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• Can we use supervised learning to learn how to act?

• E.g. engineering robot behavior can be fragile and time consuming

• Things humans do without thinking require extremely detailed 
instructions for a robot. Even robust locomotion is hard.

Humorous reminder from IEEE 
Spectrum: The DARPA 2015 
Humanoid Challenge “Fail 
Compilation”
To be fair, this is the state of the 
art: 
https://youtu.be/NR32ULxbjYc

https://youtu.be/NR32ULxbjYc


• Yes, one can learn a mapping from problem state (e.g. position) to action

• As in all supervised learning, this requires a teacher 

• Sometimes called ”imitation learning”

• However, supervised learning with robots can get tedious as providing examples of 

correct behaviour is difficult to automate

• Can we remove the human from the loop? 

1. An automated teacher like a planning or optimal control algorithm can generate 

supervised examples if it has a model of the environment

• Mordatch et al, https://www.youtube.com/watch?v=IxrnT0JOs4o

• LiU’s research with real nano-quadcopters (deep ANN on-board the microcontroller)

2. Reinforcement learning attempts to generalize this to learning from scratch in 

completely unknown environments

https://www.youtube.com/watch?v=IxrnT0JOs4o


• Reinforcement Learning is learning what to do – how to map 
situations to actions – so as to maximum a numerical reward.

Reinforcement Learning: An introduction
Sutton & Barto

• Rather than learning from explicit training data, or discovering 
patterns in static data, reinforcement learning discovers the 
best option (highest reward) from trial and error.

• Inverse Reinforcement Learning

• Learn reward function by observing an expert

• “Apprenticeship learning“

• E.g. Abbeel et al. Autonomous Helicopter Aerobatics 
through Apprenticeship Learning























• The environment

• The reinforcement function r(s,a)
• Pure delay reward and avoidance problems

• Minimum time to goal

• Games

• The value function V(s)
• Policy p: S → A

• Value V p(s) := Si gi rt+i

• Find the optimal policy p* that 
maximizes V p*(s) for all states s.



A minimum time to goal world

Value function                 Optimal policy                  Optimal value

for random                                                                     function

movement



Assume:

• finite set of states S, finite set of actions A

• at each discrete time agent observes state st S and chooses action at A

• then receives immediate reward rt

• and state changes to st+1

• Markov assumption: st+1 = d(st,at) and rt = r(st,at)

• i.e. rt and st+1 depend only on current state and action

• functions d and r may be non-deterministic

• functions d and r not necessarily known to the agent



r(s,a) V*(s)

An optimal policy







Optimal policy:

• p*(s) = argmaxa[r (s,a) + gV *(d(s,a))]

• Doesn't work if we don't know r and d.

The Q-function:

• Q (s,a) := r (s,a) + gV *(d(s,a))

• p*(s) = argmaxaQ (s,a)

r(s,a)

Q(s,a)



• Note Q and V* closely related:
V *(s) = maxa' Q (s,a' )

• Therefore Q can be written as:

Q (st ,at) := r (st ,at) + gV *(d(st ,at)) =

r (st ,at) + g maxa' Q (st+1 ,a' )

• If Q^ denote the current approximation of Q then it can be updated by:

Q^(s,a) := r + g maxa' Q
^(s',a' )



• Value-Based:

• Learn value function

• Implicit policy (e.g. greedy selection)

• Example: Deep Q Networks (DQN)

• Policy-Based:

• No value function

• Learn explicit (stochastic) policy

• Example: Stochastic Policy Gradients

• Actor-Critic:

• Learn value function

• Learn policy using value function

• Example: Asynchronous Advantage Actor Critic (A3C)







For each s, a initialize table entry Q^(s,a) := 0.

Observe current state s.

Do forever:

1. Select an action a and execute it

2. Receive immediate reward r

3. Observe the new state s'

4. Update the table entry for Q^(s,a):
Q^(s,a) := r + g maxa' Q

^(s',a' )

5. s := s'



Q ^(s1 ,aright) := r + g maxa' Q
^(s2 ,a' )

:= 0 + 0.9 max{63, 81, 100}

:= 90



• Exploration

• Selecting the best action

• Probabilistic choice

• Improving convergence

• Update sequences

• Remember old state-action transitions and their immediate reward

• Non-deterministic MDPs

• Temporal Difference Learning













































• To tackle a high-dimensional state space or continous states we can use a neural network as 

function approximator

• Lunar Lander experiment

• 8 continous/discrete states

• XY-Pos, XY-Vel, Rot, Rot-rate, Leg1/Leg2 ground contact

• 4 discrete actions

• Left thrust

• Right thrust

• Main engine thrust

• NOP

• Rewards

• Move from top to bottom of the screen (+ ~100-140)

• Land between the posts (+100)

• Put legs on ground (+10 per leg)

• Penalties

• Using main engine thrust (-0.3 per frame)

• Crashing (-100)

• Solved using Stochastic Policy Gradients











• Value-Based:

• Learn value function

• Implicit policy (e.g. greedy selection)

• Example: Deep Q Networks (DQN)

• Policy-Based:

• No value function

• Learn explicit (stochastic) policy

• Example: Stochastic Policy Gradients

• Actor-Critic:

• Learn value function

• Learn policy using value function

• Example: Asynchronous Advantage Actor Critic (A3C)





• Many real-world tasks may present an agent with 
multiple, possibly conflicting objectives:

• Time

• Safety

• Resource consumption

• Multi-Objective Reinforcement Learning allows an 
agent to learn how to prioritize among objectives at 
runtime

• Possible to create diverse populations of agents, or 
adapt agents to time-varying user needs, e.g. difficulty 
level or training session contents

• Training goals can also be considered by agents

J. Källström and F.Heintz, Tunable Dynamics in Agent-Based Simulation using Multi-
Objective Reinforcement Learning, AAMAS Adaptive and Learning Agents Workshop 2019.



Conor F. Hayes*, Roxana Rădulescu*, Eugenio Bargiacchi, Johan Källström, 

Matthew Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M. Zint- 

graf, Richard Dazeley, Fredrik Heintz, Enda Howley, Athirai A. Irissappane, 

Patrick Mannion, Ann Nowé, Gabriel Ramos, Marcello Restelli, Peter Vamplew, 

and Diederik M. Roijers

Autonomous Agents and Multi-Agent Systems. 2022

Slides from Connor Hayes



• Autonomous agent that learns via experience

• An environment which the agent can interact with

• The agent has a state in the environment

• At each step t the agent:

• executes action At

• receives state St

• receives a scalar reward Rt+1
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At
, RSt+1 t+1

Slides from Connor Hayes



• Reinforcement learning (RL) problems can be modelled as a Markov Decision Process (MDP)

• A MDP is a tuple: (S, A, T, γ, µ, R),

• S the state space

• A the action space

• T : S × A × S → [0, 1] is a probabilistic transition function

• γ is a discount factor determining the relative importance of future rewards

• R : S × A× S → R is a reward function, where r is the immediate reward.

• µ : S → [0, 1] is a probability distribution over initial states

• In MDPs, the agent acts according to a policy π, where a policy is a mapping from states to

actions

• The value function of a policy π is defined as follows:
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• Many real-world problems have multiple objectives

• Some RL approaches only consider a single objective

• Others combine the objectives linearly (GT Sophy)

• Such approaches oversimplify the problem and can produce sub-optimal results

• For example: Power plant control
• Objectives: maximise power output, minimise CO2 emissions

• Tuning the linear combination can be a difficult and iterative process

• Should the behaviour be tuned by an AI engineer?

• Why not just learn a set of optimal policies for all linear combinations?

• Solution: Take a multi-objective approach

62
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• Autonomous agent that learns via experience

• An environment which the agent can interact with

• The agent perceives a state in the environment

• At each step t the agent:

• executes action At

• receives state St+1

• receives a vector reward

• Rt+1
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At, RSt+1 t+1
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• Multi-Objective Reinforcement learning (MORL) problems can be modelled as a multi-

objective Markov decision process (MOMDP)

• A MOMDP is a tuple: (S, A, T, γ, µ, R),

• S the state space

• A the action space

• T : S × A × S → [0, 1] is a probabilistic transition function

• γ is a discount factor determining the relative importance of future rewards

• R: S × A × S → Rd is a vector valued reward function, where where d > = 2

• µ : S → [0, 1] is a probability distribution over initial states

• In MOMDPs, the agent acts according to a policy π

• The value function of a policy π is defined as follows:
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• A utility function, u, is used to represent a user’s preferences over objectives

• Utility function maps a vector reward to a scalar utility

• u :: Rn → R

• For MORL, a utility function, u is assumed to be monotonically increasing:
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• It is possible to compute different solutions sets like the Pareto front:

• where ≻P is the Pareto dominance relation,

• or the Convex Hull:

• CH(Π) = {π ∈Π |∃w,∀π′ ∈Π : w⊤Vπ ≥ w⊤Vπ′

}

• where w⊤Vπ computes the inner product of a weight vector w

• and a value vector Vπ
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PPF(Π) = {π ∈ Π | ∄π′ ∈ Π : Vπ′ 

≻ Vπ},

P
π π π′  ′ π π ′

i i i iVπ ≻ V ⇐⇒ (∀i : V ≥ V ) ∧ (∃i : V > V ).

Slides from Connor Hayes
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Figure 1: The Convex Hull is a subset of the Pareto front

Slides from Connor Hayes



• The Pareto front is assumed to be the optimal solution set

• Solutions sets are derived without considering the utility function

• In practical settings the axiomatic approach may not be sufficient

• In practical settings more information about the utility function of a user might be known

(domain knowledge)

• In practical settings the computing the Pareto front might be prohibitively expensive

• It is not possible to encode domain knowledge when taking an axiomatic approach

• Computation/time is wasted if the Pareto front is not actually the optimal set

• Some policies on the Pareto front might be undesirable a priori (considering the knowledge of

system expert)

• Solution: Take a utility-based approach
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• Considering a utility function first is key to the successful application of AI in practical

settings

• The properties of a user’s utility may:

• drastically alter the desired solution

• change what methods are available (single-policy or multi-policy)

• The utility- based approach aims to derive the optimal solution set from the available

knowledge about the user’s utility function
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MORL Scenarios
70
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Figure 2: The known utility function scenario

Figure 3: The unknown utility function scenario

Slides from Connor Hayes



• For example, Deep Sea Treasure [5]

• Objectives: maximise treasure, minimise fuel

• reward = [treasure, -fuel]
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Figure 4: The Deep Sea Treasure environment
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• Many real-world tasks may present an agent with 
multiple, possibly conflicting objectives:

• Time

• Safety

• Resource consumption

• Multi-Objective Reinforcement Learning allows an 
agent to learn how to prioritize among objectives at 
runtime

• Possible to create diverse populations of agents, or 
adapt agents to time-varying user needs, e.g. difficulty 
level or training session contents

• Training goals can also be considered by agents

J. Källström and F.Heintz, Tunable Dynamics in Agent-Based Simulation using Multi-
Objective Reinforcement Learning, AAMAS Adaptive and Learning Agents Workshop 2019.



• Hayes, C.F., Rădulescu, R., Bargiacchi, E., Källström, J., Macfarlane, M., 
Reymond, M., Verstraeten, T., Zintgraf, L.M., Dazeley, R., Heintz, F., 
Howley, E., Irissappane, A.A., Mannion, P., Nowé, A., Ramos, G., Restelli, 
M., Vamplew, P., Roijers, D.M.: A practical guide to multi-objective 
reinforcement learning and planning. Autonomous Agents and Multi-
Agent Systems 36(1), 26 (2022). URL https://doi.org/10.1007/s10458-
022-09552-y 

• Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, 
M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: 
Human-level control through deep reinforcement learning. nature 
518(7540), 529–533 (2015)

Slides from Connor Hayes

https://doi.org/10.1007/s10458-022-09552-y
https://doi.org/10.1007/s10458-022-09552-y


• Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., 
Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., 
Hassabis, D.: A general reinforcement learning algorithm that masters 
chess, shogi, and go through self-play. Science 362(6419), 1140–1144 
(2018). URL https://www.science.org/doi/abs/10.1126/science.aar6404 

• Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient 
methods for reinforcement learning with function approximation. In: 
Proceedings of the 12th International Conference on Neural Information 
Processing Systems, NIPS’99, p. 1057–1063. MIT Press, Cambridge, MA, 
USA (1999)

Slides from Connor Hayes

https://www.science.org/doi/abs/10.1126/science.aar6404


• Vamplew, P., Yearwood, J., Dazeley, R., Berry, A.: On the limitations of 
scalarisation for multi-objective reinforcement learning of pareto fronts. 
In: W. Wobcke, M. Zhang (eds.) AI 2008: Advances in Artificial 
Intelligence, pp. 372–378. Springer Berlin Heidelberg, Berlin, Heidelberg 
(2008)

• Wurman, P.R., Barrett, S., Kawamoto, K., MacGlashan, J., Subramanian, 
K., Walsh, T.J., Capobianco, R., Devlic, A., Eckert, F., Fuchs, F., et al.: 
Outracing champion gran turismo drivers with deep reinforcement 
learning. Nature 602(7896), 223–228 (2022)

Slides from Connor Hayes



www.ida.liu.se/~TDDC17


	Slide 1: TDDC17 LE7 HT2023 Machine Learning III
	Slide 2: Classes of Learning Problems
	Slide 3: From Supervised to Reinforcement Learning - Learning How to Act
	Slide 4: Learning How to Act
	Slide 5: Reinforcement Learning Basic Concept
	Slide 6: Reinforcement Learning: Key Concepts
	Slide 7: Reinforcement Learning: Key Concepts
	Slide 8: Reinforcement Learning: Key Concepts
	Slide 9: Reinforcement Learning: Key Concepts
	Slide 10: Reinforcement Learning: Key Concepts
	Slide 11: Reinforcement Learning: Key Concepts
	Slide 12: Reinforcement Learning: Key Concepts
	Slide 13: Reinforcement Learning: Key Concepts
	Slide 14: Reinforcement Learning: Key Concepts
	Slide 15: Reinforcement Learning: Key Concepts
	Slide 16: A Reinforcement Learning Problem
	Slide 17: RL Value Function - Example
	Slide 18: Markov Decision Processes
	Slide 19: MDP Example
	Slide 20: Defining the Q-Function
	Slide 21: How to Take Actions Given a Q-Function
	Slide 22: The Q-Function
	Slide 23: The Q-Function
	Slide 24: Reinforcement Learning Concepts
	Slide 25: Reinforcement Learning Algorithms
	Slide 26: Reinforcement Learning Algorithms
	Slide 27: Q-Learning for Deterministic Worlds
	Slide 28: Q-Learning Example
	Slide 29: Q-Learning Continued
	Slide 30: Deep Q-Learning (DQN)
	Slide 31: Deep Q Networks (DQN): Training
	Slide 32: Deep Q Networks (DQN): Training
	Slide 33: Deep Q Networks (DQN): Training
	Slide 34: Deep Q Networks (DQN): Training
	Slide 35: Deep Q Network Summary
	Slide 36: DQN Atari Results
	Slide 37: DQN Atari Results
	Slide 38: Downsides of Q-Learning
	Slide 39: Reinforcement Learning Algorithms
	Slide 40: Deep Q Networks
	Slide 41: Policy Gradient (PG): Key Idea
	Slide 42: Discrete vs Continuous Action Spaces
	Slide 43: Discrete vs Continuous Action Spaces
	Slide 44: Policy Gradient (PG): Key Idea
	Slide 45: Training Policy Gradients: Case Study
	Slide 46: Training Policy Gradients
	Slide 47: Training Policy Gradients
	Slide 48: Training Policy Gradients
	Slide 49: Training Policy Gradients
	Slide 50: Training Policy Gradients
	Slide 51: Reinforcement Learning – Neural Networks as Function Approximators
	Slide 52: Reinforcement Learning Neural Networks as Function Approximators
	Slide 53: AlphaGo Beats Top Human Player (2016)
	Slide 54: MuZero: Learning Dynamics for Planning (2020)
	Slide 55: Deep Reinforcement Learning Summary
	Slide 56: Reinforcement Learning Concepts
	Slide 57: Multi-Objective Reinforcement Learning
	Slide 58: Multi-Objective Reinforcement Learning (MORL)
	Slide 59: A Practical Guide to Multi-Objective Reinforcement Learning and Planning
	Slide 60: Reinforcement Learning
	Slide 61: Reinforcement Learning [4]
	Slide 62: Reinforcement Learning
	Slide 63: Multi-Objective Reinforcement Learning
	Slide 64: Multi-Objective Reinforcement Learning [1]
	Slide 65: Multi-Objective Reinforcement Learning
	Slide 66: Multi-Objective Reinforcement Learning
	Slide 67: Multi-Objective Reinforcement Learning
	Slide 68: Axiomatic Approach
	Slide 69: Utility-Based Approach
	Slide 70: MORL Scenarios
	Slide 71: MORL Scenarios
	Slide 72: Multi-Objective Reinforcement Learning Example
	Slide 73: Multi-Objective Reinforcement Learning Example
	Slide 74: Multi-Objective Reinforcement Learning (MORL)
	Slide 75: References I
	Slide 76: References II
	Slide 77: References III
	Slide 78: TDDC17 AI LE7 HT2023: Reinforcement learning Deep reinforcement learning Multi-objective reinforcement learning

