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CSP Algorithms

we now consider algorithms for solving CSPs
basic concepts:
m search: check partial assignments systematically
m backtracking: discard inconsistent partial assignments

m inference: derive equivalent, but tighter constraints
to reduce the size of the search space
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Backtracking Without Inference
(= Naive Backtracking)
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Naive Backtracking: Example

Consider the CSP for the following graph coloring instance:
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Naive Backtracking: Example

search tree for naive backtracking with
m fixed variable order vy, v4, V4, Vs, Vg, V3, V5

m alphabetical order of the values
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Is This a New Algorithm?

we have already seen this algorithm:
Backtracking corresponds to depth-first search
with the following state space:

m states: partial assignments

m initial state: empty assignment @

m goal states: consistent total assignments

m actions: assign, ; assigns value d € dom(v) to variable v

m action costs: all 0 (all solutions are of equal quality)

m transitions:

m for each non-total consistent assignment «,
choose variable v = SELECT-UNASSIGNED-VARIABLE

assign, 4

® transitiona ——— a U {v — d} for each d € dom(v)
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Why Depth-First Search?

depth-first search is particularly well-suited for CSPs:
m path length bounded (by the number of variables)
m solutions located at the same depth (lowest search layer)

m state space is directed tree, initial state is the root
~> no duplicates

hence none of the problematic cases for depth-first search occurs
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Naive Backtracking: Discussion

® naive backtracking often has to exhaustively explore
similar search paths (i.e., partial assignments
that are identical except for a few variables)

m “critical” variables are not recognized
and hence considered for assignment (too) late

m decisions that necessarily lead to constraint violations
are only recognized when all variables involved
in the constraint have been assigned.

~> more intelligence by focusing on critical decisions
and by inference of consequences of previous decisions
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Variable and Value Orders
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Variable Orders

B SELECT-UNASSIGNED-VARIABLE method in backtracking search allows
to influence order in which variables are considered for assignment

m selected order can strongly influence the search space size
and hence the search performance

m general aim: make critical decisions as early as possible
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Variable Orders

two common variable ordering criteria:
® minimum remaining values:
prefer variables that have small domains
m intuition: few subtrees ~»> smaller tree
m extreme case: only one value ~» forced assignment
m most constraining variable:
prefer variables contained in many nontrivial constraints
B intuition: constraints tested early
~> inconsistencies recognized early ~» smaller tree
combination: use minimum remaining values criterion,
then most constraining variable criterion to break ties
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Value Orders

m ORDER-DOMAIN-VALUES method in backtracking search allows to
influence order in which values of the selected variable v are
considered

m this is less important because it does not matter
in subtrees without a solution

m in subtrees with a solution, ideally a value that leads to a solution
should be chosen

m general aim: make most promising assignments first
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Value Orders

Definition (conflict)

Let C = (V,dom, C) be a CSP.
For variables v # v’ and values d € dom(v), d’ € dom(v’),
the assignment v — d is in conflict with v/ +— d’ if there is ¢, s € Cs.t.

(d,d") ¢ rel(cyy).

value ordering criterion for partial assignment o
and selected variable v:
m minimum conflicts: prefer values d € dom(v)
such that v — d causes as few conflicts as possible
with variables that are unassigned in o

13/28



Inference
©0000

Inference
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Inference

Derive additional constraints
that are implied by the given constraints,
i.e., that are satisfied in all solutions.

example: CSP with variables v4, v,, vz with domain {1, 2,3}
and constraints v; < v, and v, < vs.
we can infer:

m v, cannot be equal to 3

m ((v1,v2),{(1,2),(1,3), (2,3)} can be tightened to {(v1,v2), {(1,2)}
(tighter binary constraint)

mv<Vv
(“new” binary constraint = trivial constraint tightened)
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Trade-Off Search vs. Inference

Inference formally
Replace a given CSP C with an equivalent, but tighter CSP.

trade-off:

m the more complex the inference, and
m the more often inference is applied,
m the smaller the resulting state space, but

m the higher the complexity per search node.
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When to Apply Inference?

different possibilities to apply inference:
m once as preprocessing before search
m combined with search: before recursive calls
during backtracking procedure
m already assigned variable v — d corresponds to dom(v) = {d} ~»
more inferences possible
m during backtracking, derived constraints have to be retracted

because they were based on the given assignment
~> powerful, but possibly expensive
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Backtracking with Inference: Discussion

®m INFERENCE method in backtracking search allows to apply different
inference methods

m inference methods can recognize unsolvability (given a)

m efficient implementations of inference are often incremental:
the last assigned variable/value pair v — d is taken
into account to speed up the inference computation
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Arc Consistency: Definition

Definition (Arc Consistent)

Let C = (V,dom, C) be a CSP.

@ Avariable v € Vis arc consistent
with respect to another variable v/ € V,
if for every value d € dom(v)
there exists a value d’ € dom(v") with (d,d") € ¢, .

@ The CSP C is arc consistent,
if every variable v € V is arc consistent
with respect to every other variable v/ € V.

remarks:
m definition for variable pair is not symmetrical

m v always arc consistent with respect to v’
if the constraint between v and v’ is trivial
20/28



> and Value Orders { e Arc Consistency

[e]e] lelelele}

Arc Consistency: Example

Consider a CSP with variables v, and v»,
domains dom(vy) = dom(v;) = {1,2,3}
and the constraint expressed by v; < v,.

Vi V2
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Arc Consistency: Example

Consider a CSP with variables v, and v»,
domains dom(vy) = dom(v;) = {1,2,3}
and the constraint expressed by v; < v,.

Vi V2

N\

Arc consistency of v4 with respect to v,
and of v, with respect to v, are violated.
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Enforcing Arc Consistency

m enforcing arc consistency, i.e., removing values from dom(v) that
violate the arc consistency of v with respect to v/,
is a correct inference method

22/28



ble and Value Orders erence Arc Consistency Path Consistency

[e]ele]e] lele}

Processing Variable Pairs: REVISE

function Revise({V, dom, C), v, V’):

revised = false

letc = ((v,v'),rel) € C

for each d € dom(v):

if there isno d’ € dom(v’) sit. (d,d") € rel(c):

remove d from dom(v)
revised = true

return revised

effect: v arc consistent with respect to v’.
All violating values in dom(v) are removed.

time complexity: O(k?), where k is maximal domain size
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Example: revise
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Enforcing Arc Consistency: AC-3

idea:
m transform C into equivalent arc consistent CSP
m store potentially inconsistent variable pairs in a queue

(V,dom,C) :=C
queue := @
for each nontrivial constraint ¢, y:
insert {u, v) into queue
insert (v, u) into queue
while queue # @:
remove an arbitrary element (u, v) from queue
if REVISE(C, u, v):
for each w € V \ {u, v} where ¢, is nontrivial:
insert {w, u) into queue
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Path Consistency

idea of arc consistency:
m for every assignment to a variable u
there must be a suitable assignment to every other variable v

m If not: remove values of u for which
no suitable “partner” assignment to v exists

this idea can be extended to three variables (path consistency):

m for every joint assignment to variables u, v
there must be a suitable assignment to every third variable w

m if not: remove pairs of values of u and v for which
no suitable “partner” assignment to w exists.

~» tighter binary constraint on u and v
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Path Consistency: Example

arc consistent, but not path consistent

Vi

V2 V3
= <(V17 VZ)’ {(r’ b)’ (b’ r)’ (g’ f'), (g’ b)}

Ci3 = <(V1’ V3), {(r’ b)’ (b’ r)’ (g’ r)’ (g’ b)}
€3 = <(V2, V3)’ {(r’ b)’ (b’ r)}
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Path Consistency: Example

arc consistent, but not path consistent

Vi

V2 V3
= <(V17 VZ)’ {(n b)’ (b’ f'), (Q, r)’ (g’ b)}

Ci3 = <(V1’ V3), {(r7 b)’ (b’ r)’ (g’ r)’ (g’ b)}
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Path Consistency: Example

not arc consistent, but path consistent

Vi

V2 V3
= <(V17 VZ)’ {(g’ r)’ (g’ b)}

ez = ((v1,v3),{(g,1), (g,b)}
C3 = <(V2, V3)’ {(r’ b)’ (b’ r)}
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Path Consistency: Example

arc consistent and path consistent

4

V2 V3
= <(V17 VZ)’ {(g’ r)’ (g’ b)}

ez = ((v1,v3),{(g,1), (g,b)}
C3 = <(V2, V3)’ {(r’ b)’ (b’ r)}
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