
Artificial Intelligence
Adversarial Search: Monte-Carlo Tree Search

Jendrik Seipp

Linköping University

based on slides by Thomas Keller and Malte Helmert (University of Basel)



Introduction Monte-Carlo Tree Search

Introduction

2/13



Introduction Monte-Carlo Tree Search

Monte-Carlo Methods: Idea

subsume a broad family of algorithms

decisions are based on random samples

results of samples are aggregated by computing the average

apart from these points, algorithms differ significantly

3/13



Introduction Monte-Carlo Tree Search

Monte-Carlo Tree Search: Applications

Examples for successful applications of MCTS in games:

board games (e.g., Go)

card games (e.g., Poker)

AI for computer games (e.g., Starcraft)

Story Generation
(e.g., for dynamic dialogue generation in computer games)

General Game Playing

Also many applications in other areas, e.g.,

MDPs (planning with stochastic effects) or

POMDPs (MDPs with partial observability)

4/13



Introduction Monte-Carlo Tree Search

Monte-Carlo Tree Search

5/13



Introduction Monte-Carlo Tree Search

Minimax Tree

full tree up to depth 4

6/13



Introduction Monte-Carlo Tree Search

Monte-Carlo Tree Search: Idea

Monte-Carlo Tree Search (MCTS) ideas:

perform iterations as long as resources
(deliberation time, memory) allow:
build a partial game tree, where nodes n are annotated with

utility estimate û(n)
visit counter N(n)

initially, the tree contains only the root node

each iteration adds one node to the tree

After constructing the tree, play the action that leads to the child of the
root with highest utility estimate (as in minimax/alpha-beta).

7/13



Introduction Monte-Carlo Tree Search

Monte-Carlo Tree Search: Iterations

each iteration consists of four phases:

selection: traverse the tree by applying
tree policy (or selection policy)

stop when reaching terminal node (in this case, set nchild to that
node and s⋆ to its state and skip next two phases). . .
. . . or when reaching a node nparent for which not all successors
are part of the tree.

expansion: add a missing successor nchild of nparent to the tree

simulation: apply default policy (or playout policy) from nchild

until a terminal state s⋆ is reached
backpropagation: for all nodes n on path from root to nchild:

increase N(n) by 1
update current average û(n) based on u(s⋆)

8/13



Introduction Monte-Carlo Tree Search

Monte-Carlo Tree Search

Selection: apply tree policy to traverse tree

11
13

12 5 14 4 6 1 7 3

4
1

8
1

18
2

18
2

2
1

5
1

6
1

12 1 16 1

9/13



Introduction Monte-Carlo Tree Search

Monte-Carlo Tree Search

Selection: apply tree policy to traverse tree

11
13

12 5 14 4 6 1 7 3

4
1

8
1

18
2

18
2

2
1

5
1

6
1

12 1 16 1

9/13



Introduction Monte-Carlo Tree Search

Monte-Carlo Tree Search

Selection: apply tree policy to traverse tree

11
13

12 5 14 4 6 1 7 3

4
1

8
1

18
2

18
2

2
1

5
1

6
1

12 1 16 1

9/13



Introduction Monte-Carlo Tree Search

Monte-Carlo Tree Search

Selection: apply tree policy to traverse tree

11
13

12 5 14 4 6 1 7 3

4
1

8
1

18
2

18
2

2
1

5
1

6
1

12 1 16 1

9/13



Introduction Monte-Carlo Tree Search

Monte-Carlo Tree Search

Expansion: create a node for first state beyond the tree

11
13

12 5 14 4 6 1 7 3

4
1

8
1

18
2

18
2

2
1

5
1

6
1

12 1 ? 0 16 1

10/13



Introduction Monte-Carlo Tree Search

Monte-Carlo Tree Search

Simulation: apply default policy until terminal state is reached

11
13

12 5 14 4 6 1 7 3

4
1

8
1

18
2

18
2

2
1

5
1

6
1

12 1 ? 0 16 1

39

11/13



Introduction Monte-Carlo Tree Search

Monte-Carlo Tree Search

Backpropagation: update utility estimates of visited nodes

11
13

12 5 14 4 6 1 7 3

4
1

8
1

18
2

18
2

2
1

5
1

6
1

12 1 39 1 16 1

39

12/13



Introduction Monte-Carlo Tree Search

Monte-Carlo Tree Search

Backpropagation: update utility estimates of visited nodes

11
13

12 5 14 4 6 1 7 3

4
1

8
1

18
2

25
3

2
1

5
1

6
1

12 1 39 1 16 1

39

12/13



Introduction Monte-Carlo Tree Search

Monte-Carlo Tree Search

Backpropagation: update utility estimates of visited nodes

11
13

12 5 19 5 6 1 7 3

4
1

8
1

18
2

25
3

2
1

5
1

6
1

12 1 39 1 16 1

39

12/13



Introduction Monte-Carlo Tree Search

Monte-Carlo Tree Search

Backpropagation: update utility estimates of visited nodes

13
14

12 5 19 5 6 1 7 3

4
1

8
1

18
2

25
3

2
1

5
1

6
1

12 1 39 1 16 1

39

12/13



Introduction Monte-Carlo Tree Search

MCTS Tree

13/13


	Introduction
	

	Monte-Carlo Tree Search
	


