Artificial Intelligence CSP: Backtracking and Inference

Jendrik Seipp

Linköping University

CSP Algorithms

we now consider algorithms for solving CSPs

basic concepts:

- search: check partial assignments systematically
- backtracking: discard inconsistent partial assignments
- inference: derive equivalent, but tighter constraints to reduce the size of the search space

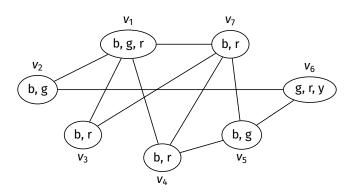
Naive Backtracking 000000

Backtracking Without Inference (= Naive Backtracking)

000000

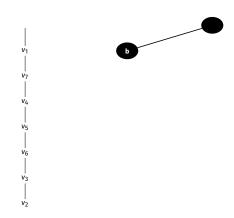
Naive Backtracking: Example

Consider the CSP for the following graph coloring instance:

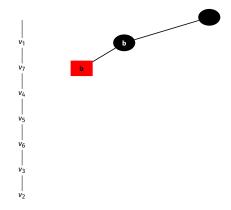


- \blacksquare fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values

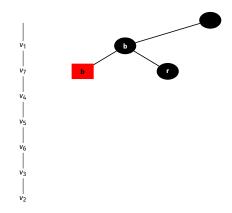
- \blacksquare fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values



- \blacksquare fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values



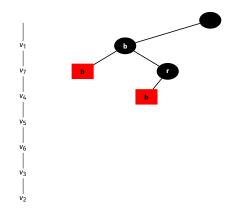
- \blacksquare fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values



Naive Backtracking

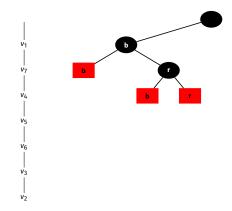
3

- \blacksquare fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values

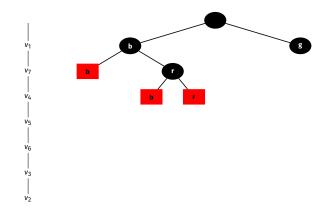


Naive Backtracking

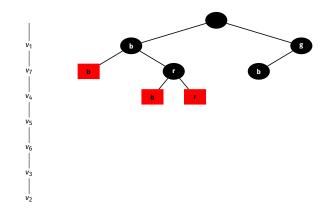
- fixed variable order v_1 , v_7 , v_4 , v_5 , v_6 , v_3 , v_2
- alphabetical order of the values



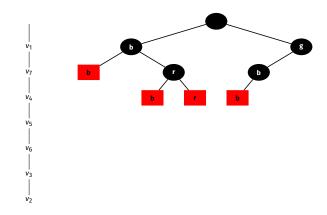
- \blacksquare fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values



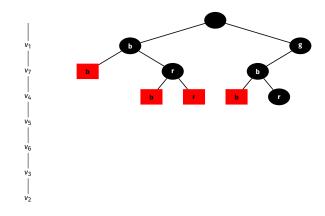
- \blacksquare fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values



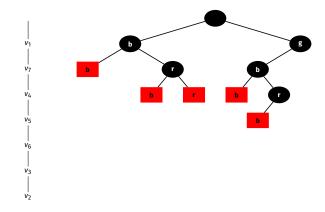
- \blacksquare fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values



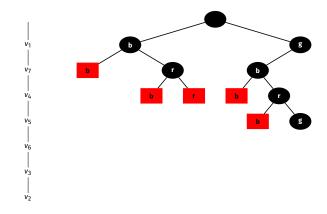
- \blacksquare fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values



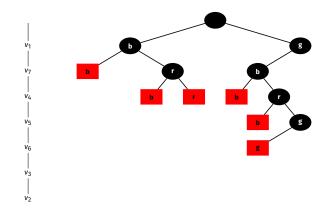
- \blacksquare fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values



- \blacksquare fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values

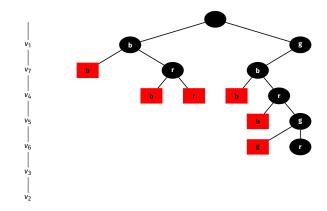


- \blacksquare fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values

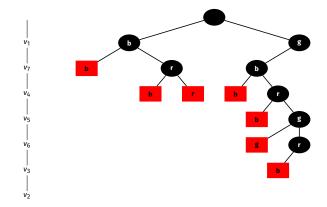


Naive Backtracking

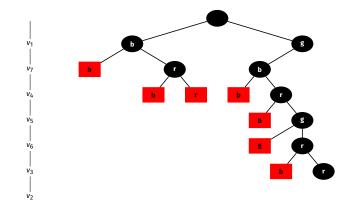
- \blacksquare fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values



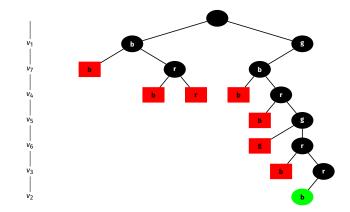
- \blacksquare fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values



- \blacksquare fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values



- \blacksquare fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values



Naive Backtracking

we have already seen this algorithm: Backtracking corresponds to depth-first search with the following state space:

- states: partial assignments
- initial state: empty assignment Ø
- goal states: consistent total assignments
- **actions:** assign_{v d} assigns value $d \in dom(v)$ to variable v
- action costs: all 0 (all solutions are of equal quality)
- transitions:
 - \blacksquare for each non-total consistent assignment α , choose variable v = SELECT-UNASSIGNED-VARIABLE
 - $assign_{v,d}$ transition $\alpha \xrightarrow{a} \alpha \cup \{v \mapsto d\}$ for each $d \in dom(v)$

Why Depth-First Search?

Naive Backtracking

depth-first search is particularly well-suited for CSPs:

- path length bounded (by the number of variables)
- solutions located at the same depth (lowest search layer)
- state space is directed tree, initial state is the root
 → no duplicates

hence none of the problematic cases for depth-first search occurs

Naive Backtracking

- naive backtracking often has to exhaustively explore similar search paths (i.e., partial assignments that are identical except for a few variables)
- "critical" variables are not recognized and hence considered for assignment (too) late
- decisions that necessarily lead to constraint violations are only recognized when all variables involved in the constraint have been assigned.
- → more intelligence by focusing on critical decisions and by inference of consequences of previous decisions

Variable Orders

- Select-Unassigned-Variable method in backtracking search allows to influence order in which variables are considered for assignment
- selected order can strongly influence the search space size and hence the search performance
- general aim: make critical decisions as early as possible

Variable Orders

two common variable ordering criteria:

- minimum remaining values: prefer variables that have small domains
 - intuition: few subtrees → smaller tree
 - extreme case: only one value ~> forced assignment
- most constraining variable: prefer variables contained in many nontrivial constraints
 - intuition: constraints tested early
 → inconsistencies recognized early → smaller tree

combination: use minimum remaining values criterion, then most constraining variable criterion to break ties

Value Orders

- ORDER-DOMAIN-VALUES method in backtracking search allows to influence order in which values of the selected variable v are considered
- this is less important because it does not matter in subtrees without a solution
- in subtrees with a solution, ideally a value that leads to a solution should be chosen
- general aim: make most promising assignments first

Definition (conflict)

```
Let C = \langle V, dom, C \rangle be a CSP.
For variables v \neq v' and values d \in dom(v), d' \in dom(v'),
the assignment v \mapsto d is in conflict with v' \mapsto d' if there is c_{v,v'} \in C s.t.
(d, d') \notin \operatorname{rel}(c_{v,v'}).
```

value ordering criterion for partial assignment α and selected variable v:

 \blacksquare minimum conflicts: prefer values $d \in dom(v)$ such that $v \mapsto d$ causes as few conflicts as possible with variables that are unassigned in α

•0000

Inference

Inference

Inference

Inference

Derive additional constraints that are implied by the given constraints, i.e., that are satisfied in all solutions.

example: CSP with variables v_1, v_2, v_3 with domain $\{1, 2, 3\}$ and constraints $v_1 < v_2$ and $v_2 < v_3$.

we can infer:

- v₂ cannot be equal to 3
- $\langle (v1, v2), \{(1, 2), (1, 3), (2, 3)\} \rangle$ can be tightened to $\langle (v1, v2), \{(1, 2)\} \rangle$ (tighter binary constraint)
- $V_1 < V_3$ ("new" binary constraint = trivial constraint tightened)

Trade-Off Search vs. Inference

Inference formally

Replace a given CSP C with an equivalent, but tighter CSP.

trade-off:

- the more complex the inference, and
- the more often inference is applied,
- the smaller the resulting state space, but
- the higher the complexity per search node.

When to Apply Inference?

different possibilities to apply inference:

- once as preprocessing before search
- combined with search: before recursive calls during backtracking procedure
 - already assigned variable $v \mapsto d$ corresponds to $dom(v) = \{d\} \rightsquigarrow$ more inferences possible
 - during backtracking, derived constraints have to be retracted because they were based on the given assignment
 - → powerful, but possibly expensive

Backtracking with Inference: Discussion

- INFERENCE method in backtracking search allows to apply different inference methods
- inference methods can recognize unsolvability (given α)
- efficient implementations of inference are often incremental: the last assigned variable/value pair $v \mapsto d$ is taken into account to speed up the inference computation

Arc Consistency

Arc Consistency: Definition

Definition (Arc Consistent)

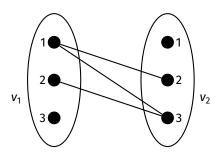
Let $C = \langle V, dom, C \rangle$ be a CSP.

- A variable $v \in V$ is arc consistent with respect to another variable $v' \in V$, if for every value $d \in dom(v)$ there exists a value $d' \in dom(v')$ with $\langle d, d' \rangle \in c_{v,v'}$.
- The CSP C is arc consistent. if every variable $v \in V$ is arc consistent with respect to every other variable $v' \in V$.

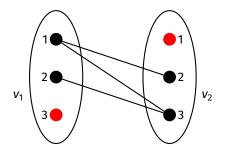
remarks:

- definition for variable pair is not symmetrical
- v always arc consistent with respect to v'if the constraint between v and v' is trivial

Consider a CSP with variables v_1 and v_2 , domains $dom(v_1) = dom(v_2) = \{1, 2, 3\}$ and the constraint expressed by $v_1 < v_2$.



Consider a CSP with variables v_1 and v_2 , domains $dom(v_1) = dom(v_2) = \{1, 2, 3\}$ and the constraint expressed by $v_1 < v_2$.

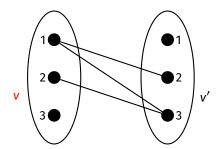


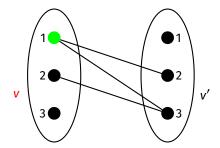
Arc consistency of v_1 with respect to v_2 and of v_2 with respect to v_1 are violated.

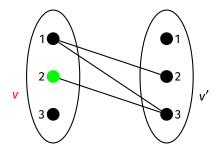
Enforcing Arc Consistency

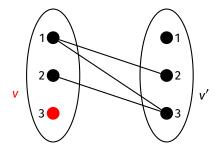
enforcing arc consistency, i.e., removing values from dom(v) that violate the arc consistency of v with respect to v', is a correct inference method

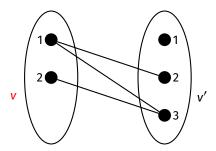
```
function REVISE(\langle V, dom, C \rangle, v, v'):
     revised = false
    let c = \langle (v, v'), rel \rangle \in C
    for each d \in dom(v):
         if there is no d' \in dom(v') s.t. (d, d') \in rel(c):
               remove d from dom(v)
               revised = true
    return revised
effect: v arc consistent with respect to v'.
All violating values in dom(v) are removed.
time complexity: O(k^2), where k is maximal domain size
```











idea:

- transform C into equivalent arc consistent CSP
- store potentially inconsistent variable pairs in a queue

```
function AC-3(\mathcal{C}):
\langle V, dom, C \rangle := C
queue := \emptyset
for each nontrivial constraint c_{u,v}:
      insert \langle u, v \rangle into queue
      insert \langle v, u \rangle into queue
while queue \neq \emptyset:
      remove an arbitrary element \langle u, v \rangle from queue
      if REVISE(C, u, v):
            for each w \in V \setminus \{u, v\} where c_{w,u} is nontrivial:
                   insert \langle w, u \rangle into queue
```

Path Consistency

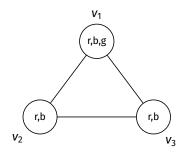
idea of arc consistency:

- for every assignment to a variable u there must be a suitable assignment to every other variable v
- If not: remove values of u for which no suitable "partner" assignment to v exists

this idea can be extended to three variables (path consistency):

- for every joint assignment to variables u, v there must be a suitable assignment to every third variable w
- if not: remove pairs of values of u and v for which no suitable "partner" assignment to w exists.
- \rightarrow tighter binary constraint on u and v

arc consistent, but not path consistent



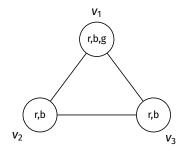
$$c_{12} = \langle (v_1, v_2), \{ (r, b), (b, r), (g, r), (g, b) \}$$

$$c_{13} = \langle (v_1, v_3), \{ (r, b), (b, r), (g, r), (g, b) \}$$

$$c_{23} = \langle (v_2, v_3), \{ (r, b), (b, r) \}$$

Path Consistency: Example

arc consistent, but not path consistent



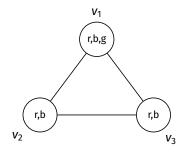
$$c_{12} = \langle (v_1, v_2), \{ (r, b), (b, r), (g, r), (g, b) \}$$

$$c_{13} = \langle (v_1, v_3), \{ (r, b), (b, r), (g, r), (g, b) \}$$

$$c_{23} = \langle (v_2, v_3), \{ (r, b), (b, r) \}$$

Path Consistency: Example

not arc consistent, but path consistent



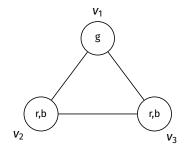
$$c_{12} = \langle (v_1, v_2), \{(g, r), (g, b)\}$$

$$c_{13} = \langle (v_1, v_3), \{(g, r), (g, b)\}$$

$$c_{23} = \langle (v_2, v_3), \{(r, b), (b, r)\}$$

Path Consistency: Example

arc consistent and path consistent



$$c_{12} = \langle (v_1, v_2), \{(g, r), (g, b)\}$$

$$c_{13} = \langle (v_1, v_3), \{(g, r), (g, b)\}$$

$$c_{23} = \langle (v_2, v_3), \{(r, b), (b, r)\}$$