Artificial Intelligence CSP: Constraint Satisfaction Problems

Jendrik Seipp

Linköping University

based on slides by Thomas Keller and Malte Helmert (University of Basel)

CSPs	Constraint Satisfaction Problems	Examples	Solutions	Complexity	Exercise
0000		000000	00000	00	000

Questions?

post feedback and ask questions anonymously at

https://padlet.com/jendrikseipp/tddc17

CSPs	Constraint Satisfaction Problems	Examples	Solutions	Complexity	Exercise
0000		000000	00000	OO	000

Intended Learning Outcomes

- explain what "constraint satisfaction problems" (CSPs) are
- model and solve simple CSPs

CSPs Constraint Satisfaction Problems Examples Solutions Complexity ●000 00000 00000 00000 00 00	Exercise 000
--	-----------------

(heuristic) search algorithms considered so far:

- wide variety of problems
- problem-specific heuristics
- no general solver

13	2	3	12
9	11	1	10
	6	4	14
15	8	7	5

(heuristic) search algorithms considered so far:

- wide variety of problems
- problem-specific heuristics
- no general solver

13	2	3	12
9	11	1	10
	6	4	14
15	8	7	5

constraint satisfaction problems (CSP) considered today:

- problem scope more restricted
- problem-independent methods
- general solver

- a constraint is a condition that every solution to a problem must satisfy
- a CSP is defined by
 - a finite set of variables
 - a domain for each variable
 - a set of constraints
- a solution for a CSP is an assignment to all variables that satisfies all constraints

- a constraint is a condition that every solution to a problem must satisfy
- a CSP is defined by
 - a finite set of variables
 - a domain for each variable
 - a set of constraints
- a solution for a CSP is an assignment to all variables that satisfies all constraints

variables and domains in cross-word puzzle? constraints?

- a constraint is a condition that every solution to a problem must satisfy
- a CSP is defined by
 - a finite set of variables
 - a domain for each variable
 - a set of constraints
- a solution for a CSP is an assignment to all variables that satisfies all constraints
- variables and domains in cross-word puzzle? constraints?
- \rightarrow one variable for each cell with domain $\{A, \ldots, Z\}$

- a constraint is a condition that every solution to a problem must satisfy
- a CSP is defined by
 - a finite set of variables
 - a domain for each variable
 - a set of constraints
- a solution for a CSP is an assignment to all variables that satisfies all constraints
- variables and domains in cross-word puzzle? constraints?
- \rightarrow one variable for each cell with domain $\{A, \ldots, Z\}$
- $\rightarrow\,$ constraints: length of "boxes", horizontal and vertical words must not contradict each other

CSPs			
0000			

Running Example: Simple Math Puzzle

informal description:

- assign a value from {1, 2, 3, 4} to the variables w and y
- and from $\{1, 2, 3\}$ to x and z
- such that
 - w = 2x,
 - *w* < *z* and
 - *y* > *z*.

|--|

CSPs	Constraint Satisfaction Problems	Examples	Solutions	Complexity	Exercise
0000	○●○○○	000000	00000	OO	000

Definition

Definition (binary constraint satisfaction problem)

A (binary) constraint satisfaction problem (or constraint network) is a 3-tuple $C = \langle V, dom, (C_{u,v}) \rangle$, where

- V is a non-empty and finite set of variables,
- dom is a function that assigns a non-empty and finite domain to each variable $v \in V$, and
- $(C_{u,v})_{u,v \in V, u \neq v}$ is an indexed family of binary relations over V, the constraints $C_{u,v} \subseteq dom(u) \times dom(v)$.

CSPs	Constraint Satisfaction Problems	Examples	Solutions	Complexity	Exercise
0000	○●○○○	000000	00000	OO	000

Definition

Definition (binary constraint satisfaction problem)

A (binary) constraint satisfaction problem (or constraint network) is a 3-tuple $C = \langle V, dom, (C_{u,v}) \rangle$, where

- V is a non-empty and finite set of variables,
- dom is a function that assigns a non-empty and finite domain to each variable $v \in V$, and
- $(C_{u,v})_{u,v \in V, u \neq v}$ is an indexed family of binary relations over V, the constraints $C_{u,v} \subseteq dom(u) \times dom(v)$.

possible generalizations:

- infinite domains (e.g., $dom(v) = \mathbb{Z}$)
- constraints of higher arity

(e.g., satisfiability in propositional logic)

CSPs	Constraint Satisfaction Problems	Examples	Solutions	Complexity	Exercise
0000	○●○○○	000000	00000	OO	000

Definition

Definition (binary constraint satisfaction problem)

A (binary) constraint satisfaction problem (or constraint network) is a 3-tuple $C = \langle V, dom, (C_{u,v}) \rangle$, where

- V is a non-empty and finite set of variables,
- dom is a function that assigns a non-empty and finite domain to each variable $v \in V$, and
- $(C_{u,v})_{u,v \in V, u \neq v}$ is an indexed family of binary relations over V, the constraints $C_{u,v} \subseteq dom(u) \times dom(v)$.

Example (Simple math puzzle)

(partial) informal description:

- assign a value from {1, 2, 3, 4} to the variables w and y
- and from $\{1, 2, 3\}$ to x and z
- such that . . .

(partial) formal model:

- $\bullet V = \{w, x, y, z\}$
- dom(w) = dom(y) = {1, 2, 3, 4}
 dom(x) = dom(z) = {1, 2, 3}

Binary Constraints

a binary constraint $C_{u,v}$ with $u, v \in V$

expresses which joint assignments to u and v are allowed in solutions

simple math puzzle:

(partial) informal description:

some constraints:

$$C_{w,z} = \{ \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 3 \rangle \}$$

Binary Constraints

a binary constraint $C_{u,v}$ with $u, v \in V$

expresses which joint assignments to u and v are allowed in solutions

• is trivial if $C_{u,v} = dom(u) \times dom(v)$

 \rightarrow there is no restriction on the joint assignment to *u* and *v* and *C_{u,v}* is usually not given explicitly (but exists formally!)

simple math puzzle:

(partial) informal description:

... such that
w = 2x,
w < z and
y > z.

some constraints:

$$C_{w,z} = \{ \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 3 \rangle \}$$
$$C_{x,z} = \{ \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \\\langle 2, 1 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle, \\\langle 3, 1 \rangle, \langle 3, 2 \rangle, \langle 3, 3 \rangle \}$$

Binary Constraints

a binary constraint $C_{u,v}$ with $u, v \in V$

- expresses which joint assignments to u and v are allowed in solutions
- is trivial if $C_{u,v} = dom(u) \times dom(v)$
 - \sim there is no restriction on the joint assignment to *u* and *v* and *C_{u,v}* is usually not given explicitly (but exists formally!)
- refers to the same variables as constraint C_{v,u} → usually, only one of them is given explicitly simple math puzzle:

(partial) informal description:

some constraints:

$$C_{w,z} = \{ \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 3 \rangle \}$$

$$C_{x,z} = \{ \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 1 \rangle, \langle 3, 2 \rangle, \langle 3, 3 \rangle \}$$

$$C_{z,w} = \{ \langle 2, 1 \rangle, \langle 3, 1 \rangle, \langle 3, 2 \rangle \}$$

Simple Math Puzzle: Formal Model

informal description:

- assign a value from {1, 2, 3, 4} to the variables w and y
- and from $\{1, 2, 3\}$ to x and z
- such that
 - w = 2x,
 - *w* < *z* and
 - *y* > *z*.

formal model:

- $\bullet V = \{w, x, y, z\}$
- dom(w) = dom(y) = {1, 2, 3, 4}
 dom(x) = dom(z) = {1, 2, 3}

$$C_{wx} = \{\langle 2, 1 \rangle, \langle 4, 2 \rangle\}$$

$$C_{wz} = \{\langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 3 \rangle\}$$

$$C_{yz} = \{\langle 2, 1 \rangle, \langle 3, 1 \rangle, \langle 3, 2 \rangle,$$

$$\langle 4, 1 \rangle, \langle 4, 2 \rangle, \langle 4, 3 \rangle\}$$

CSPs	Constraint Satisfaction Problems	Examples	Solutions	Complexity	Exercise
0000		000000	00000	00	000

Compact Encodings and General CSP Solvers

CSPs allow for compact encodings of large sets of assignments:

- consider a CSP with *n* variables with domains of size *k*
- \rightsquigarrow k^n assignments

Compact Encodings and General CSP Solvers

CSPs allow for compact encodings of large sets of assignments:

- consider a CSP with *n* variables with domains of size *k*
- \rightsquigarrow k^n assignments
 - for the description as a CSP, at most $\binom{n}{2}$, i.e., $O(n^2)$ constraints have to be provided
 - every (binary) constraint consists of at most $O(k^2)$ pairs
- \rightarrow encoding size $O(n^2k^2)$
- $\rightsquigarrow\,$ the number of assignments is exponentially larger than the description of the CSP

Compact Encodings and General CSP Solvers

CSPs allow for compact encodings of large sets of assignments:

- consider a CSP with *n* variables with domains of size *k*
- \rightsquigarrow k^n assignments
 - for the description as a CSP, at most $\binom{n}{2}$, i.e., $O(n^2)$ constraints have to be provided
 - every (binary) constraint consists of at most $O(k^2)$ pairs
- \rightarrow encoding size $O(n^2k^2)$
- → the number of assignments is exponentially larger than the description of the CSP
 - as a consequence, such descriptions can be used as inputs of general constraint solvers

	Examples		
	00000		

Examples

CSPs	Constraint Satisfaction Problems	Examples	Solutions	Complexity	Exercise
0000		○●○○○○	00000	00	000

Constraint Satisfaction Problem Applications

puzzles

scheduling

SAT solver

FCC spectrum auction

linear equations

timetable generation

Example: Graph Coloring

Given a graph and $k \in \mathbb{N}$, how can we

- color the vertices using k colors
- such that two neighboring vertices never have the same color?

How to formalize this CSP?

Example: Graph Coloring

Given a graph and $k \in \mathbb{N}$, how can we

- color the vertices using k colors
- such that two neighboring vertices never have the same color?

variables: V = {WA, NT, Q, NSW, VI, SA, T}
domains: dom(v) = {r, g, b} for all v \in V
constraints: {c_{uv} | for all connected u, v \in V}, where
c_{uv} = $\langle (u, v), \{(k, \ell) \in \{r, g, b\} \times \{r, g, b\} | k \neq \ell \}$

 $e.g., \ c_{WA,NT} = \langle (WA,NT), \{(r,g), (r,b), (g,r), (g,b), (b,r), (b,g)\} \rangle$

Four Color Problem

famous problem in mathematics: Four Color Problem

- Is it always possible to color a planar graph with 4 colors?
- conjectured by Francis Guthrie (1852)
- 1890 first proof that 5 colors suffice
- several wrong proofs surviving for over 10 years

Four Color Problem

famous problem in mathematics: Four Color Problem

- Is it always possible to color a planar graph with 4 colors?
- conjectured by Francis Guthrie (1852)
- 1890 first proof that 5 colors suffice
- several wrong proofs surviving for over 10 years
- solved by Appel and Haken in 1976: 4 colors suffice
- Appel and Haken reduced the problem to 1936 cases, which were then checked by computers
- first famous mathematical problem solved (partially) by computers
 - \rightsquigarrow led to controversy: is this a mathematical proof?

numberphile video:

https://www.youtube.com/watch?v=NgbK43jB4rQ

Example: 8 Queens Problem

How can we

- place 8 queens on a chess board
- such that no two queens threaten each other?

- originally proposed in 1848
- variants: board size; other pieces; higher dimension
- there are 92 solutions (12 non-symmetric ones)

Example: 8 Queens Problem

How can we

- place 8 queens on a chess board
- such that no two queens threaten each other?

- variables: $V = \{v_1, ..., v_8\}$
- domains: $dom(v) = \{1, \dots, 8\}$ for all $v \in V$

• constraints: $\{c_{ij} \mid \text{for all } 1 \le i < j \le 8\}$, where $c_{i,j} = \langle (v_i, v_j), \{(k, \ell) \in \{1, \dots, 8\} \times \{1, \dots, 8\} \mid k \ne \ell \land |k - \ell| \ne |i - j|\} \rangle$

e.g.,
$$c_{1,3} = \langle (v_1, v_3), \{ (1, 2), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (2, 1), (2, 3), (2, 5), (2, 6), (2, 7), (2, 8), (2, 7), (2,$$

 $(8, 1), (8, 2), (8, 3), (8, 4), (8, 5), (8, 7) \} \rangle$

CSPs	Constraint Satisfaction Problems	Examples	Solutions	Complexity	Exercise
0000		00000●	00000	00	000
Evampl	o, Sudoku				

Example: Sudoku

How can we

- completely fill an already partially filled 9 × 9 matrix with numbers from {1,2,...,9}
- such that each row, each column, and each of the nine 3 × 3 blocks contains every number exactly once?

2	5			3		9		1
	1				4			
4		7				2		8
		5	2					
				9	8	1		
	4				3			
			3	6			7	2
	7							3
9		3				6		4

2	5	8	7	3	6	9	4	1
6	1	9	8	2	4	3	5	7
4	3	7	9	1	5	2	6	8
3	9	5	2	7	1	4	8	6
7	6	2	4	9	8	1	3	5
8	4	1	6	5	3	7	2	9
1	8	4	3	6	9	5	7	2
5	7	6	1	4	2	8	9	3
9	2	3	5	8	7	6	1	4

Example: Sudoku

How can we

- completely fill an already partially filled 9 × 9 matrix with numbers from {1,2,...,9}
- such that each row, each column, and each of the nine 3 × 3 blocks contains every number exactly once?

• variables: $V = \{v_{ij} \mid 1 \le i, j \le 9\}$

- domains: for all $v_{ij} \in V$
 - $dom(v_{ij}) = \{1, \dots, 9\}$ if cell $\langle i, j \rangle$ is empty
 - $dom(v_{ij}) = \{k\}$ if cell $\langle i, j \rangle$ has predefined value k

constraints:

- $$\begin{split} C_{v_{ij},v_{i'j'}} &= \{(a,b) \in \{1,\ldots,9\}^2 \mid a \neq b\} \\ \text{for all } v_{ij},v_{i'j'} \in V \text{ with} \end{split}$$
 - i = i' (same row), or • j = j' (same column), or • $\langle \lceil \frac{i}{3} \rceil, \lceil \frac{j}{3} \rceil \rangle = \langle \lceil \frac{j'}{3} \rceil, \lceil \frac{j'}{3} \rceil \rangle$ (same block)

18/28

	Solutions	
	00000	

Solutions

CSPs	Constraint Satisfaction Problems	Examples	Solutions	Complexity	Exercise
0000		000000	○●○○○	OO	000

Assignments

Definition (assignment, partial assignment)

Let $C = \langle V, dom, C \rangle$ be a CSP. A partial assignment of C (or of V) is a function $\alpha : V' \to \bigcup_{v \in V} dom(v)$ with $V' \subseteq V$ and $\alpha(v) \in dom(v)$ for all $v \in V'$.

If V' = V, then α is also called total assignment (or assignment).

- ightarrow partial assignments assign values to some or to all variables
- \rightsquigarrow (total) assignments are defined on all variables

CSPs	Constraint Satisfaction Problems	Examples	Solutions	Complexity	Exercise
0000		000000	00000	00	000

Consistency

Definition (inconsistent, consistent, violated)

A partial assignment α of a CSP *C* is called inconsistent if there are variables *u*, *v* such that α is defined for both *u* and *v*, and there is $c_{u,v} \in C$ s.t. $(\alpha(u), \alpha(v)) \notin \operatorname{rel}(c_{u,v})$.

In this case, we say α violates the constraint $c_{u,v}$.

A partial assignment is called consistent if it is not inconsistent.

CSPs	Constraint Satisfaction Problems	Examples	Solutions	Complexity	Exercise
0000		000000	00000	00	000

Solution

Definition (solution, solvable)

Let C be a CSP.

A consistent and total assignment of C is called a solution of C.

If a solution of C exists, C is called solvable.

If no solution exists, C is called inconsistent.

Consistency vs. Solvability

Note: Consistent partial assignments α cannot necessarily be extended to a solution.

It only means that so far (i.e., on the variables where α is defined) no constraint is violated.

$$\begin{aligned} \mathbf{x} &= \{\mathbf{v}_1 \mapsto \mathbf{1}, \mathbf{v}_2 \mapsto \mathbf{3}, \mathbf{v}_3 \mapsto \mathbf{5}, \\ \mathbf{v}_4 \mapsto \mathbf{7}, \mathbf{v}_5 \mapsto \mathbf{2}, \mathbf{v}_6 \mapsto \mathbf{4}, \mathbf{v}_7 \mapsto \mathbf{6}\} \end{aligned}$$

		Complexity	
		•o · · ·	

Complexity

CSPs	Constraint Satisfaction Problems	Examples	Solutions	Complexity	Exercise
0000		000000	00000	○●	000

Complexity of Constraint Satisfaction Problems

Proposition (CSPs are NP-complete)

Deciding whether a given CSP is solvable is NP-complete.

Proof

Membership in NP:

Guess and check: guess a solution and check it for validity. This can be done in polynomial time in the size of the input.

NP-hardness:

The graph coloring problem is a special case of CSPs and is already known to be NP-complete.

		Exercise
		000

Exercise

CSPs 0000	Constraint Satisfaction Problems	Examples 000000	Solutions 00000	Complexity OO	Exercise

CSP Exercise

Consider a variant of the graph coloring problem where each vertex has a set of allowed colors.

- Formalize the example as a binary constraint network.
- Is the constraint network solvable? If yes, provide a solution of the constraint network. If not, justify your answer.
- Provide a <u>minimal</u> consistent partial assignment that <u>cannot</u> be extended to a solution.
- Provide an inconsistent partial assignment.

CSP Exercise – Solution

•
$$C = \langle V, dom, (R_{uv}) \rangle$$
 with

$$V = \{v_1, \ldots, v_4\},$$

- $dom(v_1) = \{b, g\}, dom(v_2) = \{g, r\}, dom(v_3) = \{b, r\}, dom(v_4) = \{b, g, r\}, and$
- (binary) constraints:

$$R_{v_{1},v_{2}} = \{ \langle b, g \rangle, \langle b, r \rangle, \langle g, r \rangle \}$$

$$R_{v_{1},v_{3}} = \{ \langle b, r \rangle, \langle g, b \rangle, \langle g, r \rangle \}$$

$$R_{v_{1},v_{4}} = \{ \langle b, g \rangle, \langle b, r \rangle, \langle g, b \rangle, \langle g, r \rangle \}$$

$$R_{v_{2},v_{4}} = \{ \langle g, b \rangle, \langle g, r \rangle, \langle r, b \rangle, \langle r, g \rangle \}$$

$$R_{v_{3},v_{4}} = \{ \langle b, g \rangle, \langle b, r \rangle, \langle r, b \rangle, \langle r, g \rangle \}$$

Solvable. Solution: $\alpha_1 = \{v_1 \mapsto b, v_2 \mapsto r, v_3 \mapsto r, v_4 \mapsto g\}$

(There is second solution: $\alpha_2 = \{v_1 \mapsto g, v_2 \mapsto r, v_3 \mapsto r, v_4 \mapsto b\}$) **a** $\alpha_1 = \{v_2 \mapsto g\}$ or $\alpha_2 = \{v_4 \mapsto r\}$ or $\alpha_3 = \{v_3 \mapsto b\}$ **b** Inconsistent partial assignment: $\alpha = \{v_1 \mapsto b, v_3 \mapsto b\}$