Artificial Intelligence

CSP 1: Constraint Satisfaction Problems

Jendrik Seipp

Linköping University

Questions?

post feedback and ask questions anonymously at
https://padlet.com/jendrikseipp/tddc17

Intended Learning Outcomes

■ explain what "constraint satisfaction problems" (CSPs) are

- model and solve simple CSPs

Constraint Satisfaction Problems

Constraint Satisfaction Problems

(heuristic) search algorithms considered so far:

- wide variety of problems
- problem-specific heuristics
- no general solver

13	2	3	12
9	11	1	10
	6	4	14
15	8	7	5

Constraint Satisfaction Problems

(heuristic) search algorithms considered so far:

- wide variety of problems
- problem-specific heuristics

■ no general solver

13	2	3	12
9	11	1	10
	6	4	14
15	8	7	5

constraint satisfaction problems (CSP) considered today:

- problem scope more restricted
- problem-inpdendent methods

■ general solver

Informal Description

- a constraint is a condition that every solution to a problem must satisfy
■ a CSP is defined by
■ a finite set of variables
■ a domain for each variable
■ a set of constraints
- a solution for a CSP is an assignment of each variable to a value in its domain that violates no constraint

Informal Description

- a constraint is a condition that every solution
 to a problem must satisfy
■ a CSP is defined by
■ a finite set of variables
■ a domain for each variable
■ a set of constraints
- a solution for a CSP is an assignment of each variable to a value in its domain that violates no constraint

■ variables and domains in cross-word puzzle? constraints?

Informal Description

- a constraint is a condition that every solution
 to a problem must satisfy
- a CSP is defined by
- a finite set of variables

■ a domain for each variable

- a set of constraints
- a solution for a CSP is an assignment of each variable to a value in its domain that violates no constraint

■ variables and domains in cross-word puzzle? constraints?
\rightarrow one variable for each cell with domain $\{A, \ldots, Z\}$

Informal Description

■ a constraint is a condition that every solution to a problem must satisfy
■ a CSP is defined by
■ a finite set of variables
■ a domain for each variable
■ a set of constraints

- a solution for a CSP is an assignment of each variable to a value in its domain that violates no constraint

■ variables and domains in cross-word puzzle? constraints?
\rightarrow one variable for each cell with domain $\{A, \ldots, Z\}$
\rightarrow constraints: length of "boxes", horizontal and vertical words must not contradict each other

Definition

Definition (Constraint Satisfaction Problem)

A constraint satistfaction problem (or constraint network) is a 3-tuple $C=\langle V$, dom, $C\rangle$ such that:

■ V is a non-empty and finite set of variables,

- dom is a function that assigns a non-empty domain to each variable $v \in V$, and

■ C is a set of constraints $c=\langle$ scope, rel \rangle, where $\operatorname{scope}(c)=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ is a n-tuple of (pairwise distinct) variables and $\operatorname{rel}(c) \subseteq \operatorname{dom}\left(v_{1}\right) \times \cdots \times \operatorname{dom}\left(v_{n}\right)$
restrictions considered here:

- finite domains

■ unary or binary constraints

Unary Constraints

- a unary constraint c has $\operatorname{scope}(c)=(v)$ for $v \in V$
- c restricts $\operatorname{dom}(v)$ to the values allowed by c
- it is often useful to have additional restrictions on single variables as constraints

■ formally, unary constraints are not necessary, but they often allow to describe CSPs more clearly

Unary Constraints

- a unary constraint c has scope $(c)=(v)$ for $v \in V$
- c restricts $\operatorname{dom}(v)$ to the values allowed by c
- it is often useful to have additional restrictions on single variables as constraints

■ formally, unary constraints are not necessary, but they often allow to describe CSPs more clearly

- $\operatorname{dom}(v)=\{1, \ldots, 9\}$ for all $v \in V$ (for all Sudoku instances)
- $c=\left\langle\left(v_{13}\right),\{(4)\}\right\rangle$ (for a specific instance)

Binary Constraints

■ a binary constraint has scope $(c)=(u, v)$ for $u, v \in V, u \neq v$
■ c expresses which joint assignments to u and v are allowed
■ c is trivial if $\operatorname{rel}(c)=\operatorname{dom}(u) \times \operatorname{dom}(v)$
$\leadsto c$ is usually not given explicitly (c exists formally)
■ constraint c^{\prime} with $\operatorname{scope}\left(c^{\prime}\right)=(v, u)$ refers to same variables \leadsto only c or c^{\prime} is usually given explicitly (both exist formally)

Binary Constraints

\square a binary constraint has scope $(c)=(u, v)$ for $u, v \in V, u \neq v$
■ c expresses which joint assignments to u and v are allowed
$\square c$ is trivial if $\operatorname{rel}(c)=\operatorname{dom}(u) \times \operatorname{dom}(v)$
$\leadsto c$ is usually not given explicitly (c exists formally)
\square constraint c^{\prime} with scope $\left(c^{\prime}\right)=(v, u)$ refers to same variables \leadsto only c or c^{\prime} is usually given explicitly (both exist formally)

$$
\begin{aligned}
c & =\left\langle\left(v_{11}, v_{21}\right),\{(x, y) \mid x \neq y\}\right\rangle \\
c^{\prime} & =\left\langle\left(v_{21}, v_{11}\right),\{(y, x) \mid y \neq x\}\right\rangle
\end{aligned}
$$

Examples

CSP Examples

Example: Graph Coloring

Given a graph and $k \in \mathbb{N}$, how can we

- color the vertices using k colors

■ such that two neighboring vertices never have the same color?

Tasmania

Tasmania

How to formalize this CSP?

Example: Graph Coloring

Given a graph and $k \in \mathbb{N}$, how can we

- color the vertices using k colors

■ such that two neighboring vertices never have the same color?

- variables: $V=\{W A, N T, Q, N S W, V I, S A, T\}$
- domains: $\operatorname{dom}(v)=\{r, g, b\}$ for all $v \in V$
- constraints: $\left\{c_{u v} \mid\right.$ for all connected $\left.u, v \in V\right\}$, where

$$
c_{u v}=\langle(u, v),\{(k, \ell) \in\{r, g, b\} \times\{r, g, b\} \mid k \neq \ell\}
$$

e.g., $c_{\text {WA, NT }}=\langle(W A, N T),\{(r, g),(r, b),(g, r),(g, b),(b, r),(b, g)\}\rangle$

Four Color Problem

famous problem in mathematics: Four Color Problem

■ Is it always possible to color a planar graph with 4 colors?

- conjectured by Francis Guthrie (1852)
- 1890 first proof that 5 colors suffice

■ several wrong proofs surviving for over 10 years

Four Color Problem

famous problem in mathematics: Four Color Problem
■ Is it always possible to color a planar graph with 4 colors?
■ conjectured by Francis Guthrie (1852)

- 1890 first proof that 5 colors suffice
- several wrong proofs surviving for over 10 years

■ solved by Appel and Haken in 1976: 4 colors suffice

- Appel and Haken reduced the problem to 1936 cases, which were then checked by computers

■ first famous mathematical problem solved (partially) by computers
\sim led to controversy: is this a mathematical proof?

numberphile video:

https://www.youtube.com/watch?v=NgbK43jB4rQ

Example: 8 Queens Problem

How can we

- place 8 queens on a chess board
- such that no two queens threaten each other?

■ originally proposed in 1848
■ variants: board size; other pieces; higher dimension

- there are 92 solutions (12 non-symmetric ones)

Example: 8 Queens Problem

How can we

- place 8 queens on a chess board

■ such that no two queens threaten each other?

■ variables: $V=\left\{v_{1}, \ldots, v_{8}\right\}$
■ domains: $\operatorname{dom}(v)=\{1, \ldots, 8\}$ for all $v \in V$
■ constraints: $\left\{c_{i j} \mid\right.$ for all $\left.1 \leq i<j \leq 8\right\}$, where

$$
\begin{gathered}
c_{i, j}=\left\langle\left(v_{i}, v_{j}\right),\{(k, \ell) \in\{1, \ldots, 8\} \times\{1, \ldots, 8\} \mid\right. \\
k \neq \ell \wedge|k-\ell| \neq|i-j|\}\rangle
\end{gathered}
$$

$$
\begin{array}{r}
\text { e.g., } c_{1,3}=\left\langle\left(v_{1}, v_{3}\right),\{(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),\right. \\
(2,1),(2,3),(2,5),(2,6),(2,7),(2,8),
\end{array}
$$

$$
(8,1),(8,2),(8,3),(8,4),(8,5),(8,7)\}\rangle
$$

Example: Sudoku

How can we
■ completely fill an already partially filled 9×9 matrix with numbers from $\{1,2, \ldots, 9\}$
\square such that each row, each column, and each of the nine 3×3 blocks contains every number exactly once?

2	5	8	7	3	6	9	4	1
6	1	9	8	2	4	3	5	7
4	3	7	9	1	5	2	6	8
3	9	5	2	7	1	4	8	6
7	6	2	4	9	8	1	3	5
8	4	1	6	5	3	7	2	9
1	8	4	3	6	9	5	7	2
5	7	6	1	4	2	8	9	3
9	2	3	5	8	7	6	1	4

Example: Sudoku

How can we

■ completely fill an already partially filled 9×9 matrix with numbers from $\{1,2, \ldots, 9\}$
\square such that each row, each column, and each of the nine 3×3 blocks contains every number exactly once?

■ variables: $V=\left\{v_{i j} \mid 1 \leq 1, j \leq 9\right\}$

■ domains: $\operatorname{dom}(v)=\{1, \ldots, 9\}$ for all $v \in V$

- unary constraints: $c_{v_{i j}}=\{k\}$ for all cells $\langle i, j\rangle$ with predefined value k

■ binary constraints: $c_{v_{i j} v_{i_{i} j^{\prime}}}=\left\langle\left(v_{i j}, v_{i^{\prime} j^{\prime}}\right),\{(a, b)\right.$ $\left.\in\{1, \ldots, 9\}^{2} \mid a \neq b\right\}$ for all $v_{i j}, v_{i^{\prime} j^{\prime}} \in V$ with

■ $i=i^{\prime}$ (same row), or
■ $j=j^{\prime}$ (same column), or
$\square\left\langle\left\lceil\frac{i}{3}\right\rceil,\left\lceil\frac{j}{3}\right\rceil\right\rangle=\left\langle\left\lceil\frac{i^{\prime}}{3}\right\rceil,\left\lceil\frac{i^{\prime}}{3}\right\rceil\right\rangle$ (same block)

Solutions

Assignments

Definition (assignment, partial assignment)

Let $C=\langle V$, dom, $C\rangle$ be a CSP.
A partial assignment of C (or of V) is a function

$$
\alpha: V^{\prime} \rightarrow \bigcup_{v \in V} \operatorname{dom}(v)
$$

with $V^{\prime} \subseteq V$ and $\alpha(v) \in \operatorname{dom}(v)$ for all $v \in V^{\prime}$.
If $V^{\prime}=V$, then α is also called total assignment (or assignment).
\leadsto partial assignments assign values to some or to all variables
\leadsto (total) assignments are defined on all variables

Consistency

Definition (inconsistent, consistent, violated)

A partial assignment α of a CSP C is called inconsistent if there are variables u, v such that α is defined for both u and v, and there is $c \in C$ s.t. $\operatorname{scope}(c)=(u, v)$ and $(\alpha(u), \alpha(v)) \notin \operatorname{rel}(c)$.

In this case, we say α violates the constraint c.
A partial assignment is called consistent if it is not inconsistent.

Solution

Definition (solution, solvable)

Let C be a CSP.
A consistent and total assignment of C is called a solution of C.
If a solution of C exists, C is called solvable.
If no solution exists, C is called inconsistent.

Consistency vs. Solvability

Note: Consistent partial assignments α cannot necessarily be extended to a solution.

It only means that so far (i.e., on the variables where α is defined) no constraint is violated.

$$
\begin{aligned}
\alpha=\left\{v_{1}\right. & \mapsto 1, v_{2} \mapsto 3, v_{3} \mapsto 5, \\
v_{4} & \left.\mapsto 7, v_{5} \mapsto 2, v_{6} \mapsto 4, v_{7} \mapsto 6\right\}
\end{aligned}
$$

Complexity

Complexity of Constraint Satisfaction Problems

Proposition (CSPs are NP-complete)

Deciding whether a given CSP is solvable is NP-complete.

Proof

Membership in NP:
Guess and check: guess a solution and check it for validity.
This can be done in polynomial time in the size of the input.

NP-hardness:

The graph coloring problem is a special case of CSPs and is already known to be NP-complete.

Compact Encodings and General CSP Solvers

CSPs allow for compact encodings of large sets of assignments:

- consider a CSP with n variables with domains of size k
$\leadsto k^{n}$ assignments

Compact Encodings and General CSP Solvers

CSPs allow for compact encodings of large sets of assignments:

- consider a CSP with n variables with domains of size k
$\leadsto k^{n}$ assignments
- for the description as a CSP, at most $\binom{n}{2}$, i.e., $O\left(n^{2}\right)$ constraints have to be provided
- every (binary) constraint consists of at most $O\left(k^{2}\right)$ pairs
\leadsto encoding size $O\left(n^{2} k^{2}\right)$
\leadsto the number of assignments is exponentially larger than the description of the CSP

Compact Encodings and General CSP Solvers

CSPs allow for compact encodings of large sets of assignments:

- consider a CSP with n variables with domains of size k
$\leadsto k^{n}$ assignments
- for the description as a CSP, at most $\binom{n}{2}$, i.e., $O\left(n^{2}\right)$ constraints have to be provided
- every (binary) constraint consists of at most $O\left(k^{2}\right)$ pairs
\leadsto encoding size $O\left(n^{2} k^{2}\right)$
\leadsto the number of assignments is exponentially larger than the description of the CSP

■ as a consequence, such descriptions can be used as inputs of general constraint solvers

Exercise

CSP Exercise

Consider a variant of the graph coloring problem where each vertex has a set of allowed colors.

(1) Formalize the example as a binary constraint network.
(2) Is the constraint network solvable? If yes, provide a solution of the constraint network. If not, justify your answer.
(3) Provide a minimal consistent partial assignment that cannot be extended to a solution.
(9) Provide an inconsistent partial assignment.

CSP Exercise - Solution

(1) $C=\left\langle V\right.$, dom, $\left.\left(R_{u v}\right)\right\rangle$ with

■ $V=\left\{v_{1}, \ldots, v_{4}\right\}$,
$\square \operatorname{dom}\left(v_{1}\right)=\{b, g\}, \operatorname{dom}\left(v_{2}\right)=\{g, r\}, \operatorname{dom}\left(v_{3}\right)=\{b, r\}$, $\operatorname{dom}\left(v_{4}\right)=\{b, g, r\}$, and

- (binary) constraints:

$$
\begin{aligned}
R_{v_{1}, v_{2}} & =\{\langle b, g\rangle,\langle b, r\rangle,\langle g, r\rangle\} \\
R_{v_{1}, v_{3}} & =\{\langle b, r\rangle,\langle g, b\rangle,\langle g, r\rangle\} \\
R_{v_{1}, v_{4}} & =\{\langle b, g\rangle,\langle b, r\rangle,\langle g, b\rangle,\langle g, r\rangle\} \\
R_{v_{2}, v_{4}} & =\{\langle g, b\rangle,\langle g, r\rangle,\langle r, b\rangle,\langle r, g\rangle\} \\
R_{v_{3}, v_{4}} & =\{\langle b, g\rangle,\langle b, r\rangle,\langle r, b\rangle,\langle r, g\rangle\}
\end{aligned}
$$

(2) Solvable. Solution: $\alpha_{1}=\left\{v_{1} \mapsto b, v_{2} \mapsto r, v_{3} \mapsto r, v_{4} \mapsto g\right\}$
(There is second solution: $\alpha_{2}=\left\{v_{1} \mapsto g, v_{2} \mapsto r, v_{3} \mapsto r, v_{4} \mapsto b\right\}$)
(3) $\alpha_{1}=\left\{v_{2} \mapsto g\right\}$ or $\alpha_{2}=\left\{v_{4} \mapsto r\right\}$ or $\alpha_{3}=\left\{v_{3} \mapsto b\right\}$
(4) Inconsistent partial assignment: $\alpha=\left\{v_{1} \mapsto b, v_{3} \mapsto b\right\}$

Artificial Intelligence
 CSP 2: Backtracking and Inference

Jendrik Seipp

Linköping University

CSP Algorithms

we now consider algorithms for solving CSPs

basic concepts:

■ search: check partial assignments systematically
■ backtracking: discard inconsistent partial assignments

- inference: derive equivalent, but tighter constraints to reduce the size of the search space

Backtracking Without Inference (= Naive Backtracking)

Naive Backtracking: Example

Consider the CSP for the following graph coloring instance:

Naive Backtracking: Example

search tree for naive backtracking with
■ fixed variable order $v_{1}, v_{7}, v_{4}, v_{5}, v_{6}, v_{3}, v_{2}$
■ alphabetical order of the values

Naive Backtracking: Example

search tree for naive backtracking with
■ fixed variable order $v_{1}, v_{7}, v_{4}, v_{5}, v_{6}, v_{3}, v_{2}$
■ alphabetical order of the values

Naive Backtracking: Example

search tree for naive backtracking with
■ fixed variable order $v_{1}, v_{7}, v_{4}, v_{5}, v_{6}, v_{3}, v_{2}$
■ alphabetical order of the values

Naive Backtracking: Example

search tree for naive backtracking with
■ fixed variable order $v_{1}, v_{7}, v_{4}, v_{5}, v_{6}, v_{3}, v_{2}$
■ alphabetical order of the values

Naive Backtracking: Example

search tree for naive backtracking with
■ fixed variable order $v_{1}, v_{7}, v_{4}, v_{5}, v_{6}, v_{3}, v_{2}$
■ alphabetical order of the values

Naive Backtracking: Example

search tree for naive backtracking with
■ fixed variable order $v_{1}, v_{7}, v_{4}, v_{5}, v_{6}, v_{3}, v_{2}$
■ alphabetical order of the values

Naive Backtracking: Example

search tree for naive backtracking with
■ fixed variable order $v_{1}, v_{7}, v_{4}, v_{5}, v_{6}, v_{3}, v_{2}$
■ alphabetical order of the values

Naive Backtracking: Example

search tree for naive backtracking with
■ fixed variable order $v_{1}, v_{7}, v_{4}, v_{5}, v_{6}, v_{3}, v_{2}$
■ alphabetical order of the values

Naive Backtracking: Example

search tree for naive backtracking with
■ fixed variable order $v_{1}, v_{7}, v_{4}, v_{5}, v_{6}, v_{3}, v_{2}$
■ alphabetical order of the values

Naive Backtracking: Example

search tree for naive backtracking with
■ fixed variable order $v_{1}, v_{7}, v_{4}, v_{5}, v_{6}, v_{3}, v_{2}$
■ alphabetical order of the values

Naive Backtracking: Example

search tree for naive backtracking with
■ fixed variable order $v_{1}, v_{7}, v_{4}, v_{5}, v_{6}, v_{3}, v_{2}$
■ alphabetical order of the values

Naive Backtracking: Example

search tree for naive backtracking with
■ fixed variable order $v_{1}, v_{7}, v_{4}, v_{5}, v_{6}, v_{3}, v_{2}$
■ alphabetical order of the values

Naive Backtracking: Example

search tree for naive backtracking with
■ fixed variable order $v_{1}, v_{7}, v_{4}, v_{5}, v_{6}, v_{3}, v_{2}$
■ alphabetical order of the values

Naive Backtracking: Example

search tree for naive backtracking with
■ fixed variable order $v_{1}, v_{7}, v_{4}, v_{5}, v_{6}, v_{3}, v_{2}$
■ alphabetical order of the values

Naive Backtracking: Example

search tree for naive backtracking with
■ fixed variable order $v_{1}, v_{7}, v_{4}, v_{5}, v_{6}, v_{3}, v_{2}$
■ alphabetical order of the values

Naive Backtracking: Example

search tree for naive backtracking with
■ fixed variable order $v_{1}, v_{7}, v_{4}, v_{5}, v_{6}, v_{3}, v_{2}$
■ alphabetical order of the values

Naive Backtracking: Example

search tree for naive backtracking with
■ fixed variable order $v_{1}, v_{7}, v_{4}, v_{5}, v_{6}, v_{3}, v_{2}$
■ alphabetical order of the values

Is This a New Algorithm?

we have already seen this algorithm:
Backtracking corresponds to depth-first search with the following state space:

- states: partial assignments

■ initial state: empty assignment \varnothing

- goal states: consistent total assignments
- actions: assign $n_{v, d}$ assigns value $d \in \operatorname{dom}(v)$ to variable v

■ action costs: all 0 (all solutions are of equal quality)
■ transitions:
■ for each non-total consistent assignment α, choose variable $v=$ Select-Unassigned-Variable
■ transition $\alpha \xrightarrow{\text { assign }_{v, d}} \alpha \cup\{v \mapsto d\}$ for each $d \in \operatorname{dom}(v)$

Why Depth-First Search?

depth-first search is particularly well-suited for CSPs:

- path length bounded (by the number of variables)

■ solutions located at the same depth (lowest search layer)

- state space is directed tree, initial state is the root
\sim no duplicates
hence none of the problematic cases for depth-first search occurs

Naive Backtracking: Discussion

■ naive backtracking often has to exhaustively explore similar search paths (i.e., partial assignments that are identical except for a few variables)

■ "critical" variables are not recognized and hence considered for assignment (too) late

- decisions that necessarily lead to constraint violations are only recognized when all variables involved in the constraint have been assigned.
\leadsto more intelligence by focusing on critical decisions and by inference of consequences of previous decisions

Variable and Value Orders

Variable Orders

- SeLECT-UNASSIGNED-VARIABLE method in backtracking search allows to influence order in which variables are considered for assignment
- selected order can strongly influence the search space size and hence the search performance

■ general aim: make critical decisions as early as possible

Variable Orders

two common variable ordering criteria:
■ minimum remaining values: prefer variables that have small domains

■ intuition: few subtrees \leadsto smaller tree
■ extreme case: only one value \leadsto forced assignment
■ most constraining variable:
prefer variables contained in many nontrivial constraints
■ intuition: constraints tested early
\leadsto inconsistencies recognized early \leadsto smaller tree
combination: use minimum remaining values criterion, then most constraining variable criterion to break ties

Value Orders

■ ORDER-DOMAIN-VALUES method in backtracking search allows to influence order in which values of the selected variable v are considered

■ this is less important because it does not matter in subtrees without a solution

■ in subtrees with a solution, ideally a value that leads to a solution should be chosen

- general aim: make most promising assignments first

Value Orders

Definition (conflict)

Let $C=\langle V$, dom, $C\rangle$ be a CSP.
For variables $v \neq v^{\prime}$ and values $d \in \operatorname{dom}(v), d^{\prime} \in \operatorname{dom}\left(v^{\prime}\right)$, the assignment $v \mapsto d$ is in conflict with $v^{\prime} \mapsto d^{\prime}$ if there is $c \in C$ with $\operatorname{scope}(c)=\left(v, v^{\prime}\right)$ s.t. $\left(d, d^{\prime}\right) \notin \operatorname{rel}(c)$.
value ordering criterion for partial assignment α and selected variable v :

- minimum conflicts: prefer values $d \in \operatorname{dom}(v)$ such that $v \mapsto d$ causes as few conflicts as possible with variables that are unassigned in α

Inference

Inference

Inference

Derive additional constraints (here: unary or binary) that are implied by the given constraints, i.e., that are satisfied in all solutions.
example: CSP with variables v_{1}, v_{2}, v_{3} with domain $\{1,2,3\}$ and constraints $v_{1}<v_{2}$ and $v_{2}<v_{3}$.
we can infer:

- v_{2} cannot be equal to 3 (new unary constraint on v_{2})
$■\langle(v 1, v 2),\{(1,2),(1,3),(2,3)\}$ can be tightened to $\langle(v 1, v 2),\{(1,2)\}$ (tighter binary constraint)
- $v_{1}<v_{3}$
("new" binary constraint = trivial constraint tightened)

Trade-Off Search vs. Inference

Inference formally

Replace a given CSP C with an equivalent, but tighter CSP.
trade-off:

- the more complex the inference, and
- the more often inference is applied,

■ the smaller the resulting state space, but
■ the higher the complexity per search node.

When to Apply Inference?

different possibilities to apply inference:

- once as preprocessing before search

■ combined with search: before recursive calls during backtracking procedure

■ already assigned variable $v \mapsto d$ corresponds to $\operatorname{dom}(v)=\{d\} \leadsto$ more inferences possible
■ during backtracking, derived constraints have to be retracted because they were based on the given assignment
\sim powerful, but possibly expensive

Backtracking with Inference: Discussion

- Inference method in backtracking search allows to apply different inference methods
- inference methods can recognize unsolvability (given α)

■ efficient implementations of inference are often incremental: the last assigned variable/value pair $v \mapsto d$ is taken into account to speed up the inference computation

Node Consistency

Node Consistency

We start with a simple inference method:

Node Consistency

Remove all values from the domain of all variable v that are in conflict with a unary constraint on v.

Node Consistency: Discussion

properties of node consistency:
■ correct inference method (retains equivalence)
■ affects domains (= unary constraints), but not binary constraints

- cheap, but often still useful inference method
\leadsto minimal inference method that should (almost) always be used

Arc Consistency

Arc Consistency: Definition

Definition (Arc Consistent)

Let $C=\langle V$, dom, $C\rangle$ be a CSP.
(a) A variable $v \in V$ is arc consistent with respect to another variable $v^{\prime} \in V$, if for every value $d \in \operatorname{dom}(v)$ there exists a value $d^{\prime} \in \operatorname{dom}\left(v^{\prime}\right)$ with $\left\langle d, d^{\prime}\right\rangle \in c$ with $\operatorname{scope}(c)=\left(v, v^{\prime}\right)$
(b) The $\operatorname{CSP} C$ is arc consistent, if every variable $v \in V$ is arc consistent with respect to every other variable $v^{\prime} \in V$.

remarks:

- definition for variable pair is not symmetrical

■ v always arc consistent with respect to v^{\prime} if the constraint between v and v^{\prime} is trivial

Arc Consistency: Example

Consider a CSP with variables v_{1} and v_{2}, domains $\operatorname{dom}\left(v_{1}\right)=\operatorname{dom}\left(v_{2}\right)=\{1,2,3\}$ and the constraint expressed by $v_{1}<v_{2}$.

Arc Consistency: Example

Consider a CSP with variables v_{1} and v_{2}, domains $\operatorname{dom}\left(v_{1}\right)=\operatorname{dom}\left(v_{2}\right)=\{1,2,3\}$ and the constraint expressed by $v_{1}<v_{2}$.

Arc consistency of v_{1} with respect to v_{2} and of v_{2} with respect to v_{1} are violated.

Enforcing Arc Consistency

■ enforcing arc consistency, i.e., removing values from dom(v) that violate the arc consistency of v with respect to v^{\prime}, is a correct inference method

- more powerful than node consistency:
\leadsto node consistency is a special case: enforcing arc consistency of all variables with respect to the just assigned variable corresponds to node consistency.

Processing Variable Pairs: Revise

function $\operatorname{Revise}\left(\langle V, d o m, C\rangle, v, v^{\prime}\right)$:
revised $=$ false
let $c=\left\langle\left(v, v^{\prime}\right)\right.$, rel $\rangle \in C$
for each $d \in \operatorname{dom}(v)$:
if there is no $d^{\prime} \in \operatorname{dom}\left(v^{\prime}\right)$ s.t. $\left(d, d^{\prime}\right) \in \operatorname{rel}(c)$:
remove d from $\operatorname{dom}(v)$
revised = true
return revised
effect: v arc consistent with respect to v^{\prime}.
All violating values in dom (v) are removed.
time complexity: $O\left(k^{2}\right)$, where k is maximal domain size

Example: revise

Enforcing Arc Consistency: AC-3

idea:

- transform C into equivalent arc consistent CSP

■ store potentially inconsistent variable pairs in a queue

function $\mathrm{AC}-3(C)$:

$\langle\mathrm{V}$, dom, C\rangle := C
queue := \varnothing
for each nontrivial constraint c with scope $(c)=(u, v)$:
insert $\langle u, v\rangle$ into queue
insert $\langle v, u\rangle$ into queue
while queue $\neq \varnothing$:
remove an arbitrary element $\langle u, v\rangle$ from queue
if $\operatorname{Revise}(C, u, v)$:
for each $w \in V \backslash\{u, v\}$ where c is nontrivial: insert $\langle w, u\rangle$ into queue

Path Consistency

Path Consistency

idea of arc consistency:

- for every assignment to a variable u there must be a suitable assignment to every other variable v
■ If not: remove values of u for which no suitable "partner" assignment to v exists
\leadsto tighter unary constraint on u
this idea can be extended to three variables (path consistency):
- for every joint assignment to variables u, v there must be a suitable assignment to every third variable w
- if not: remove pairs of values of u and v for which no suitable "partner" assignment to w exists.
\leadsto tighter binary constraint on u and v

Path Consistency: Example

arc consistent, but not path consistent

$$
\begin{aligned}
& c_{12}=\left\langle\left(v_{1}, v_{2}\right),\{(r, b),(b, r),(g, r),(g, b)\}\right. \\
& c_{13}=\left\langle\left(v_{1}, v_{3}\right),\{(r, b),(b, r),(g, r),(g, b)\}\right. \\
& c_{23}=\left\langle\left(v_{2}, v_{3}\right),\{(r, b),(b, r)\}\right.
\end{aligned}
$$

Path Consistency: Example

arc consistent, but not path consistent

$$
\begin{aligned}
& c_{12}=\left\langle\left(v_{1}, v_{2}\right),\{(r, b),(b, r),(g, r),(g, b)\}\right. \\
& c_{13}=\left\langle\left(v_{1}, v_{3}\right),\{(r, b),(b, r),(g, r),(g, b)\}\right. \\
& c_{23}=\left\langle\left(v_{2}, v_{3}\right),\{(r, b),(b, r)\}\right.
\end{aligned}
$$

Path Consistency: Example

not arc consistent, but path consistent

Path Consistency: Example

arc consistent and path consistent

$$
\begin{aligned}
& c_{12}=\left\langle\left(v_{1}, v_{2}\right),\{(g, r),(g, b)\}\right. \\
& c_{13}=\left\langle\left(v_{1}, v_{3}\right),\{(g, r),(g, b)\}\right. \\
& c_{23}=\left\langle\left(v_{2}, v_{3}\right),\{(r, b),(b, r)\}\right.
\end{aligned}
$$

