
Artificial Intelligence
CSP 1: Constraint Satisfaction Problems

Jendrik Seipp

Linköping University

based on slides by Thomas Keller and Malte Helmert (University of Basel)

CSPs Examples Solutions Complexity Exercise

Questions?

post feedback and ask questions anonymously at

https://padlet.com/jendrikseipp/tddc17

2/26

https://padlet.com/jendrikseipp/tddc17

CSPs Examples Solutions Complexity Exercise

Intended Learning Outcomes

explain what “constraint satisfaction problems” (CSPs) are

model and solve simple CSPs

3/26

CSPs Examples Solutions Complexity Exercise

Constraint Satisfaction Problems

4/26

CSPs Examples Solutions Complexity Exercise

Constraint Satisfaction Problems

(heuristic) search algorithms considered so far:

wide variety of problems

problem-specific heuristics

no general solver

constraint satisfaction problems (CSP) considered today:

problem scope more restricted

problem-inpdendent methods

general solver

5/26

CSPs Examples Solutions Complexity Exercise

Constraint Satisfaction Problems

(heuristic) search algorithms considered so far:

wide variety of problems

problem-specific heuristics

no general solver

constraint satisfaction problems (CSP) considered today:

problem scope more restricted

problem-inpdendent methods

general solver

5/26

CSPs Examples Solutions Complexity Exercise

Informal Description

a constraint is a condition that every solution
to a problem must satisfy
a CSP is defined by

a finite set of variables
a domain for each variable
a set of constraints

a solution for a CSP is an assignment of each
variable to a value in its domain that violates
no constraint

variables and domains in cross-word puzzle? constraints?

→ one variable for each cell with domain {A, . . . , Z}
→ constraints: length of “boxes”, horizontal and vertical words must

not contradict each other

6/26

CSPs Examples Solutions Complexity Exercise

Informal Description

a constraint is a condition that every solution
to a problem must satisfy
a CSP is defined by

a finite set of variables
a domain for each variable
a set of constraints

a solution for a CSP is an assignment of each
variable to a value in its domain that violates
no constraint

variables and domains in cross-word puzzle? constraints?

→ one variable for each cell with domain {A, . . . , Z}
→ constraints: length of “boxes”, horizontal and vertical words must

not contradict each other

6/26

CSPs Examples Solutions Complexity Exercise

Informal Description

a constraint is a condition that every solution
to a problem must satisfy
a CSP is defined by

a finite set of variables
a domain for each variable
a set of constraints

a solution for a CSP is an assignment of each
variable to a value in its domain that violates
no constraint

variables and domains in cross-word puzzle? constraints?

→ one variable for each cell with domain {A, . . . , Z}
→ constraints: length of “boxes”, horizontal and vertical words must

not contradict each other

6/26

CSPs Examples Solutions Complexity Exercise

Informal Description

a constraint is a condition that every solution
to a problem must satisfy
a CSP is defined by

a finite set of variables
a domain for each variable
a set of constraints

a solution for a CSP is an assignment of each
variable to a value in its domain that violates
no constraint

variables and domains in cross-word puzzle? constraints?

→ one variable for each cell with domain {A, . . . , Z}
→ constraints: length of “boxes”, horizontal and vertical words must

not contradict each other

6/26

CSPs Examples Solutions Complexity Exercise

Definition

Definition (Constraint Satisfaction Problem)
A constraint satistfaction problem (or constraint network)
is a 3-tuple C = ⟨V, dom, C⟩ such that:

V is a non-empty and finite set of variables,

dom is a function that assigns a non-empty domain to each variable
v ∈ V, and

C is a set of constraints c = ⟨scope, rel⟩, where
scope(c) = ⟨v1, . . . , vn⟩ is a n-tuple of (pairwise distinct) variables
and rel(c) ⊆ dom(v1) × · · · × dom(vn)

restrictions considered here:

finite domains

unary or binary constraints

7/26

CSPs Examples Solutions Complexity Exercise

Unary Constraints

a unary constraint c has scope(c) = (v) for v ∈ V

c restricts dom(v) to the values allowed by c

it is often useful to have additional restrictions
on single variables as constraints

formally, unary constraints are not necessary, but they
often allow to describe CSPs more clearly

dom(v) = {1, . . . , 9} for all v ∈ V
(for all Sudoku instances)

c = ⟨(v13), {(4)}⟩
(for a specific instance)

8/26

CSPs Examples Solutions Complexity Exercise

Unary Constraints

a unary constraint c has scope(c) = (v) for v ∈ V

c restricts dom(v) to the values allowed by c

it is often useful to have additional restrictions
on single variables as constraints

formally, unary constraints are not necessary, but they
often allow to describe CSPs more clearly

dom(v) = {1, . . . , 9} for all v ∈ V
(for all Sudoku instances)

c = ⟨(v13), {(4)}⟩
(for a specific instance)

8/26

CSPs Examples Solutions Complexity Exercise

Binary Constraints

a binary constraint has scope(c) = (u, v) for u, v ∈ V, u , v

c expresses which joint assignments to u and v are allowed

c is trivial if rel(c) = dom(u) × dom(v)
{ c is usually not given explicitly (c exists formally)

constraint c′ with scope(c′) = (v, u) refers to same variables{
only c or c′ is usually given explicitly (both exist formally)

c = ⟨(v11, v21), {(x, y) | x , y}⟩
c′ = ⟨(v21, v11), {(y, x) | y , x}⟩

9/26

CSPs Examples Solutions Complexity Exercise

Binary Constraints

a binary constraint has scope(c) = (u, v) for u, v ∈ V, u , v

c expresses which joint assignments to u and v are allowed

c is trivial if rel(c) = dom(u) × dom(v)
{ c is usually not given explicitly (c exists formally)

constraint c′ with scope(c′) = (v, u) refers to same variables{
only c or c′ is usually given explicitly (both exist formally)

c = ⟨(v11, v21), {(x, y) | x , y}⟩
c′ = ⟨(v21, v11), {(y, x) | y , x}⟩

9/26

CSPs Examples Solutions Complexity Exercise

Examples

10/26

CSPs Examples Solutions Complexity Exercise

CSP Examples

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

11/26

CSPs Examples Solutions Complexity Exercise

Example: Graph Coloring
Given a graph and k ∈ Î, how can we

color the vertices using k colors
such that two neighboring vertices never have the same color?

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

How to formalize this CSP?

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

variables: V = {WA, NT, Q, NSW, VI, SA, T}

domains: dom(v) = {r, g, b} for all v ∈ V

constraints: {cuv | for all connected u, v ∈ V}, where

cuv = ⟨(u, v), {(k, ℓ) ∈ {r, g, b} × {r, g, b} | k , ℓ}

e.g., cWA,NT = ⟨(WA, NT), {(r, g), (r, b), (g, r), (g, b), (b, r), (b, g)}⟩

12/26

CSPs Examples Solutions Complexity Exercise

Example: Graph Coloring
Given a graph and k ∈ Î, how can we

color the vertices using k colors
such that two neighboring vertices never have the same color?

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

How to formalize this CSP?

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

variables: V = {WA, NT, Q, NSW, VI, SA, T}

domains: dom(v) = {r, g, b} for all v ∈ V

constraints: {cuv | for all connected u, v ∈ V}, where

cuv = ⟨(u, v), {(k, ℓ) ∈ {r, g, b} × {r, g, b} | k , ℓ}

e.g., cWA,NT = ⟨(WA, NT), {(r, g), (r, b), (g, r), (g, b), (b, r), (b, g)}⟩

12/26

CSPs Examples Solutions Complexity Exercise

Four Color Problem

famous problem in mathematics: Four Color Problem

Is it always possible to color a planar graph with 4 colors?

conjectured by Francis Guthrie (1852)

1890 first proof that 5 colors suffice

several wrong proofs surviving for over 10 years

solved by Appel and Haken in 1976: 4 colors suffice

Appel and Haken reduced the problem to 1936 cases,
which were then checked by computers

first famous mathematical problem solved (partially)
by computers
{ led to controversy: is this a mathematical proof?

numberphile video:
https://www.youtube.com/watch?v=NgbK43jB4rQ

13/26

https://www.youtube.com/watch?v=NgbK43jB4rQ

CSPs Examples Solutions Complexity Exercise

Four Color Problem

famous problem in mathematics: Four Color Problem

Is it always possible to color a planar graph with 4 colors?

conjectured by Francis Guthrie (1852)

1890 first proof that 5 colors suffice

several wrong proofs surviving for over 10 years

solved by Appel and Haken in 1976: 4 colors suffice

Appel and Haken reduced the problem to 1936 cases,
which were then checked by computers

first famous mathematical problem solved (partially)
by computers
{ led to controversy: is this a mathematical proof?

numberphile video:
https://www.youtube.com/watch?v=NgbK43jB4rQ

13/26

https://www.youtube.com/watch?v=NgbK43jB4rQ

CSPs Examples Solutions Complexity Exercise

Example: 8 Queens Problem
How can we

place 8 queens on a chess board
such that no two queens threaten each other?

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

0l0Z0Z0Z
Z0ZqZ0Z0
0Z0Z0l0Z
Z0Z0Z0Zq
0ZqZ0Z0Z
l0Z0Z0Z0
0Z0Z0ZqZ
Z0Z0l0Z0

originally proposed in 1848

variants: board size; other pieces; higher dimension

there are 92 solutions (12 non-symmetric ones)

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

variables: V = {v1, . . . , v8}

domains: dom(v) = {1, . . . , 8} for all v ∈ V

constraints: {cij | for all 1 ≤ i < j ≤ 8}, where

ci,j = ⟨(vi, vj), {(k, ℓ) ∈ {1, . . . , 8} × {1, . . . , 8} |

ci,j = ⟨(vi, vj), {

k , ℓ ∧ |k − ℓ | , |i − j|}⟩

e.g., c1,3 = ⟨(v1, v3), {(1, 2), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8),
(2, 1), (2, 3), (2, 5), (2, 6), (2, 7), (2, 8),
. . . ,

(8, 1), (8, 2), (8, 3), (8, 4), (8, 5), (8, 7)}⟩

14/26

CSPs Examples Solutions Complexity Exercise

Example: 8 Queens Problem
How can we

place 8 queens on a chess board
such that no two queens threaten each other?

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

0l0Z0Z0Z
Z0ZqZ0Z0
0Z0Z0l0Z
Z0Z0Z0Zq
0ZqZ0Z0Z
l0Z0Z0Z0
0Z0Z0ZqZ
Z0Z0l0Z0

originally proposed in 1848

variants: board size; other pieces; higher dimension

there are 92 solutions (12 non-symmetric ones)

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

variables: V = {v1, . . . , v8}

domains: dom(v) = {1, . . . , 8} for all v ∈ V

constraints: {cij | for all 1 ≤ i < j ≤ 8}, where

ci,j = ⟨(vi, vj), {(k, ℓ) ∈ {1, . . . , 8} × {1, . . . , 8} |

ci,j = ⟨(vi, vj), {

k , ℓ ∧ |k − ℓ | , |i − j|}⟩

e.g., c1,3 = ⟨(v1, v3), {(1, 2), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8),
(2, 1), (2, 3), (2, 5), (2, 6), (2, 7), (2, 8),
. . . ,

(8, 1), (8, 2), (8, 3), (8, 4), (8, 5), (8, 7)}⟩
14/26

CSPs Examples Solutions Complexity Exercise

Example: Sudoku
How can we

completely fill an already partially filled 9 × 9 matrix
with numbers from {1,2,. . . ,9}
such that each row, each column, and each of the nine
3 × 3 blocks contains every number exactly once?

2 5 3 9 1
1 4

4 7 2 8
5 2

9 8 1
4 3

3 6 7 2
7 3

9 3 6 4

2 5 8 7 3 6 9 4 1
6 1 9 8 2 4 3 5 7
4 3 7 9 1 5 2 6 8
3 9 5 2 7 1 4 8 6
7 6 2 4 9 8 1 3 5
8 4 1 6 5 3 7 2 9
1 8 4 3 6 9 5 7 2
5 7 6 1 4 2 8 9 3
9 2 3 5 8 7 6 1 4

2 5 3 9 1
1 4

4 7 2 8
5 2

9 8 1
4 3

3 6 7 2
7 3

9 3 6 4

variables: V = {vij | 1 ≤ 1, j ≤ 9}

domains: dom(v) = {1, . . . , 9} for all v ∈ V

unary constraints: cvij = {k} for all cells ⟨i, j⟩
with predefined value k

binary constraints: cvijvi′ j′ = ⟨(vij, vi′ j′), {(a, b)
∈ {1, . . . , 9}2 | a , b} for all vij, vi′ j′ ∈ V with

i = i′ (same row), or
j = j′ (same column), or
⟨⌈ i3 ⌉, ⌈

j
3 ⌉⟩ = ⟨⌈ i′3 ⌉, ⌈

j′
3 ⌉⟩ (same block)

15/26

CSPs Examples Solutions Complexity Exercise

Example: Sudoku
How can we

completely fill an already partially filled 9 × 9 matrix
with numbers from {1,2,. . . ,9}
such that each row, each column, and each of the nine
3 × 3 blocks contains every number exactly once?

2 5 3 9 1
1 4

4 7 2 8
5 2

9 8 1
4 3

3 6 7 2
7 3

9 3 6 4

2 5 8 7 3 6 9 4 1
6 1 9 8 2 4 3 5 7
4 3 7 9 1 5 2 6 8
3 9 5 2 7 1 4 8 6
7 6 2 4 9 8 1 3 5
8 4 1 6 5 3 7 2 9
1 8 4 3 6 9 5 7 2
5 7 6 1 4 2 8 9 3
9 2 3 5 8 7 6 1 4

2 5 3 9 1
1 4

4 7 2 8
5 2

9 8 1
4 3

3 6 7 2
7 3

9 3 6 4

variables: V = {vij | 1 ≤ 1, j ≤ 9}

domains: dom(v) = {1, . . . , 9} for all v ∈ V

unary constraints: cvij = {k} for all cells ⟨i, j⟩
with predefined value k

binary constraints: cvijvi′ j′ = ⟨(vij, vi′ j′), {(a, b)
∈ {1, . . . , 9}2 | a , b} for all vij, vi′ j′ ∈ V with

i = i′ (same row), or
j = j′ (same column), or
⟨⌈ i3 ⌉, ⌈

j
3 ⌉⟩ = ⟨⌈ i′3 ⌉, ⌈

j′
3 ⌉⟩ (same block)

15/26

CSPs Examples Solutions Complexity Exercise

Solutions

16/26

CSPs Examples Solutions Complexity Exercise

Assignments

Definition (assignment, partial assignment)
Let C = ⟨V, dom, C⟩ be a CSP.
A partial assignment of C (or of V) is a function

α : V′ → ⋃
v∈V dom(v)

with V′ ⊆ V and α (v) ∈ dom(v) for all v ∈ V′.

If V′ = V, then α is also called total assignment (or assignment).

{ partial assignments assign values to some or to all variables

{ (total) assignments are defined on all variables

17/26

CSPs Examples Solutions Complexity Exercise

Consistency

Definition (inconsistent, consistent, violated)
A partial assignment α of a CSP C is called inconsistent if there are
variables u, v such that α is defined for both u and v,
and there is c ∈ C s.t. scope(c) = (u, v) and (α (u), α (v)) < rel(c).

In this case, we say α violates the constraint c.

A partial assignment is called consistent if it is not inconsistent.

18/26

CSPs Examples Solutions Complexity Exercise

Solution

Definition (solution, solvable)
Let C be a CSP.

A consistent and total assignment of C is called a solution of C.

If a solution of C exists, C is called solvable.

If no solution exists, C is called inconsistent.

19/26

CSPs Examples Solutions Complexity Exercise

Consistency vs. Solvability

Note: Consistent partial assignments α cannot necessarily
be extended to a solution.

It only means that so far (i.e., on the variables where α is defined) no
constraint is violated.

qZ0Z0Z0Z
Z0Z0l0Z0
0l0Z0Z0Z
Z0Z0ZqZ0
0ZqZ0Z0Z
Z0Z0Z0l0
0Z0l0Z0Z
Z0Z0Z0Z0 ;

α = {v1 ↦→ 1, v2 ↦→ 3, v3 ↦→ 5,

v4 ↦→ 7, v5 ↦→ 2, v6 ↦→ 4, v7 ↦→ 6}

20/26

CSPs Examples Solutions Complexity Exercise

Complexity

21/26

CSPs Examples Solutions Complexity Exercise

Complexity of Constraint Satisfaction Problems

Proposition (CSPs are NP-complete)
Deciding whether a given CSP is solvable is NP-complete.

Proof
Membership in NP:
Guess and check: guess a solution and check it for validity.
This can be done in polynomial time in the size of the input.

NP-hardness:
The graph coloring problem is a special case of CSPs
and is already known to be NP-complete.

22/26

CSPs Examples Solutions Complexity Exercise

Compact Encodings and General CSP Solvers

CSPs allow for compact encodings of large sets of assignments:

consider a CSP with n variables with domains of size k

{ kn assignments

for the description as a CSP, at most
(n

2

)
,

i.e., O(n2) constraints have to be provided

every (binary) constraint consists of at most O(k2) pairs

{ encoding size O(n2k2)
{ the number of assignments is exponentially larger than the

description of the CSP

as a consequence, such descriptions can be used as inputs
of general constraint solvers

23/26

CSPs Examples Solutions Complexity Exercise

Compact Encodings and General CSP Solvers

CSPs allow for compact encodings of large sets of assignments:

consider a CSP with n variables with domains of size k

{ kn assignments

for the description as a CSP, at most
(n

2

)
,

i.e., O(n2) constraints have to be provided

every (binary) constraint consists of at most O(k2) pairs

{ encoding size O(n2k2)
{ the number of assignments is exponentially larger than the

description of the CSP

as a consequence, such descriptions can be used as inputs
of general constraint solvers

23/26

CSPs Examples Solutions Complexity Exercise

Compact Encodings and General CSP Solvers

CSPs allow for compact encodings of large sets of assignments:

consider a CSP with n variables with domains of size k

{ kn assignments

for the description as a CSP, at most
(n

2

)
,

i.e., O(n2) constraints have to be provided

every (binary) constraint consists of at most O(k2) pairs

{ encoding size O(n2k2)
{ the number of assignments is exponentially larger than the

description of the CSP

as a consequence, such descriptions can be used as inputs
of general constraint solvers

23/26

CSPs Examples Solutions Complexity Exercise

Exercise

24/26

CSPs Examples Solutions Complexity Exercise

CSP Exercise
Consider a variant of the graph coloring problem where each vertex has a
set of allowed colors.

b, g

v1

g, r

v2

b, r
v3

b, g, r

v4

1 Formalize the example as a binary constraint network.
2 Is the constraint network solvable? If yes, provide a solution of the

constraint network. If not, justify your answer.
3 Provide a minimal consistent partial assignment that cannot be

extended to a solution.
4 Provide an inconsistent partial assignment. 25/26

CSPs Examples Solutions Complexity Exercise

CSP Exercise – Solution
1 C = ⟨V, dom, (Ruv)⟩ with

V = {v1, . . . , v4},
dom(v1) = {b, g}, dom(v2) = {g, r}, dom(v3) = {b, r},
dom(v4) = {b, g, r}, and
(binary) constraints:

Rv1,v2 = {⟨b, g⟩, ⟨b, r⟩, ⟨g, r⟩}
Rv1,v3 = {⟨b, r⟩, ⟨g, b⟩, ⟨g, r⟩}
Rv1,v4 = {⟨b, g⟩, ⟨b, r⟩, ⟨g, b⟩, ⟨g, r⟩}
Rv2,v4 = {⟨g, b⟩, ⟨g, r⟩, ⟨r, b⟩, ⟨r, g⟩}
Rv3,v4 = {⟨b, g⟩, ⟨b, r⟩, ⟨r, b⟩, ⟨r, g⟩}

2 Solvable. Solution: α1 = {v1 ↦→ b, v2 ↦→ r, v3 ↦→ r, v4 ↦→ g}
(There is second solution: α2 = {v1 ↦→ g, v2 ↦→ r, v3 ↦→ r, v4 ↦→ b})

3 α1 = {v2 ↦→ g} or α2 = {v4 ↦→ r} or α3 = {v3 ↦→ b}
4 Inconsistent partial assignment: α = {v1 ↦→ b, v3 ↦→ b}

26/26

Artificial Intelligence
CSP 2: Backtracking and Inference

Jendrik Seipp

Linköping University

based on slides by Thomas Keller and Malte Helmert (University of Basel)

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

CSP Algorithms

we now consider algorithms for solving CSPs

basic concepts:

search: check partial assignments systematically

backtracking: discard inconsistent partial assignments

inference: derive equivalent, but tighter constraints
to reduce the size of the search space

2/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Backtracking Without Inference
(= Naive Backtracking)

3/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Naive Backtracking: Example

Consider the CSP for the following graph coloring instance:

b, g, r

v1

b, g

v2

b, r

v3 b, r

v4

b, g

v5

g, r, y

v6

b, r

v7

4/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Naive Backtracking: Example

search tree for naive backtracking with

fixed variable order v1, v7, v4, v5, v6, v3, v2

alphabetical order of the values

v1

v7

v4

v5

v6

v3

v2

b

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

g

b r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

b g

y

r

5/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Naive Backtracking: Example

search tree for naive backtracking with

fixed variable order v1, v7, v4, v5, v6, v3, v2

alphabetical order of the values

v1

v7

v4

v5

v6

v3

v2

b

b r

b r

g

b

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

g

b r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

b g

y

r

5/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Naive Backtracking: Example

search tree for naive backtracking with

fixed variable order v1, v7, v4, v5, v6, v3, v2

alphabetical order of the values

v1

v7

v4

v5

v6

v3

v2

b

b r

b r

g

b

b r

b r

g

b

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

g

b r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

b g

y

r

5/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Naive Backtracking: Example

search tree for naive backtracking with

fixed variable order v1, v7, v4, v5, v6, v3, v2

alphabetical order of the values

v1

v7

v4

v5

v6

v3

v2

b

b r

b r

gb

b r

b r

g

b

b r

b r

g

b

b r

b r

gb

b r

b r

gb

b r

b r

g

b r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

b g

y

r

5/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Naive Backtracking: Example

search tree for naive backtracking with

fixed variable order v1, v7, v4, v5, v6, v3, v2

alphabetical order of the values

v1

v7

v4

v5

v6

v3

v2

b

b r

b r

gb

b r

b r

gb

b r

b r

g

b

b r

b r

g

b

b r

b r

gb

b r

b r

g

b r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

b g

y

r

5/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Naive Backtracking: Example

search tree for naive backtracking with

fixed variable order v1, v7, v4, v5, v6, v3, v2

alphabetical order of the values

v1

v7

v4

v5

v6

v3

v2

b

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

g

b

b r

b r

g

b

b r

b r

g

b r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

b g

y

r

5/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Naive Backtracking: Example

search tree for naive backtracking with

fixed variable order v1, v7, v4, v5, v6, v3, v2

alphabetical order of the values

v1

v7

v4

v5

v6

v3

v2

b

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

g

b

b r

b r

g

b r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

b g

y

r

5/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Naive Backtracking: Example

search tree for naive backtracking with

fixed variable order v1, v7, v4, v5, v6, v3, v2

alphabetical order of the values

v1

v7

v4

v5

v6

v3

v2

b

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

g

b r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

b g

y

r

5/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Naive Backtracking: Example

search tree for naive backtracking with

fixed variable order v1, v7, v4, v5, v6, v3, v2

alphabetical order of the values

v1

v7

v4

v5

v6

v3

v2

b

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

g

b r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

b g

y

r

5/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Naive Backtracking: Example

search tree for naive backtracking with

fixed variable order v1, v7, v4, v5, v6, v3, v2

alphabetical order of the values

v1

v7

v4

v5

v6

v3

v2

b

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

g

b r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

b g

y

r

5/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Naive Backtracking: Example

search tree for naive backtracking with

fixed variable order v1, v7, v4, v5, v6, v3, v2

alphabetical order of the values

v1

v7

v4

v5

v6

v3

v2

b

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

g

b r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

b g

y

r

5/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Naive Backtracking: Example

search tree for naive backtracking with

fixed variable order v1, v7, v4, v5, v6, v3, v2

alphabetical order of the values

v1

v7

v4

v5

v6

v3

v2

b

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

g

b r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

b g

y

r

5/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Naive Backtracking: Example

search tree for naive backtracking with

fixed variable order v1, v7, v4, v5, v6, v3, v2

alphabetical order of the values

v1

v7

v4

v5

v6

v3

v2

b

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

g

b r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

b g

y

r

5/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Naive Backtracking: Example

search tree for naive backtracking with

fixed variable order v1, v7, v4, v5, v6, v3, v2

alphabetical order of the values

v1

v7

v4

v5

v6

v3

v2

b

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

g

b r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

b g

y

r

5/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Naive Backtracking: Example

search tree for naive backtracking with

fixed variable order v1, v7, v4, v5, v6, v3, v2

alphabetical order of the values

v1

v7

v4

v5

v6

v3

v2

b

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

g

b r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

b g

y

r

5/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Naive Backtracking: Example

search tree for naive backtracking with

fixed variable order v1, v7, v4, v5, v6, v3, v2

alphabetical order of the values

v1

v7

v4

v5

v6

v3

v2

b

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

g

b r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

b g

y

r

5/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Naive Backtracking: Example

search tree for naive backtracking with

fixed variable order v1, v7, v4, v5, v6, v3, v2

alphabetical order of the values

v1

v7

v4

v5

v6

v3

v2

b

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

gb

b r

b r

g

b r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

y

r

b

b r

b r

g

b

b r

b g

g r

b r

b g

y

r

5/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Is This a New Algorithm?

we have already seen this algorithm:
Backtracking corresponds to depth-first search
with the following state space:

states: partial assignments

initial state: empty assignment ∅

goal states: consistent total assignments

actions: assignv,d assigns value d ∈ dom(v) to variable v

action costs: all 0 (all solutions are of equal quality)
transitions:

for each non-total consistent assignment α ,
choose variable v = Select-Unassigned-Variable

transition α
assignv,d−−−−−−−→ α ∪ {v ↦→ d} for each d ∈ dom(v)

6/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Why Depth-First Search?

depth-first search is particularly well-suited for CSPs:

path length bounded (by the number of variables)

solutions located at the same depth (lowest search layer)

state space is directed tree, initial state is the root
{ no duplicates

hence none of the problematic cases for depth-first search occurs

7/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Naive Backtracking: Discussion

naive backtracking often has to exhaustively explore
similar search paths (i.e., partial assignments
that are identical except for a few variables)

“critical” variables are not recognized
and hence considered for assignment (too) late

decisions that necessarily lead to constraint violations
are only recognized when all variables involved
in the constraint have been assigned.

{ more intelligence by focusing on critical decisions

{

and by inference of consequences of previous decisions

8/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Variable and Value Orders

9/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Variable Orders

Select-Unassigned-Variable method in backtracking search allows
to influence order in which variables are considered for assignment

selected order can strongly influence the search space size
and hence the search performance

general aim: make critical decisions as early as possible

10/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Variable Orders

two common variable ordering criteria:

minimum remaining values:
prefer variables that have small domains

intuition: few subtrees{ smaller tree
extreme case: only one value{ forced assignment

most constraining variable:
prefer variables contained in many nontrivial constraints

intuition: constraints tested early
{ inconsistencies recognized early{ smaller tree

combination: use minimum remaining values criterion,
then most constraining variable criterion to break ties

11/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Value Orders

Order-Domain-Values method in backtracking search allows to
influence order in which values of the selected variable v are
considered

this is less important because it does not matter
in subtrees without a solution

in subtrees with a solution, ideally a value that leads to a solution
should be chosen

general aim: make most promising assignments first

12/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Value Orders

Definition (conflict)
Let C = ⟨V, dom, C⟩ be a CSP.
For variables v , v′ and values d ∈ dom(v), d′ ∈ dom(v′),
the assignment v ↦→ d is in conflict with v′ ↦→ d′ if there is c ∈ C with
scope(c) = (v, v′) s.t. (d, d′) < rel(c).

value ordering criterion for partial assignment α
and selected variable v:

minimum conflicts: prefer values d ∈ dom(v)
such that v ↦→ d causes as few conflicts as possible
with variables that are unassigned in α

13/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Inference

14/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Inference

Inference

Derive additional constraints (here: unary or binary)
that are implied by the given constraints,
i.e., that are satisfied in all solutions.

example: CSP with variables v1, v2, v3 with domain {1, 2, 3}
and constraints v1 < v2 and v2 < v3.

we can infer:

v2 cannot be equal to 3 (new unary constraint on v2)

⟨(v1, v2), {(1, 2), (1, 3), (2, 3)} can be tightened to ⟨(v1, v2), {(1, 2)}
(tighter binary constraint)

v1 < v3

(“new” binary constraint = trivial constraint tightened)

15/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Trade-Off Search vs. Inference

Inference formally

Replace a given CSP C with an equivalent, but tighter CSP.

trade-off:

the more complex the inference, and

the more often inference is applied,

the smaller the resulting state space, but

the higher the complexity per search node.

16/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

When to Apply Inference?

different possibilities to apply inference:

once as preprocessing before search

combined with search: before recursive calls
during backtracking procedure

already assigned variable v ↦→ d corresponds to dom(v) = {d}{
more inferences possible
during backtracking, derived constraints have to be retracted
because they were based on the given assignment

{ powerful, but possibly expensive

17/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Backtracking with Inference: Discussion

Inference method in backtracking search allows to apply different
inference methods

inference methods can recognize unsolvability (given α)

efficient implementations of inference are often incremental:
the last assigned variable/value pair v ↦→ d is taken
into account to speed up the inference computation

18/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Node Consistency

19/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Node Consistency

We start with a simple inference method:

Node Consistency

Remove all values from the domain of all variable v that are in conflict
with a unary constraint on v.

20/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Node Consistency: Discussion

properties of node consistency:

correct inference method (retains equivalence)

affects domains (= unary constraints),
but not binary constraints

cheap, but often still useful inference method

{ minimal inference method that should (almost) always be used

21/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Arc Consistency

22/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Arc Consistency: Definition

Definition (Arc Consistent)
Let C = ⟨V, dom, C⟩ be a CSP.

(a) A variable v ∈ V is arc consistent
with respect to another variable v′ ∈ V,
if for every value d ∈ dom(v)
there exists a value d′ ∈ dom(v′) with ⟨d, d′⟩ ∈ c with
scope(c) = (v, v′)

(b) The CSP C is arc consistent,
if every variable v ∈ V is arc consistent
with respect to every other variable v′ ∈ V.

remarks:
definition for variable pair is not symmetrical
v always arc consistent with respect to v′

if the constraint between v and v′ is trivial
23/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Arc Consistency: Example

Consider a CSP with variables v1 and v2,
domains dom(v1) = dom(v2) = {1, 2, 3}
and the constraint expressed by v1 < v2.

1

2

3

1

3

1

2

3
v1 v2

Arc consistency of v1 with respect to v2

and of v2 with respect to v1 are violated.

24/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Arc Consistency: Example

Consider a CSP with variables v1 and v2,
domains dom(v1) = dom(v2) = {1, 2, 3}
and the constraint expressed by v1 < v2.

1

2

3

1

3

1

2

3
v1 v2

Arc consistency of v1 with respect to v2

and of v2 with respect to v1 are violated.

24/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Enforcing Arc Consistency

enforcing arc consistency, i.e., removing values from dom(v) that
violate the arc consistency of v with respect to v′,
is a correct inference method
more powerful than node consistency:
{ node consistency is a special case:

enforcing arc consistency of all variables
with respect to the just assigned variable
corresponds to node consistency.

25/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Processing Variable Pairs: Revise

function Revise(⟨V, dom, C⟩, v, v′):
revised = false
let c = ⟨(v, v′), rel⟩ ∈ C
for each d ∈ dom(v):

if there is no d′ ∈ dom(v′) s.t. (d, d′) ∈ rel(c):
remove d from dom(v)
revised = true

return revised

effect: v arc consistent with respect to v′.
All violating values in dom(v) are removed.

time complexity: O(k2), where k is maximal domain size

26/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Example: revise

1

2

3

1

2

3
v v′

27/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Example: revise

1

2

3

1

2

3
v v′

27/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Example: revise

1

2

3

1

2

3
v v′

27/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Example: revise

1

2

3

1

2

3
v v′

27/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Example: revise

1

2

1

2

3
v v′

27/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Enforcing Arc Consistency: AC-3

idea:
transform C into equivalent arc consistent CSP
store potentially inconsistent variable pairs in a queue

function AC-3(C):
⟨V, dom, C⟩ := C
queue := ∅
for each nontrivial constraint c with scope(c) = (u, v):

insert ⟨u, v⟩ into queue
insert ⟨v, u⟩ into queue

while queue , ∅:
remove an arbitrary element ⟨u, v⟩ from queue
if Revise(C, u, v):

for each w ∈ V \ {u, v} where c is nontrivial:
insert ⟨w, u⟩ into queue

28/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Path Consistency

29/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Path Consistency

idea of arc consistency:

for every assignment to a variable u
there must be a suitable assignment to every other variable v

If not: remove values of u for which
no suitable “partner” assignment to v exists

{ tighter unary constraint on u

this idea can be extended to three variables (path consistency):

for every joint assignment to variables u, v
there must be a suitable assignment to every third variable w

if not: remove pairs of values of u and v for which
no suitable “partner” assignment to w exists.

{ tighter binary constraint on u and v

30/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Path Consistency: Example

arc consistent, but not path consistent

not arc consistent, but path consistentarc consistent and path consistent

r,b,g

v1

g

v1

r,b

v2

r,b

v3

c12 = ⟨(v1, v2), {(r, b), (b, r), (g, r), (g, b)}
c13 = ⟨(v1, v3), {(r, b), (b, r), (g, r), (g, b)}
c23 = ⟨(v2, v3), {(r, b), (b, r)}

c12 = ⟨(v1, v2), {(r, b), (b, r), (g, r), (g, b)}
c13 = ⟨(v1, v3), {(r, b), (b, r), (g, r), (g, b)}
c23 = ⟨(v2, v3), {(r, b), (b, r)}

c12 = ⟨(v1, v2), {(g, r), (g, b)}
c13 = ⟨(v1, v3), {(g, r), (g, b)}
c23 = ⟨(v2, v3), {(r, b), (b, r)}

31/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Path Consistency: Example

arc consistent, but not path consistent

not arc consistent, but path consistentarc consistent and path consistent

r,b,g

v1

g

v1

r,b

v2

r,b

v3

c12 = ⟨(v1, v2), {(r, b), (b, r), (g, r), (g, b)}
c13 = ⟨(v1, v3), {(r, b), (b, r), (g, r), (g, b)}
c23 = ⟨(v2, v3), {(r, b), (b, r)}

c12 = ⟨(v1, v2), {(r, b), (b, r), (g, r), (g, b)}
c13 = ⟨(v1, v3), {(r, b), (b, r), (g, r), (g, b)}
c23 = ⟨(v2, v3), {(r, b), (b, r)}

c12 = ⟨(v1, v2), {(g, r), (g, b)}
c13 = ⟨(v1, v3), {(g, r), (g, b)}
c23 = ⟨(v2, v3), {(r, b), (b, r)}

31/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Path Consistency: Example

arc consistent, but not path consistent

not arc consistent, but path consistent

arc consistent and path consistent

r,b,g

v1

g

v1

r,b

v2

r,b

v3

c12 = ⟨(v1, v2), {(r, b), (b, r), (g, r), (g, b)}
c13 = ⟨(v1, v3), {(r, b), (b, r), (g, r), (g, b)}
c23 = ⟨(v2, v3), {(r, b), (b, r)}

c12 = ⟨(v1, v2), {(r, b), (b, r), (g, r), (g, b)}
c13 = ⟨(v1, v3), {(r, b), (b, r), (g, r), (g, b)}
c23 = ⟨(v2, v3), {(r, b), (b, r)}

c12 = ⟨(v1, v2), {(g, r), (g, b)}
c13 = ⟨(v1, v3), {(g, r), (g, b)}
c23 = ⟨(v2, v3), {(r, b), (b, r)}

31/31

Naive Backtracking Variable and Value Orders Inference Node Consistency Arc Consistency Path Consistency

Path Consistency: Example

arc consistent, but not path consistentnot arc consistent, but path consistent

arc consistent and path consistent

r,b,g

v1

g

v1

r,b

v2

r,b

v3

c12 = ⟨(v1, v2), {(r, b), (b, r), (g, r), (g, b)}
c13 = ⟨(v1, v3), {(r, b), (b, r), (g, r), (g, b)}
c23 = ⟨(v2, v3), {(r, b), (b, r)}

c12 = ⟨(v1, v2), {(r, b), (b, r), (g, r), (g, b)}
c13 = ⟨(v1, v3), {(r, b), (b, r), (g, r), (g, b)}
c23 = ⟨(v2, v3), {(r, b), (b, r)}

c12 = ⟨(v1, v2), {(g, r), (g, b)}
c13 = ⟨(v1, v3), {(g, r), (g, b)}
c23 = ⟨(v2, v3), {(r, b), (b, r)}

31/31

