
•

•

•

• Can we use supervised learning to learn how to act?

• E.g. engineering robot behavior can be fragile and time consuming

• Things humans do without thinking require extremely detailed
instructions for a robot. Even robust locomotion is hard.

Humorous reminder from IEEE
Spectrum: The DARPA 2015
Humanoid Challenge “Fail
Compilation”
To be fair, this is the state of the
art:
https://youtu.be/NR32ULxbjYc

https://youtu.be/NR32ULxbjYc

• Yes, one can learn a mapping from problem state (e.g. position) to action

• As in all supervised learning, this requires a teacher

• Sometimes called ”imitation learning”

• However, supervised learning with robots can get tedious as providing examples of

correct behaviour is difficult to automate

• Can we remove the human from the loop?

1. An automated teacher like a planning or optimal control algorithm can generate

supervised examples if it has a model of the environment

• Mordatch et al, https://www.youtube.com/watch?v=IxrnT0JOs4o

• LiU’s research with real nano-quadcopters (deep ANN on-board the microcontroller)

2. Reinforcement learning attempts to generalize this to learning from scratch in

completely unknown environments

https://www.youtube.com/watch?v=IxrnT0JOs4o

• Reinforcement Learning is learning what to do – how to map
situations to actions – so as to maximum a numerical reward.

Reinforcement Learning: An introduction
Sutton & Barto

• Rather than learning from explicit training data, or discovering
patterns in static data, reinforcement learning discovers the
best option (highest reward) from trial and error.

• Inverse Reinforcement Learning

• Learn reward function by observing an expert

• “Apprenticeship learning“

• E.g. Abbeel et al. Autonomous Helicopter Aerobatics
through Apprenticeship Learning

• The environment

• The reinforcement function r(s,a)
• Pure delay reward and avoidance problems

• Minimum time to goal

• Games

• The value function V(s)
• Policy p: S → A

• Value V p(s) := Si gi rt+i

• Find the optimal policy p* that
maximizes V p*(s) for all states s.

A minimum time to goal world

Value function Optimal policy Optimal value

for random function

movement

Assume:

• finite set of states S, finite set of actions A

• at each discrete time agent observes state st S and chooses action at A

• then receives immediate reward rt

• and state changes to st+1

• Markov assumption: st+1 = d(st,at) and rt = r(st,at)

• i.e. rt and st+1 depend only on current state and action

• functions d and r may be non-deterministic

• functions d and r not necessarily known to the agent

r(s,a) V*(s)

An optimal policy

Optimal policy:

• p*(s) = argmaxa[r (s,a) + gV *(d(s,a))]

• Doesn't work if we don't know r and d.

The Q-function:

• Q (s,a) := r (s,a) + gV *(d(s,a))

• p*(s) = argmaxaQ (s,a)

r(s,a)

Q(s,a)

• Note Q and V* closely related:
V *(s) = maxa' Q (s,a')

• Therefore Q can be written as:

Q (st ,at) := r (st ,at) + gV *(d(st ,at)) =

r (st ,at) + g maxa' Q (st+1 ,a')

• If Q^ denote the current approximation of Q then it can be updated by:

Q^(s,a) := r + g maxa' Q
^(s',a')

• Value-Based:

• Learn value function

• Implicit policy (e.g. greedy selection)

• Example: Deep Q Networks (DQN)

• Policy-Based:

• No value function

• Learn explicit (stochastic) policy

• Example: Stochastic Policy Gradients

• Actor-Critic:

• Learn value function

• Learn policy using value function

• Example: Asynchronous Advantage Actor Critic (A3C)

For each s, a initialize table entry Q^(s,a) := 0.

Observe current state s.

Do forever:

1. Select an action a and execute it

2. Receive immediate reward r

3. Observe the new state s'

4. Update the table entry for Q^(s,a):
Q^(s,a) := r + g maxa' Q

^(s',a')

5. s := s'

Q ^(s1 ,aright) := r + g maxa' Q
^(s2 ,a')

:= 0 + 0.9 max{63, 81, 100}

:= 90

• Exploration

• Selecting the best action

• Probabilistic choice

• Improving convergence

• Update sequences

• Remember old state-action transitions and their immediate reward

• Non-deterministic MDPs

• Temporal Difference Learning

• To tackle a high-dimensional state space or continous states we can use a neural network as

function approximator

• Lunar Lander experiment

• 8 continous/discrete states

• XY-Pos, XY-Vel, Rot, Rot-rate, Leg1/Leg2 ground contact

• 4 discrete actions

• Left thrust

• Right thrust

• Main engine thrust

• NOP

• Rewards

• Move from top to bottom of the screen (+ ~100-140)

• Land between the posts (+100)

• Put legs on ground (+10 per leg)

• Penalties

• Using main engine thrust (-0.3 per frame)

• Crashing (-100)

• Solved using Stochastic Policy Gradients

• Value-Based:

• Learn value function

• Implicit policy (e.g. greedy selection)

• Example: Deep Q Networks (DQN)

• Policy-Based:

• No value function

• Learn explicit (stochastic) policy

• Example: Stochastic Policy Gradients

• Actor-Critic:

• Learn value function

• Learn policy using value function

• Example: Asynchronous Advantage Actor Critic (A3C)

• Many real-world tasks may present an agent with
multiple, possibly conflicting objectives:

• Time

• Safety

• Resource consumption

• Multi-Objective Reinforcement Learning allows an
agent to learn how to prioritize among objectives at
runtime

• Possible to create diverse populations of agents, or
adapt agents to time-varying user needs, e.g. difficulty
level or training session contents

• Training goals can also be considered by agents

J. Källström and F.Heintz, Tunable Dynamics in Agent-Based Simulation using Multi-
Objective Reinforcement Learning, AAMAS Adaptive and Learning Agents Workshop 2019.

Conor F. Hayes*, Roxana Rădulescu*, Eugenio Bargiacchi, Johan Källström,

Matthew Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M. Zint-

graf, Richard Dazeley, Fredrik Heintz, Enda Howley, Athirai A. Irissappane,

Patrick Mannion, Ann Nowé, Gabriel Ramos, Marcello Restelli, Peter Vamplew,

and Diederik M. Roijers

Autonomous Agents and Multi-Agent Systems. 2022

Slides from Connor Hayes

• Autonomous agent that learns via experience

• An environment which the agent can interact with

• The agent has a state in the environment

• At each step t the agent:

• executes action At

• receives state St

• receives a scalar reward Rt+1

60

At
, RSt+1 t+1

Slides from Connor Hayes

• Reinforcement learning (RL) problems can be modelled as a Markov Decision Process (MDP)

• A MDP is a tuple: (S, A, T, γ, µ, R),

• S the state space

• A the action space

• T : S × A × S → [0, 1] is a probabilistic transition function

• γ is a discount factor determining the relative importance of future rewards

• R : S × A× S → R is a reward function, where r is the immediate reward.

• µ : S → [0, 1] is a probability distribution over initial states

• In MDPs, the agent acts according to a policy π, where a policy is a mapping from states to

actions

• The value function of a policy π is defined as follows:

61

Slides from Connor Hayes

• Many real-world problems have multiple objectives

• Some RL approaches only consider a single objective

• Others combine the objectives linearly (GT Sophy)

• Such approaches oversimplify the problem and can produce sub-optimal results

• For example: Power plant control
• Objectives: maximise power output, minimise CO2 emissions

• Tuning the linear combination can be a difficult and iterative process

• Should the behaviour be tuned by an AI engineer?

• Why not just learn a set of optimal policies for all linear combinations?

• Solution: Take a multi-objective approach

62

Slides from Connor Hayes

• Autonomous agent that learns via experience

• An environment which the agent can interact with

• The agent perceives a state in the environment

• At each step t the agent:

• executes action At

• receives state St+1

• receives a vector reward

• Rt+1

63

At, RSt+1 t+1

Slides from Connor Hayes

• Multi-Objective Reinforcement learning (MORL) problems can be modelled as a multi-

objective Markov decision process (MOMDP)

• A MOMDP is a tuple: (S, A, T, γ, µ, R),

• S the state space

• A the action space

• T : S × A × S → [0, 1] is a probabilistic transition function

• γ is a discount factor determining the relative importance of future rewards

• R: S × A × S → Rd is a vector valued reward function, where where d > = 2

• µ : S → [0, 1] is a probability distribution over initial states

• In MOMDPs, the agent acts according to a policy π

• The value function of a policy π is defined as follows:

64

Slides from Connor Hayes

• A utility function, u, is used to represent a user’s preferences over objectives

• Utility function maps a vector reward to a scalar utility

• u :: Rn → R

• For MORL, a utility function, u is assumed to be monotonically increasing:

65

Slides from Connor Hayes

• It is possible to compute different solutions sets like the Pareto front:

• where ≻P is the Pareto dominance relation,

• or the Convex Hull:

• CH(Π) = {π ∈Π |∃w,∀π′ ∈Π : w⊤Vπ ≥ w⊤Vπ′

}

• where w⊤Vπ computes the inner product of a weight vector w

• and a value vector Vπ

66

PPF(Π) = {π ∈ Π | ∄π′ ∈ Π : Vπ′

≻ Vπ},

P
π π π′ ′ π π ′

i i i iVπ ≻ V ⇐⇒ (∀i : V ≥ V) ∧ (∃i : V > V).

Slides from Connor Hayes

67

Figure 1: The Convex Hull is a subset of the Pareto front

Slides from Connor Hayes

• The Pareto front is assumed to be the optimal solution set

• Solutions sets are derived without considering the utility function

• In practical settings the axiomatic approach may not be sufficient

• In practical settings more information about the utility function of a user might be known

(domain knowledge)

• In practical settings the computing the Pareto front might be prohibitively expensive

• It is not possible to encode domain knowledge when taking an axiomatic approach

• Computation/time is wasted if the Pareto front is not actually the optimal set

• Some policies on the Pareto front might be undesirable a priori (considering the knowledge of

system expert)

• Solution: Take a utility-based approach

68

Slides from Connor Hayes

• Considering a utility function first is key to the successful application of AI in practical

settings

• The properties of a user’s utility may:

• drastically alter the desired solution

• change what methods are available (single-policy or multi-policy)

• The utility- based approach aims to derive the optimal solution set from the available

knowledge about the user’s utility function

69

Slides from Connor Hayes

MORL Scenarios
70

Slides from Connor Hayes

71

Figure 2: The known utility function scenario

Figure 3: The unknown utility function scenario

Slides from Connor Hayes

• For example, Deep Sea Treasure [5]

• Objectives: maximise treasure, minimise fuel

• reward = [treasure, -fuel]

72

Figure 4: The Deep Sea Treasure environment

Slides from Connor Hayes

73

0 20 80 100 12040 60

treasure

−2.5

−5.0

−7.5

−10.0

−12.5

−15.0

−17.5

−20.0

0.0

fu
el

Pareto Front

Convex Hull

Figure 5: Pareto front (blue) and Convex Hull (red) of the Deep Sea Treasure

benchmark problem

Slides from Connor Hayes

• Many real-world tasks may present an agent with
multiple, possibly conflicting objectives:

• Time

• Safety

• Resource consumption

• Multi-Objective Reinforcement Learning allows an
agent to learn how to prioritize among objectives at
runtime

• Possible to create diverse populations of agents, or
adapt agents to time-varying user needs, e.g. difficulty
level or training session contents

• Training goals can also be considered by agents

J. Källström and F.Heintz, Tunable Dynamics in Agent-Based Simulation using Multi-
Objective Reinforcement Learning, AAMAS Adaptive and Learning Agents Workshop 2019.

• Hayes, C.F., Rădulescu, R., Bargiacchi, E., Källström, J., Macfarlane, M.,
Reymond, M., Verstraeten, T., Zintgraf, L.M., Dazeley, R., Heintz, F.,
Howley, E., Irissappane, A.A., Mannion, P., Nowé, A., Ramos, G., Restelli,
M., Vamplew, P., Roijers, D.M.: A practical guide to multi-objective
reinforcement learning and planning. Autonomous Agents and Multi-
Agent Systems 36(1), 26 (2022). URL https://doi.org/10.1007/s10458-
022-09552-y

• Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare,
M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.:
Human-level control through deep reinforcement learning. nature
518(7540), 529–533 (2015)

Slides from Connor Hayes

https://doi.org/10.1007/s10458-022-09552-y
https://doi.org/10.1007/s10458-022-09552-y

• Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,
Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K.,
Hassabis, D.: A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science 362(6419), 1140–1144
(2018). URL https://www.science.org/doi/abs/10.1126/science.aar6404

• Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient
methods for reinforcement learning with function approximation. In:
Proceedings of the 12th International Conference on Neural Information
Processing Systems, NIPS’99, p. 1057–1063. MIT Press, Cambridge, MA,
USA (1999)

Slides from Connor Hayes

https://www.science.org/doi/abs/10.1126/science.aar6404

• Vamplew, P., Yearwood, J., Dazeley, R., Berry, A.: On the limitations of
scalarisation for multi-objective reinforcement learning of pareto fronts.
In: W. Wobcke, M. Zhang (eds.) AI 2008: Advances in Artificial
Intelligence, pp. 372–378. Springer Berlin Heidelberg, Berlin, Heidelberg
(2008)

• Wurman, P.R., Barrett, S., Kawamoto, K., MacGlashan, J., Subramanian,
K., Walsh, T.J., Capobianco, R., Devlic, A., Eckert, F., Fuchs, F., et al.:
Outracing champion gran turismo drivers with deep reinforcement
learning. Nature 602(7896), 223–228 (2022)

Slides from Connor Hayes

www.ida.liu.se/~TDDC17

	Slide 1: TDDC17 LE7 HT2023 Machine Learning III
	Slide 2: Classes of Learning Problems
	Slide 3: From Supervised to Reinforcement Learning - Learning How to Act
	Slide 4: Learning How to Act
	Slide 5: Reinforcement Learning Basic Concept
	Slide 6: Reinforcement Learning: Key Concepts
	Slide 7: Reinforcement Learning: Key Concepts
	Slide 8: Reinforcement Learning: Key Concepts
	Slide 9: Reinforcement Learning: Key Concepts
	Slide 10: Reinforcement Learning: Key Concepts
	Slide 11: Reinforcement Learning: Key Concepts
	Slide 12: Reinforcement Learning: Key Concepts
	Slide 13: Reinforcement Learning: Key Concepts
	Slide 14: Reinforcement Learning: Key Concepts
	Slide 15: Reinforcement Learning: Key Concepts
	Slide 16: A Reinforcement Learning Problem
	Slide 17: RL Value Function - Example
	Slide 18: Markov Decision Processes
	Slide 19: MDP Example
	Slide 20: Defining the Q-Function
	Slide 21: How to Take Actions Given a Q-Function
	Slide 22: The Q-Function
	Slide 23: The Q-Function
	Slide 24: Reinforcement Learning Concepts
	Slide 25: Reinforcement Learning Algorithms
	Slide 26: Reinforcement Learning Algorithms
	Slide 27: Q-Learning for Deterministic Worlds
	Slide 28: Q-Learning Example
	Slide 29: Q-Learning Continued
	Slide 30: Deep Q-Learning (DQN)
	Slide 31: Deep Q Networks (DQN): Training
	Slide 32: Deep Q Networks (DQN): Training
	Slide 33: Deep Q Networks (DQN): Training
	Slide 34: Deep Q Networks (DQN): Training
	Slide 35: Deep Q Network Summary
	Slide 36: DQN Atari Results
	Slide 37: DQN Atari Results
	Slide 38: Downsides of Q-Learning
	Slide 39: Reinforcement Learning Algorithms
	Slide 40: Deep Q Networks
	Slide 41: Policy Gradient (PG): Key Idea
	Slide 42: Discrete vs Continuous Action Spaces
	Slide 43: Discrete vs Continuous Action Spaces
	Slide 44: Policy Gradient (PG): Key Idea
	Slide 45: Training Policy Gradients: Case Study
	Slide 46: Training Policy Gradients
	Slide 47: Training Policy Gradients
	Slide 48: Training Policy Gradients
	Slide 49: Training Policy Gradients
	Slide 50: Training Policy Gradients
	Slide 51: Reinforcement Learning – Neural Networks as Function Approximators
	Slide 52: Reinforcement Learning Neural Networks as Function Approximators
	Slide 53: AlphaGo Beats Top Human Player (2016)
	Slide 54: MuZero: Learning Dynamics for Planning (2020)
	Slide 55: Deep Reinforcement Learning Summary
	Slide 56: Reinforcement Learning Concepts
	Slide 57: Multi-Objective Reinforcement Learning
	Slide 58: Multi-Objective Reinforcement Learning (MORL)
	Slide 59: A Practical Guide to Multi-Objective Reinforcement Learning and Planning
	Slide 60: Reinforcement Learning
	Slide 61: Reinforcement Learning [4]
	Slide 62: Reinforcement Learning
	Slide 63: Multi-Objective Reinforcement Learning
	Slide 64: Multi-Objective Reinforcement Learning [1]
	Slide 65: Multi-Objective Reinforcement Learning
	Slide 66: Multi-Objective Reinforcement Learning
	Slide 67: Multi-Objective Reinforcement Learning
	Slide 68: Axiomatic Approach
	Slide 69: Utility-Based Approach
	Slide 70: MORL Scenarios
	Slide 71: MORL Scenarios
	Slide 72: Multi-Objective Reinforcement Learning Example
	Slide 73: Multi-Objective Reinforcement Learning Example
	Slide 74: Multi-Objective Reinforcement Learning (MORL)
	Slide 75: References I
	Slide 76: References II
	Slide 77: References III
	Slide 78: TDDC17 AI LE7 HT2023: Reinforcement learning Deep reinforcement learning Multi-objective reinforcement learning

