Artificial Intelligence

CSP: Backtracking and Inference

Jendrik Seipp

Linkdping University

based on slides by Thomas Keller and Malte Helmert (University of Basel)

1d Value Orders

CSP Algorithms

we now consider algorithms for solving CSPs
basic concepts:
m search: check partial assignments systematically
m backtracking: discard inconsistent partial assignments

m inference: derive equivalent, but tighter constraints
to reduce the size of the search space

2/28

Backtracking Without Inference
(= Naive Backtracking)

3/28

Naive Backtracking \ > and Value Orders

[e] lelelele]

Naive Backtracking: Example

Consider the CSP for the following graph coloring instance:

vy Ve

g] rly

V7
b, g
Vs

4/28

Naive Backtracking Ve le and Value Orders { ce / N¢ Path Consistency

[e]e] lelele]

Naive Backtracking: Example

search tree for naive backtracking with
m fixed variable order vy, v4, V4, Vs, Vg, V3, V5

m alphabetical order of the values

5/28

Naive Backtracking 1d Value Orders

[e]e] lelele]

Naive Backtracking: Example

search tree for naive backtracking with
m fixed variable order vy, v4, V4, Vs, Vg, V3, V5

m alphabetical order of the values

5/28

Naive Backtracking 1d Value Orders

[e]e] lelele]

Naive Backtracking: Example

search tree for naive backtracking with
m fixed variable order vy, v4, V4, Vs, Vg, V3, V5

m alphabetical order of the values

5/28

Naive Backtracking 1d Value Orders

[e]e] lelele]

Naive Backtracking: Example

search tree for naive backtracking with
m fixed variable order vy, v4, V4, Vs, Vg, V3, V5

m alphabetical order of the values

5/28

Naive Backtracking 1d Value Orders

[e]e] lelele]

Naive Backtracking: Example

search tree for naive backtracking with
m fixed variable order vy, v4, V4, Vs, Vg, V3, V5

m alphabetical order of the values

5/28

Naive Backtracking 1d Value Orders

[e]e] lelele]

Naive Backtracking: Example

search tree for naive backtracking with
m fixed variable order vy, v4, V4, Vs, Vg, V3, V5

m alphabetical order of the values

5/28

Naive Backtracking 1d Value Orders

[e]e] lelele]

Naive Backtracking: Example

search tree for naive backtracking with
m fixed variable order vy, v4, V4, Vs, Vg, V3, V5

m alphabetical order of the values

5/28

Naive Backtracking Ve and Value Orders

[e]e] lelele]

Naive Backtracking: Example

search tree for naive backtracking with
m fixed variable order vy, v4, V4, Vs, Vg, V3, V5

m alphabetical order of the values

5/28

Naive Backtracking Ve and Value Orders

[e]e] lelele]

Naive Backtracking: Example

search tree for naive backtracking with
m fixed variable order vy, v4, V4, Vs, Vg, V3, V5

m alphabetical order of the values

5/28

Naive Backtracking Ve and Value Orders

[e]e] lelele]

Naive Backtracking: Example

search tree for naive backtracking with
m fixed variable order vy, v4, V4, Vs, Vg, V3, V5

m alphabetical order of the values

5/28

Naive Backtracking Ve and Value Orders

[e]e] lelele]

Naive Backtracking: Example

search tree for naive backtracking with
m fixed variable order vy, v4, V4, Vs, Vg, V3, V5

m alphabetical order of the values

5/28

Naive Backtracking d Value Orders

[e]e] lelele]

Naive Backtracking: Example

search tree for naive backtracking with
m fixed variable order vy, v4, V4, Vs, Vg, V3, V5

m alphabetical order of the values

5/28

Naive Backtracking d Value Orders

[e]e] lelele]

Naive Backtracking: Example

search tree for naive backtracking with
m fixed variable order vy, v4, V4, Vs, Vg, V3, V5

m alphabetical order of the values

5/28

Naive Backtracking d Value Orders

[e]e] lelele]

Naive Backtracking: Example

search tree for naive backtracking with
m fixed variable order vy, v4, V4, Vs, Vg, V3, V5

m alphabetical order of the values

5/28

Naive Backtracking d Value Orders

[e]e] lelele]

Naive Backtracking: Example

search tree for naive backtracking with
m fixed variable order vy, v4, V4, Vs, Vg, V3, V5

m alphabetical order of the values

5/28

Naive Backtracking d Value Orders

[e]e] lelele]

Naive Backtracking: Example

search tree for naive backtracking with
m fixed variable order vy, v4, V4, Vs, Vg, V3, V5

m alphabetical order of the values

5/28

Naive Backtracking d Value Orders

[e]e] lelele]

Naive Backtracking: Example

search tree for naive backtracking with
m fixed variable order vy, v4, V4, Vs, Vg, V3, V5

m alphabetical order of the values

5/28

Naive Backtracking Ve and Value Orders

[e]e]e] Jele]

Is This a New Algorithm?

we have already seen this algorithm:
Backtracking corresponds to depth-first search
with the following state space:

m states: partial assignments

m initial state: empty assignment @

m goal states: consistent total assignments

m actions: assign, ; assigns value d € dom(v) to variable v

m action costs: all 0 (all solutions are of equal quality)

m transitions:

m for each non-total consistent assignment «,
choose variable v = SELECT-UNASSIGNED-VARIABLE

assign, 4

® transitiona ——— a U {v — d} for each d € dom(v)

6/28

Naive Backtracking Ve and Value Orders

[e]e]e]e] Je]

Why Depth-First Search?

depth-first search is particularly well-suited for CSPs:
m path length bounded (by the number of variables)
m solutions located at the same depth (lowest search layer)

m state space is directed tree, initial state is the root
~> no duplicates

hence none of the problematic cases for depth-first search occurs

7/28

Naive Backtracking le and Value Orders { e A ency Path Co

[e]e]elele]]

Naive Backtracking: Discussion

® naive backtracking often has to exhaustively explore
similar search paths (i.e., partial assignments
that are identical except for a few variables)

m “critical” variables are not recognized
and hence considered for assignment (too) late

m decisions that necessarily lead to constraint violations
are only recognized when all variables involved
in the constraint have been assigned.

~> more intelligence by focusing on critical decisions
and by inference of consequences of previous decisions

8/28

Variable and Value Orders

Variable and Value Orders

9/28

Variable and Value Orders Inference

(o] lelele]

Variable Orders

B SELECT-UNASSIGNED-VARIABLE method in backtracking search allows
to influence order in which variables are considered for assignment

m selected order can strongly influence the search space size
and hence the search performance

m general aim: make critical decisions as early as possible

10/28

Variable and Value Orders

[e]e] lele]

Variable Orders

two common variable ordering criteria:
® minimum remaining values:
prefer variables that have small domains
m intuition: few subtrees ~»> smaller tree
m extreme case: only one value ~» forced assignment
m most constraining variable:
prefer variables contained in many nontrivial constraints
B intuition: constraints tested early
~> inconsistencies recognized early ~» smaller tree
combination: use minimum remaining values criterion,
then most constraining variable criterion to break ties

11/28

Variable and Value Orders

[e]ele] lo]

Value Orders

m ORDER-DOMAIN-VALUES method in backtracking search allows to
influence order in which values of the selected variable v are
considered

m this is less important because it does not matter
in subtrees without a solution

m in subtrees with a solution, ideally a value that leads to a solution
should be chosen

m general aim: make most promising assignments first

12/28

Variable and Value Orders

[e]ele]e])

Value Orders

Definition (conflict)

Let C = (V,dom, C) be a CSP.
For variables v # v’ and values d € dom(v), d’ € dom(v’),
the assignment v — d is in conflict with v/ +— d’ if there is ¢, s € Cs.t.

(d,d") ¢ rel(cyy).

value ordering criterion for partial assignment o
and selected variable v:
m minimum conflicts: prefer values d € dom(v)
such that v — d causes as few conflicts as possible
with variables that are unassigned in o

13/28

Inference
©0000

Inference

14/28

le and Value Orders Inference

[e] Jelele]

Inference

Derive additional constraints
that are implied by the given constraints,
i.e., that are satisfied in all solutions.

example: CSP with variables v4, v,, vz with domain {1, 2,3}
and constraints v; < v, and v, < vs.
we can infer:

m v, cannot be equal to 3

m ((v1,v2),{(1,2),(1,3), (2,3)} can be tightened to {(v1,v2), {(1,2)}
(tighter binary constraint)

mv<Vv
(“new” binary constraint = trivial constraint tightened)

15/28

Inference
00800

Trade-Off Search vs. Inference

Inference formally
Replace a given CSP C with an equivalent, but tighter CSP.

trade-off:

m the more complex the inference, and
m the more often inference is applied,
m the smaller the resulting state space, but

m the higher the complexity per search node.

16/28

le and Value Orders Inference

[ee]e] o]

When to Apply Inference?

different possibilities to apply inference:
m once as preprocessing before search
m combined with search: before recursive calls
during backtracking procedure
m already assigned variable v — d corresponds to dom(v) = {d} ~»
more inferences possible
m during backtracking, derived constraints have to be retracted

because they were based on the given assignment
~> powerful, but possibly expensive

17/28

le and Value Orders Inference

[e]eele])

Backtracking with Inference: Discussion

®m INFERENCE method in backtracking search allows to apply different
inference methods

m inference methods can recognize unsolvability (given a)

m efficient implementations of inference are often incremental:
the last assigned variable/value pair v — d is taken
into account to speed up the inference computation

18/28

Arc Consistency

19/28

le and Value Orders { e Arc Consistency Path Co

[e] lelelelele}

Arc Consistency: Definition

Definition (Arc Consistent)

Let C = (V,dom, C) be a CSP.

@ Avariable v € Vis arc consistent
with respect to another variable v/ € V,
if for every value d € dom(v)
there exists a value d’ € dom(v") with (d,d") € ¢, .

@ The CSP C is arc consistent,
if every variable v € V is arc consistent
with respect to every other variable v/ € V.

remarks:
m definition for variable pair is not symmetrical

m v always arc consistent with respect to v’
if the constraint between v and v’ is trivial
20/28

> and Value Orders { e Arc Consistency

[e]e] lelelele}

Arc Consistency: Example

Consider a CSP with variables v, and v»,
domains dom(vy) = dom(v;) = {1,2,3}
and the constraint expressed by v; < v,.

Vi V2

21/28

le and Value Orders { e Arc Consistency Path Co

[e]e] lelelele}

Arc Consistency: Example

Consider a CSP with variables v, and v»,
domains dom(vy) = dom(v;) = {1,2,3}
and the constraint expressed by v; < v,.

Vi V2

N\

Arc consistency of v4 with respect to v,
and of v, with respect to v, are violated.

21/28

1d Value Orders { ce Arc Consistency

[e]ele] lelele}

Enforcing Arc Consistency

m enforcing arc consistency, i.e., removing values from dom(v) that
violate the arc consistency of v with respect to v/,
is a correct inference method

22/28

ble and Value Orders erence Arc Consistency Path Consistency

[e]ele]e] lele}

Processing Variable Pairs: REVISE

function Revise({V, dom, C), v, V’):

revised = false

letc = ((v,v'),rel) € C

for each d € dom(v):

if there isno d’ € dom(v’) sit. (d,d") € rel(c):

remove d from dom(v)
revised = true

return revised

effect: v arc consistent with respect to v’.
All violating values in dom(v) are removed.

time complexity: O(k?), where k is maximal domain size

23/28

nd Value Orders { Arc Consistency

[e]elelele] Te}

Example: revise

24/28

1d Value Orders { ce Arc Consistency

[e]elelele] Te}

Example: revise

24/28

1d Value Orders { ce Arc Consistency

[e]elelele] Te}

Example: revise

24/28

nd Value Orders { Arc Consistency

[e]elelele] Te}

Example: revise

24/28

nd Value Orders { Arc Consistency

[e]elelele] Te}

Example: revise

24/28

le and Value Orders { e Arc Consistency Path Co

O00000e

Enforcing Arc Consistency: AC-3

idea:
m transform C into equivalent arc consistent CSP
m store potentially inconsistent variable pairs in a queue

(V,dom,C) :=C
queue := @
for each nontrivial constraint ¢, y:
insert {u, v) into queue
insert (v, u) into queue
while queue # @:
remove an arbitrary element (u, v) from queue
if REVISE(C, u, v):
for each w € V \ {u, v} where ¢, is nontrivial:
insert {w, u) into queue

25/28

Path Consistency

26/28

and Value Orders

Path Consistency

[e] le}

Path Consistency

idea of arc consistency:
m for every assignment to a variable u
there must be a suitable assignment to every other variable v

m If not: remove values of u for which
no suitable “partner” assignment to v exists

this idea can be extended to three variables (path consistency):

m for every joint assignment to variables u, v
there must be a suitable assignment to every third variable w

m if not: remove pairs of values of u and v for which
no suitable “partner” assignment to w exists.

~» tighter binary constraint on u and v

27/28

Path Consistency

[e]e]]

Path Consistency: Example

arc consistent, but not path consistent

Vi

V2 V3
= <(V17 VZ)’ {(r’ b)’ (b’ r)’ (g’ f'), (g’ b)}

Ci3 = <(V1’ V3), {(r’ b)’ (b’ r)’ (g’ r)’ (g’ b)}
€3 = <(V2, V3)’ {(r’ b)’ (b’ r)}

28/28

Path Consistency
ocoe

Path Consistency: Example

arc consistent, but not path consistent

Vi

V2 V3
= <(V17 VZ)’ {(n b)’ (b’ f'), (Q, r)’ (g’ b)}

Ci3 = <(V1’ V3), {(r7 b)’ (b’ r)’ (g’ r)’ (g’ b)}
€3 = <(V2, V3)’ {(r’ b)’ (b’ r)}

28/28

Path Consistency

[e]e]]

Path Consistency: Example

not arc consistent, but path consistent

Vi

V2 V3
= <(V17 VZ)’ {(g’ r)’ (g’ b)}

ez = ((v1,v3),{(g,1), (g,b)}
C3 = <(V2, V3)’ {(r’ b)’ (b’ r)}

28/28

Path Consistency

[e]e]]

Path Consistency: Example

arc consistent and path consistent

4

V2 V3
= <(V17 VZ)’ {(g’ r)’ (g’ b)}

ez = ((v1,v3),{(g,1), (g,b)}
C3 = <(V2, V3)’ {(r’ b)’ (b’ r)}

28/28

	Backtracking Without Inference (= Naive Backtracking)
	

	Variable and Value Orders
	

	Inference
	

	Arc Consistency
	

	Path Consistency
	

