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Monte-Carlo Methods: Idea

subsume a broad family of algorithms

decisions are based on random samples

results of samples are aggregated by computing the average

apart from these points, algorithms differ significantly
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Monte-Carlo Tree Search: Applications

Examples for successful applications of MCTS in games:

board games (e.g., Go)

card games (e.g., Poker)

AI for computer games (e.g., Starcraft)

Story Generation
(e.g., for dynamic dialogue generation in computer games)

General Game Playing

Also many applications in other areas, e.g.,

MDPs (planning with stochastic effects) or

POMDPs (MDPs with partial observability)
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Minimax Tree

full tree up to depth 4
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Monte-Carlo Tree Search: Idea

Monte-Carlo Tree Search (MCTS) ideas:

perform iterations as long as resources
(deliberation time, memory) allow:
build a partial game tree, where nodes n are annotated with

utility estimate û(n)
visit counter N(n)

initially, the tree contains only the root node

each iteration adds one node to the tree

After constructing the tree, play the action that leads to the child of the
root with highest utility estimate (as in minimax/alpha-beta).
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Monte-Carlo Tree Search: Iterations

each iteration consists of four phases:

selection: traverse the tree by applying
tree policy (or selection policy)

stop when reaching terminal node (in this case, set nchild to that
node and s⋆ to its state and skip next two phases). . .
. . . or when reaching a node nparent for which not all successors
are part of the tree.

expansion: add a missing successor nchild of nparent to the tree

simulation: apply default policy (or playout policy) from nchild

until a terminal state s⋆ is reached
backpropagation: for all nodes n on path from root to nchild:

increase N(n) by 1
update current average û(n) based on u(s⋆)
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Monte-Carlo Tree Search

Selection: apply tree policy to traverse tree
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Monte-Carlo Tree Search

Expansion: create a node for first state beyond the tree
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Monte-Carlo Tree Search

Simulation: apply default policy until terminal state is reached
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Monte-Carlo Tree Search

Backpropagation: update utility estimates of visited nodes
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MCTS Tree
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