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Classes of Learning Problems

Supervised Learning Unsupervised Learning

Data: x
x Is data, no labels!

Data: (x,y)
X is data, y is label

Goal: Learn function to map  Goal: Learn underlying

xX—-y structure
Apple example: Apple example:
;:;:1,“- N h::-:{,l- _
LR e
N\ . L

This thing is like

This thing is an apple. the other thing.
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Reinforcement Learning

Data: state-action pairs

Goal: Maximize future rewards
over many time steps

Apple example:
r‘f}?}“ .H‘H
| "I

 /

Eat this thing because it
will keep you alive.
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From Supervised

to Reinforcement Learning -

Learning How to Act

rpLex, [PYITORE FalRPLEX

-

-

Humorous reminder from IEEE
Spectrum: The DARPA 2015
Humanoid Challenge “Fail

. Compilation”

To be fair, this is the state of the
art:

*  https://voutu.be/NR32ULxbjYc

« Can we use supervised learning to learn how to act?

- E.g. engineering robot

e Things humans do wit

instructions for a rol

behavior can be fragile and time consuming
hout thinking require extremely detailed

bot. Even robust locomotion is hard.

3
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Learning How to Act

* Yes, one can learn a mapping from problem state (e.g. position) to action
 As in all supervised learning, this requires a teacher
« Sometimes called ”imitation learning”

« However, supervised learning with robots can get tedious as providing examples of
correct behaviour is difficult to automate

« Can we remove the human from the loop?

1. An automated teacher like a planning or optimal control algorithm can generate
supervised examples if it has a model of the environment

« Mordatch et al, https://www.youtube.com/watch?v=IxrnT0JOs40
« LiU’s research with real nano-quadcopters (deep ANN on-board the microcontroller)

2. Reinforcement learning attempts to generalize this to learning from scratch in
completely unknown environments

LINKOPING
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Reinforcement Learning Basic Concept

* Reinforcement Learning is learning what to do — how to map

situations to actions — so as to maximum a numerical reward. ﬂ @%t
Reinforcement Learning: An introduction <)
\ R@Wa;-
SllttOIl & BartO lnterprétm
 Rather than learning from explicit training data, or discovering Ws, &

patterns in static data, reinforcement learning discovers the Agent
best option (highest reward) from trial and error.

 Inverse Reinforcement Learning

 Learn reward function by observing an expert ﬁ
 “Apprenticeship learning” :

« E.g. Abbeel et al. Autonomous Helicopter Aerobatics
through Apprenticeship Learning

LINKOPING
UNIVERSITY
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Reinforcement Learning: Key Concepts

AGENT

Agent: takes actions.

LINKOPING
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Reinforcement Learning: Key Concepts

ENVIRONMENT

Environment: the world in which the agent exists and operates.

LINKOPING
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Reinforcement Learning: Key Concepts

AGENT | Action: a; I ENVIRONMENT

Action: a move the agent can make in the environment.
Action space A:the set of possible actions an agent can make in the environment

LINKOPING
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Reinforcement Learning: Key Concepts

OBSERVATIONS

AGENT | Action: a; I ENVIRONMENT

Observations: of the environment after taking actions.

LINKOPING
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Reinforcement Learning: Key Concepts

OBSERVATIONS
State changes: S¢4.1

AGENT | Action: a; I ENVIRONMENT

State: a situation which the agent perceives.

LINKOPING
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Reinforcement Learning: Key Concepts

OBSERVATIONS
State changes: S¢4.1

Reward: Tt en

AGENT | Action: ay I ENVIRONMENT

Reward: feedback that measures the success or failure of the agent's action.

LINKOPING
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Reinforcement Learning: Key Concepts

OBSERVATIONS
State changes: S¢4.1

Reward: ¢ e

AGENT | Action: ay I ENVIRONMENT

Total Reward B
Return
( ) S\ R, = Z "

i=t
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Reinforcement Learning: Key Concepts

OBSERVATIONS

State changes: S¢4.1
Reward: T

AGENT | Action: a; I ENVIRONMENT

Total Reward £y

Return
( u ) \Rt=zri=Tt+rt+1---+7"t+n+”'

=t
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Reinforcement Learning: Key Concepts

OBSERVATIONS
State changes: S¢4.1

Reward: 1 PR

AGENT | Action: a; I ENVIRONMENT

Discounted

Total Reward N\ -
(Return) Re = Z}’I?‘i
=T
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Reinforcement Learning: Key Concepts

OBSERVATIONS
State changes: S¢41

Reward: 1t e

AGENT | Action: a; I ENVIRONMENT

Discounted

o0
Total Reward .
(Return) \ Re = Z yin=y'n+ }’Hl?"Hl e+ Yt e +
i=t

Y. discount factor; 0 <y <1

LINKOPING
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A Reinforcement Learning Problem

* The environment Agent

* The reinforcement function r(s,a)
 Pure delay reward and avoidance problems statyy’ freward action
* Minimum time to goal
 Games Environment

e The value function V(s)
* Policyn:S—> A

¢ Vahle VTE(S) :: 21 yl rt+i SO aO - Sl al—’.SZ 3’2—’.
. . . 0 | )
 Find the optimal policy n* that | N
) . " Goal: Learn to choose actions that maximize
maximizes V ™(s) for all states s. o+ P21y + . where 0<Y<]

LINKOPING
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RL Value Function - Example

A minimum time to goal world

Value function Optimal policy Optimal value
for random function
movement

2023-09-12
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Markov Decision Processes

18

Assume:

« finite set of states S, finite set of actions A

- at each discrete time agent observes state s, €S and chooses action a, €A
* then receives immediate reward r,

- and state changes to s,,

« Markov assumption: s,,, = 8(s,,a,) and r, = r(s,,a,)
e i.e.r,and s,,, depend only on current state and action
« functions 6 and r may be non-deterministic
« functions 6 and r not necessarily known to the agent

LINKOPING
II." UNIVERSITY
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MDP Example

Q
&... IO:L.-.. i L
- 90 q— 100 0 G
A |o A |o A A A A
ol ¥ ) ol ¥ . 100 | I I I
=i =t —p —
< - 81 g 90 g 100
r(s,a) Vis)
—- - G
A
|
— - —p
An optimal policy

LINKOPING
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Defining the Q-Function
Ry =14 + YTy TV Ty + o

Total reward, R, is the discounted sum of all rewards obtained from time t

Q(se ap) = E[R¢|s, a;]

The Q-function captures the expected total future reward an
agent In state, s, can receive by executing a certain action, a

LINKOPING
II." UNIVERSITY
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How to Take Actions Given a Q-Function

Q(st, at) = E[R¢|se at]
P

(state, action)

Ultimately, the agent needs a policy 1 (s), to infer the best action to take at its state, s

Strategy: the policy should choose an action that maximizes future reward

n*(s) = argmax Q(s, a)

LINKOPING
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The Q-Function

Optimal policy:
» 1¥%(s) = argmax,[r (s,a) + yV *(8(s,a))]

e Doesn't work if we don't know r and 9.

The Q-function:

* Q(s,a) :=r(s,a) +yV*(8(s,a))
* 1*(s) = argmax,Q (s,a)

2023-09-12

ol ¥ ol ¥ |00l
- — -ali—
0 0
r(s,a)
0
- G
81
Az 81 A
81| 90| 100 |
i 77 N3]
Q(s,a)

22
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The Q-Function

* Note Q and V* closely related:
V*(s) =max_,Q (s,a")

« Therefore Q can be written as:
Q(s,,a) :=r(s,,a) +yV*((s,,a)) =
r(s,,a) +ymax,Q(s,,,a’)
 If Q" denote the current approximation of Q then it can be updated by:

Q(s,a) :=r+ymax,Q"(s',a")

LINKOPING
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Reinforcement Learning Concepts

* Value-Based:
e Learn value function
 Implicit policy (e.g. greedy selection)

« Example: Deep Q Networks (DQN) Médel-Free
 Policy-Based:

 No value function Value Function L Policy

 Learn explicit (stochastic) policy

- Example: Stochastic Policy Gradients | Valueghsed PoileysBased
* Actor-Critic: \ Mgortasyd

 Learn value function

 Learn policy using value function
« Example: Asynchronous Advantage Actor Critic (A3C)

Model

LINKOPING
II." UNIVERSITY
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Reinforcement Learning Algorithms

Value Learning Policy Learning

Find Q(s,a) Find m(s)

a = argmax Q(s,a) Sample a ~ 1t (s)

LINKOPING
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Reinforcement Learning Algorithms

f//- \

Value Learning

Find Q(s,a)

a = argmaxQ(s,a)
a

LINKOPING
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Q-Learning for Deterministic Worlds

For each s, a initialize table entry Q" (s,a) := o.

Observe current state s.

2023-09-12

27

Do forever:

1. Select an action a and execute it

2. Receive immediate reward r

3. Observe the new state s’

4. Update the table entry for Q"(s,a):
Q"(s,a) :=r+ymax_,Q"(s',a")

5. §:=8'

LINKOPING

UNIVERSITY
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Q-Learning Example

R &

72

63

100

s
+81

2023-09-12

28

20

63

100

< R T

Initial state: §

1

right

Q A(S1 ’aright) =r+y maXa'Q A(S2)a')

:= 0 + 0.9 max{63, 81, 100}

:= Q0

+81

Next state: §

2
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Q-Learning Continued

« Exploration
 Selecting the best action
 Probabilistic choice

« Improving convergence
« Update sequences
« Remember old state-action transitions and their immediate reward

e Non-deterministic MDPs

« Temporal Difference Learning

LINKOPING
II." UNIVERSITY
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Deep Q-Learning (DQN)

2023-09-12 30

How can we use deep neural networks to model Q-functions?

4 e
Action + State =
- Expected Return
state, s 1 Deep |
. NN sy
"move
right”
action, a
\_ Input Agent Output

e N
State = Expected Return for Each Action
i Q(S,ﬂl)
Deep = Q(s,a3)
NN
= Q(s,a,)
e, Input Agent Output

LINKOPING
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Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions!?

2023-09-12 31

;- _ e 3 N
=] Action + State > State = Expected Return for Each Action
- - Expected Return

| Ed Q(SJHI)
state, s Deep  _ | 0(s, a) — Deep ~ Q(s,az)
— NN — u
| NN
“move
right” state, s = Q(s,a,)
action, a
. Input Agent Output ) _ Input Agent Output

What happens if we take all the best actions?

Maximize target return = train the agent

LINKOPING
I I." UNIVERSITY
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Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions?

4 _ b d g
—_ Action + State - State = Expected Return for Each Action
- Expected Return
L. ~ Q(s,ay)
state, s Dl\j;p . __ Deep I Q(s,az)
[ NN
“move
nght” state, s ~ Q(s,a,)
action, a
\_ Input Agent Output ) e Input Agent Output )
target
' % \
" 5 ' Take all the best actions =
(r ) n’}l«':,lx Q(S ,a )) v target return

LINKOPING
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Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions?

- s
s Action + State =
i | Expected Return
state, s . Deep

. NN 0=q9
“move
right”
action, a
X Input Agent Output Y,

i N
State = Expected Return for Each Action
i Q(S:al)
Deep = Q(s,ay)
NN
state, s ~ (i)
\_ Input Agent Output )
predicted
Network
Q(s,a) prediction

33
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How can we use deep neural networks to model Q-functions?
P _ X i ke
Action + State > State = Expected Return for Each Action
- Expected Return
P ~ Q(s,ay)
state, s DSEP — Q(s,a) __ Deep I Q(s, az)
. NN
“move
right” state, s = Q(s,a,)
action, a
. Input Agent Output ) . Input Agent Output )
predicted

target
A

L= [“ (r +y max Q(s’,a’)) — Q(s, a)”zl Q-Loss

34
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Deep Q Network Summary

Use NN to learn Q-function and then use to infer the optimal policy, m(s)

state, s > Q(s,ay) =20
@ \
T E?\Tp Q(S,ﬂz) =3 —» n(s):argmax@(s,a)
83 =a, <::
* Q(s,a3) =0
=

Send action back to environment and receive next state

LINKOPING
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DON Atari Results

Gonvgluﬁon Convglution Fully cgnnected Fully cgnnected
_‘r”.l "'5“'."_
o " . . 2 |
a —

oy o . . . v
/- ey A\ g 3
. . . ETE

e d:// B .\  \\ mrm
§\, . . . n

e 9 A @ Q l ¥ -
\ . . . S

AL . . . j —
D B\ = <l .
8 | ™ ™ . 2+
L] L L] L |::|

: : a . . . —
k+0)
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DON Atari Results

“' Surpass Below I :
human-level human-level ]

% Human Level Performance

‘ -8
LTI Ssmsmmmmem MO
LR G P

3
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Downsides of Q-Learning

Complexity:
* (Can model scenarios where the action space is discrete and small
* Cannot handle continuous action spaces

Flexibility:
* Policy is deterministically computed from the Q function by maximizing the
reward = cannot learn stochastic policies

To address these, consider a new class of RL training algorithms:
Policy gradient methods

LINKOPING
IIC" UNIVERSITY
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Reinforcement Learning Algorithms
4

Policy Learning

Find m(s)

Sample a ~ n(s)

LINKOPING
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Deep Q Networks

DQN: Approximate Q-function and use to infer the optimal policy, m(s)

» Q(s,ay) =20
= \
Deep
NN Q(s,az) =3 — g(s) = argmax Q(s, a)
p 4 a
state, s — Q(s,a3) =0
=p

LINKOPING
IIC" UNIVERSITY
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Policy Gradient (PG): Key Idea

Policy Gradient: Directly optimize the policy m(s)

Z P(ayls) = 1

— Pig's) =U.9\ (€A / J
E‘E&P P(ay|s) = 01— m(s)~ P(als)
2 =a, 4=
state, s P =0
=

e What are some advantages of this formulation?

LINKOPING
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Discrete vs Continuous Action Spaces

Discrete action space: which direction should | move? <@ $2 m)

 P(als)

B .

= g =

LINKOPING
II." UNIVERSITY
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Discrete vs Continuous Action Spaces

Continuous action space: how fast should | move!

P(als)
_ | \ +«
Faster — S Faster
State, 5 Leﬁ r . | : R- I ;

LINKOPING
II." UNIVERSITY
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Policy Gradient (PG): Key Idea

Policy Gradient: Enables modeling of continuous action space

j Plals) =1
(==
b A
— Meanu =-1 1
Deep ~ P(als) = N(u,0%)
NN / n(s) ~ P(als)
— Variance, 6 = 0.5 = —0.8 [m/s]
&=
siate, s P(a|s) = N(u,o%)

-1

Faster Faster
Left <:| ::>

Right

44
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Training Policy Gradients: Case Study

2023-09-12 45

Reinforcement Learning Loop: Case Study — Self-Driving Cars
| State changes: S¢41 Agent:  vehicle
Reward. Ty AR>? 3 State: camerg, lidar, etc

Action: steering wheel angle

Reward: distance traveled

LINKOPING
IIC" UNIVERSITY
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Training Policy Gradients
Training Algorithm

|. Initialize the agent

2. Run a policy until termination
3. Record all states, actions, rewards - (s0.0473)
- . @000 }“' (s3,a3,73)
4. Decrease probability of actions that L
resulted in low reward
r e ‘ (511 a1,T1)
5. Increase probability of actions that
resulted in high reward (So, o, 7o)

LINKOPING
IIC" UNIVERSITY



TDDCI17 - HT23 - Fredrik Heintz - LE7 Machine Learning lll (partially based on slides from MIT 6S191) 2023-09-12 47

Training Policy Gradients
Training Algorithm
|. Inttialize the agent

Run a policy until termination

Record all states, actions, rewards

A W N

resulted in low reward

5. Increase probability of actions that
resulted in high reward

|
|
ﬁ |
Decrease probability of actions that |
|
|
|
|

LINKOPING
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Training Policy Gradients
Training Algorithm %

|. Inttialize the agent

Run a policy until termination

Record all states, actions, rewards

s <Lk ihed

Decrease probability of actions that
resulted in low reward

5. Increase probabllity of actions that
resulted in high reward

LINKOPING
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Training Policy Gradients
Training Algorithm
|. Inttialize the agent

Run a policy until termination

Record all states, actions, rewards

~

oo [k B

Decrease probability of actions that
resulted in low reward

5. Increase probability of actions that
resulted in high reward v

2023-09-12
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Training Policy Gradients

Training Algorithm log-likelinood of action
|. Initialize the agent loss = —log P(a,|s,) R,
2. Run a policy until termination reward
3. Record all states, actions, rewards

i 4. Decrease probability of actions that | e rBscentinpate:

w' =w — Vloss

| | w = w+ENOg P(a;|s;) Rt]

5. Increase probability of actions that oy gradient
resulted in high reward

resulted in low reward

LINKOPING
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Reinforcement Learning - Neural Networks as Function Approximators

function approximator
* Lunar Lander experiment
» 8 continous/discrete states
* XY-Pos, XY-Vel, Rot, Rot-rate, Leg1/Leg2 ground contact
* 4 discrete actions
» Left thrust
* Right thrust
* Main engine thrust
« NOP
* Rewards
* Move from top to bottom of the screen (+ ~100-140)
» Land between the posts (+100)
» Putlegs on ground (+10 per leg)
* Penalties
» Using main engine thrust (-0.3 per frame)
* Crashing (-100)
* Solved using Stochastic Policy Gradients

To tackle a high-dimensional state space or continous states we can use a neural network as

-

Experience 1 Stote/Action/Reword/S’\

Memory
L ]
E Experience OBSERVE
? batch Sampled, stochastic policy
ACT

LINKOPING
UNIVERSITY
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Reinforcement Learning Neural Networks as Function Approximators

LINKOPING
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AlphaGo Beats Top Human Player (2016)

Human expert Supervised Learning
positions policy network policy netwark Se-lf-playr data Value network

* 7Ry Classification o\ N
EETEREILIRIn > o — Self Self
S 1Y ;'-;.; .‘Play ’ ‘Play‘ ’
J

Regression

—

) Inttial training: human data

L sl

2) Self-play and reinforcement learning
=> super-human performance \_ J

3) “Intuition” about board state

LINKOPING
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MuZero: Learning Dynamics for Planning (2020)

Human Domain Enown
Go data knowledge rules

AlphaGe becomes the first program to master Go using
naural networks and tree search
{Jan 2018, Mature)

AlpRaGo Zero

o
d‘-‘ui
= \

—

AlphaGo Zero lparns to play completely on its own,
without human knowledge

(Oer 2017, Hature)

Mulero

Enown
Go Chess shogi rules

AlphaZero masters three perfect information games
uging a single algorithm for all games

(Dec 2018, Science)

Go Chess Shogi Atari

MuZero loarns the rules of the Eame .a:lr.-'.'.'in_g t to also

master grwvironments with unknown dynamics
(Dec 2020, Mature)
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Deep Reinforcement Learning Summary

* Agents acting in * Q function: expected * Learn and optimize the
environment total reward given s, a policy directly

* State-action pairs =2 * Policy determined by * Applicable to
maximize future rewards selecting action that continuous action

« Discounting maximizes Q function spaces

55
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Reinforcement Learning Concepts

* Value-Based:
e Learn value function
 Implicit policy (e.g. greedy selection)

« Example: Deep Q Networks (DQN) Médel-Free
 Policy-Based:

 No value function Value Function L Policy

 Learn explicit (stochastic) policy

- Example: Stochastic Policy Gradients | Valueghsed PoileysBased
* Actor-Critic: \ Mgortasyd

 Learn value function

 Learn policy using value function
« Example: Asynchronous Advantage Actor Critic (A3C)

Model
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Multi-Objective
Reinforcement Ledrning
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« Many real-world tasks may present an agent with
multiple, possibly conflicting objectives:

* Time
« Safety

« Resource consumption

fl( X)

* Multi-Objective Reinforcement Learning allows an
agent to learn how to prioritize among objectives at
runtime -

 Possible to create diverse populations of agents, or o J
adapt agents to time-varying user needs, e.g. difficulty |
level or training session contents

« Training goals can also be considered by agents

I LINKOPING J. Kallstrom and F.Heintz, Tunable Dynamics in Agent-Based Simulation using Multi-
IO" UNIVERSITY Objective Reinforcement Learning, AAMAS Adaptive and Learning Agents Workshop 2019.
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APractical Guide to Multi-Objective Reinforcement Learning and Planning

Conor F. Hayes*, Roxana Radulescu*, Eugenio Bargiacchi, Johan Kallstrom,
Matthew Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M. Zint-
graf, Richard Dazeley, Fredrik Heintz, Enda Howley, Athirai A. Irissappane,
Patrick Mannion, Ann Nowé, Gabriel Ramos, Marcello Restelli, Peter Vamplew,
and Diederik M. Roijers

Autonomous Agents and Multi-Agent Systems. 2022
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Reinforcement Learning

Autonomous agent thatlearns via experience

An environment which the agent can interact with

The agent has a state in the environment Se41, Res1

At each step t the agent:

® executes action A
® receives state S;
® receives a scalar reward Ri+1 ‘

II " LINKOPING Slides from Connor Hayes
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Reinforcement Learning [4]

* Reinforcement learning (RL) problems can be modelled as a Markov Decision Process (MDP)
« AMDP is atuple: (S, A, T, y, U, R),

e S the state space

e A the action space

eT: SX A XS —|0,1]is a probabilistic transition function

e v is a discount factor determining the relative importance of future rewards

e R: S X A XS — R is areward function, where r is the immediate reward.
e lU:S —[0,1] is a probability distribution over initial states
* In MDPs, the agent acts according to a policy #, where a policv isa mapping from states to
actions

61

* The value function of a policy 7 is defined as follow Vi =EK E Y rt ‘ ™,
t=0
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Reinforcement Learning

 Many real-world problems have multiple objectives
« Some RL approaches only consider a single objective

e Others combine the objectives linearly (GT Sophy)

e Such approaches oversimplify the problem and can produce sub-optimal results

* For example: Power plant control
® Objectives: maximise power output, minimise CO, emissions

* Tuning the linear combination can be a difficult and iterative process
e Should the behaviour be tuned by an Al engineer?

* Why not just learn a set of optimal policies for all linear combinations?

Solution: Take a multi-objective approach

2023-09-12
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Multi-Objective Reinforcement Learning

Autonomous agent thatlearns via experience
I I
An environment which the agent can interact with

The agent perceives a state inthe environment

At each step t the agent: At

St+15 Reta
® executes action A:

® receives state Si+1

* receives a vector reward
® Rit1
PR
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Multi-Objective Reinforcement Learning [11

* Multi-Objective Reinforcement learning (MORL) problems can be modelled as a multi-
objective Markov decision process (MOMDP)
« A MOMDRP is a tuple: (S, A, T, y, u, R),
e S the state space

e A the action space
e T: SX A XS —]0,1] is a probabilistic transition function

e vy is a discount factor determining the relative importance of future rewards
e R: S X A XS — RY is a vector valued reward function, where where d >= 2
e U:S —[0,1] is a probability distribution over initial states
* In MOMDPs, the agent acts according to a policy @ 00
. . . . Vi =& Zytr T,
* The value function of a policy 7 is defined as follows: L7
t=0

64
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Multi-Objective Reinforcement Learning

* A utility function, u, is used to represent a user’s preferences over objectives

e Utility function maps a vector reward to a scalar utility
ey :R" ™R

* For MORL, a utility function, u is assumed to be monotonically increasing:

(Vi :VF>VE)A @iV >VE) = u(V™) > u(V™)

2023-09-12
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Multi-Objective Reinforcement Learning

* |t is possible to compute different solutions sets like the Pareto front:
PF(IT) = {x €T |Ax €T1:V* >, V7},

* where >p is the Pareto dominance relation,
VE >, V&= (Vi VE 2 VF) AFiVE > V7).
e or the Convex Hull:

e« CH(IT) = {7m € TT | 3w, Vz eTl:-wTve > WTVE,}

« where W'V7® computes the inner product of a weight vector w

 and a value vector V*
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Multi-Objective Reinforcement Learning

(monotonically increasing u)

Figure 1: The Convex Hull is a subset of the Pareto front
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Axiomatic Approach

* The Pareto front is assumed to be the optimal solution set
» Solutions sets are derived without considering the utility function

* In practical settings the axiomatic approach may not be sufficient

* In practical settings more information about the utility function of a user might be known
(domain knowledge)

* In practical settings the computing the Pareto front might be prohibitively expensive

* It is not possible to encode domain knowledge when taking an axiomatic approach
* Computation/time is wasted if the Pareto front is not actually the optimal set

* Some policies on the Pareto front might be undesirable a priori (considering the knowledge of
system expert)

 Solution: Take a utility-based approach

68
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Utility-Based Approach

e Considering a utility function first is key to the successful application of Al in practical

settings

* The properties of a user’s utility may:
e drastically alter the desired solution

 change what methods are available (single-policy or multi-policy)

2023-09-12

e The utility- based approach aims to derive the optimal solution set from the available
knowledge about the user’s utility function

_ 4. select or
1. collect info :
on user utility ’ des!gn
algorithm
3. derive
— solution
concept
2. decide on 5. design
policy types selection phase

69
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MORL Scenarios

! utility function

(a) MOMDP —> algorithm —> solution —l> scalarisation ——> smgle
set : solution
planning or learning phase selection phase execution phase
(b) MOMDP T solution user sxngle
set 5 selection : solution
planning or learning phase selection phase execution phase
MOMDP
(©) + . ] - single
utility alaonitn s solution
function .
planning or learning phase execution phase

interactions
with the user

(d) MOMDP — algorithm smg.le
solution
planning or learning phase execution phase
utility function
updates
. solution | S single
(e) MOMDP — gjgorithm —> i —Y—> gcalarisation —> &
set ! solution
planning or learning phase i repeated selection and execution phase
update
(f) MOMDP e solution : user : smg,.lc user
set | selection i solution review
planning or learning phase selection phase execution and review phase
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MORL Scenarios

MOMDP !
+ ' ; single
utility jReorithiy : " solution

function

planning or learning phase execution phase

Figure 2: The known utility function scenario

utility function

) solution l user single
MOMDP —' set | selection ’—' solution

planning or learning phase selection phase + execution phase

Figure 3: The unknown utility function scenario
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Multi-Objective Reinforcement Learning Example

* For example, Deep Sea Treasure [5]
* Objectives: maximise treasure, minimise fuel
e reward = [treasure, -fuel] &

Figure 4. The Deep Sea Treasure environment
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Multi-Objective Reinforcement Learning Example

0.0

@ @ Pareto Front
—251 ¢ Convex Hull

—501 ®
—75 @

—10.0 1

fuel

—12.5 ®

—15.0-

~175 e

- 200 T T T T T T T
0 20 40 60 80 100 120

treasure
Figure 5: Pareto front (blue) and Convex Hull (red) of the Deep Sea Treasure

benchmark problem

II " LINKOPING Slides from Connor Hayes
@V UNIVERSITY



TDDCI17 - HT23 - Fredrik Heintz - LE7 Machine Learning lll (partially based on slides from MIT 6S191) 2023-09-12 74

« Many real-world tasks may present an agent with
multiple, possibly conflicting objectives:

* Time
« Safety

« Resource consumption

fl( X)

* Multi-Objective Reinforcement Learning allows an
agent to learn how to prioritize among objectives at
runtime -

 Possible to create diverse populations of agents, or o J
adapt agents to time-varying user needs, e.g. difficulty |
level or training session contents

« Training goals can also be considered by agents

I LINKOPING J. Kallstrom and F.Heintz, Tunable Dynamics in Agent-Based Simulation using Multi-
IO" UNIVERSITY Objective Reinforcement Learning, AAMAS Adaptive and Learning Agents Workshop 2019.
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