sentences, then so are
 - \bullet $(\varphi \land \psi)$ (conjunction)
 - \bullet $(\varphi \lor \psi)$ (disjunction)
 - \bullet $(\varphi \rightarrow \psi)$ (implication)
 - \bullet ($\varphi \leftrightarrow \psi$) (biconditional)

binding strength: $(\neg) > (\land) > (\lor) > (\rightarrow) > (\leftrightarrow)$ (redundant parentheses may be omitted)

[each pizza has exactly one owner]

[each person ordered exactly one pizza]

[each pizza has exactly one owner]

 $AM \leftrightarrow \neg BM$

 $AQ \leftrightarrow \neg BQ$

[each person ordered exactly one pizza]

[each pizza has exactly one owner]

 $AM \leftrightarrow \neg BM$

 $AQ \leftrightarrow \neg BQ$

[each person ordered exactly one pizza]

 $\mathtt{AM} \leftrightarrow \neg \mathtt{AQ}$

 $BM \leftrightarrow \neg BQ$

Semantics

Semantics: Intuition

a sentence can be true or false. depending on the truth values of the propositions

- a proposition p is either true or false, and the truth value of p is determined by an interpretation
- the truth value of a sentence follows from the truth values of the propositions

Example

$$\varphi = (P \lor Q) \land R$$

- \blacksquare if P and Q are false, then φ is false (independent of the truth value of R)
- \blacksquare if P and R are true, then φ is true (independent of the truth value of Q)

Semantics: Formally

- defined over interpretations $I: \Sigma \to \{T, F\}$
- interpretation *I*: assignment of propositions in Σ
- when is a sentence φ true under interpretation *I*? symbolically: When does $I \models \varphi$ hold?

Note: The AIMA book calls all interpretations "models", but we want to say "I is a model of φ " or "I models φ ".

Semantics: Formally

Definition $(I \models \varphi)$

- / |= T
- 1 ⊭ ⊥
- $I \models P \text{ iff } I(P) = \mathbf{T}$ for $P \in \Sigma$
- $I \not\models P \text{ iff } I(P) = \mathbf{F}$ for $P \in \Sigma$
- \blacksquare $I \models \neg \varphi$ iff $I \not\models \varphi$
- \blacksquare $I \models (\varphi \land \psi)$ iff $I \models \varphi$ and $I \models \psi$
- \blacksquare $I \models (\varphi \lor \psi)$ iff $I \models \varphi$ or $I \models \psi$
- \blacksquare $I \models (\varphi \rightarrow \psi)$ iff $I \not\models \varphi$ or $I \models \psi$
- \blacksquare $I \models (\varphi \leftrightarrow \psi)$ iff $I \models \varphi$ and $I \models \psi$ or $I \not\models \varphi$ and $I \not\models \psi$
- \blacksquare $I \models \Phi$ for a set of sentences Φ iff $I \models \varphi$ for all $\varphi \in \Phi$

Syntax

Examples

Example (Interpretation I)

$$I = \{P \mapsto \mathbf{T}, Q \mapsto \mathbf{T}, R \mapsto \mathbf{F}, S \mapsto \mathbf{F}\}$$

Which sentences are true under I?

- $\phi_1 = \neg (P \land Q) \land (R \land \neg S)$. Does $I \models \phi_1$ hold?
- $\phi_2 = (P \land Q) \land \neg (R \land \neg S)$. Does $I \models \varphi_2$ hold?
- $\phi_3 = (R \to P)$. Does $I \models \phi_3$ hold?

Terminology

Definition (satisfiable etc.)

a sentence φ is called

- **satisfiable** if there is an interpretation I such that $I \models \varphi$
- unsatisfiable if φ is not satisfiable
- falsifiable if there is an interpretation I such that $I \not\models \varphi$
- lacksquare valid (= a tautology) if $I \models \varphi$ for all interpretations I

Definition (logical equivalence)

sentences φ and ψ are called logically equivalent ($\varphi \equiv \psi$) if for all interpretations *I*: $I \models \varphi$ iff $I \models \psi$.

Truth Tables

How to determine automatically if a given sentence is (un)satisfiable, falsifiable, valid?

 \rightarrow simple method: truth tables

example: Is $\varphi = ((P \lor H) \land \neg H) \rightarrow P \text{ valid}$?

Р	Н	P∨H	$((P \lor H) \land \neg H)$	$((P \lor H) \land \neg H) \to P$
F	F	F	F	Т
F	Т	Т	F	Т
Т	F	Т	Т	Т
Т	Т	Т	F	T

 $I \models \varphi$ for all interpretations $I \leadsto \varphi$ is valid.

What about satisfiability, falsifiability, unsatisfiability?

Drawback of truth tables: exponential size in the number of propositions

Example

Fill out the truth table for the following formula:

$$\varphi = (A \lor \neg B) \to B$$

Α	В	<i>A</i> ∨ ¬ <i>B</i>	$(A \vee \neg B) \to B$
Т	T		
T	F		
F	Т		
F	F		

Example

Fill out the truth table for the following formula:

$$\varphi = (A \lor \neg B) \to B$$

Α	В	$A \vee \neg B$	$(A \vee \neg B) \to B$
T	Т	Т	Т
T	F	Т	F
F	Т	F	Т
F	F	Т	F

Conjunctive Normal Form

CNF: Terminology

Definition (literal)

If $P \in \Sigma$, then the sentences P and $\neg P$ are called literals.

P is called positive literal, $\neg P$ is called negative literal.

The complementary literal to P is $\neg P$ and vice versa.

For a literal ℓ , the complementary literal to ℓ is denoted with $\bar{\ell}$.

Definition (clause)

A disjunction of 0 or more literals is called a clause.

The empty clause \perp is also written as \square .

Clauses consisting of only one literal are called unit clauses.

Conjunctive Normal Form

Definition (conjunctive normal forms)

A sentence φ is in conjunctive normal form (CNF, clause form) if φ is a conjunction of 0 or more clauses:

$$\varphi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} \ell_{i,j} \right)$$

Normal Forms

for every sentence, there is a logically equivalent sentence in CNF

Conversion to CNF

important rules for conversion to CNF:

$$\bullet (\varphi \leftrightarrow \psi) \equiv (\varphi \to \psi) \land (\psi \to \varphi)$$
 ((\leftrightarrow)-elimination)

$$(\phi \to \psi) \equiv (\neg \phi \lor \psi)$$
 ((\(\to \))-elimination)

$$\neg (\varphi \land \psi) \equiv (\neg \varphi \lor \neg \psi)$$
 (De Morgan)

$$\neg (\varphi \lor \psi) \equiv (\neg \varphi \land \neg \psi)$$
 (De Morgan)

$$\blacksquare \neg \neg \varphi \equiv \varphi$$
 (double negation)

$$((\varphi \land \psi) \lor \eta) \equiv ((\varphi \lor \eta) \land (\psi \lor \eta))$$
 (distributivity)

there are sentences φ for which every logically equivalent sentence in CNF is exponentially longer than φ

Example

Convert the following formula into CNF:

$$\varphi = (\neg P \lor Q) \to R$$

Example

Convert the following formula into CNF:

$$\varphi = (\neg P \lor Q) \to R$$

$$\bigcirc \neg (\neg P \lor Q) \lor R$$

$$\bigcirc$$
 $(P \land \neg Q) \lor R$

$$\bigcirc$$
 $(P \lor R) \land (\neg Q \lor R)$

$$[(\rightarrow)$$
-elimination]

Summary

Summary

- Propositional logic forms the basis for a general representation of problems and knowledge.
- Propositions (atomic formulas) are statements over the world which cannot be divided further.
- Propositional formulas combine atomic formulas with \neg , \wedge , \vee , \rightarrow or \leftrightarrow to form more complex statements.
- Interpretations determine which atomic formulas are true and which ones are false.
- important terminology:
 - model
 - satisfiable, unsatisfiable, falsifiable, valid
 - logically equivalent
 - conjunctive normal form