Artificial Intelligence

CSP 1: Constraint Satisfaction Problems

Jendrik Seipp

Linköping University

based on slides by Thomas Keller and Malte Helmert (University of Basel)

CSPs	Examples	Solutions	Complexity	Exercise
000000	000000	00000	000	000

Questions?

post feedback and ask questions anonymously at

https://padlet.com/jendrikseipp/tddc17

CSPS Examples Solutions Complexity Ex 000000 000000 00000 000 00 00	Exercise 000
---	-----------------

Intended Learning Outcomes

- explain what "constraint satisfaction problems" (CSPs) are
- model and solve simple CSPs

Ps		
00000		

Constraint Satisfaction Problems

Constraint Satisfaction Problems

(heuristic) search algorithms considered so far:

- wide variety of problems
- problem-specific heuristics
- no general solver

13	2	3	12
9	11	1	10
	6	4	14
15	8	7	5

Constraint Satisfaction Problems

(heuristic) search algorithms considered so far:

- wide variety of problems
- problem-specific heuristics
- no general solver

13	2	3	12
9	11	1	10
	6	4	14
15	8	7	5

constraint satisfaction problems (CSP) considered today:

- problem scope more restricted
- problem-inpdendent methods
- general solver

1	2	3	4		5	6	7	8	9		10	11	12	13
	-		-			-	-	-	-			-	-	-
14					15						10			
17			1	18			1	1	1	19		1	1	
20		t		21		+		22	+		t	t	t	
23	+	t	24		+		25		+	+	+			
		26	+	+		27		+		28	+	29	30	31
32	33		+		34		+	t	35		+	t	t	
36	1	t		37		t	t	t	t	1		38	t	1
39	1	t	40		1	t	+	t	+		41		t	+
42	+	t	+	-		43	+	t		44		t		
			45	-	46		+		47		+	+	48	49
50	51	52		t		t		53				54	t	1
55	1	t	+	-	1	t	56		+	1	57		t	1
58	+	t	+		59	+	+	t	+		60	t	+	+
61	1	+	-		62	+	+	+	+	ľ	63	+	+	+

- a constraint is a condition that every solution to a problem must satisfy
- a CSP is defined by
 - a finite set of variables
 - a domain for each variable
 - a set of constraints
- a solution for a CSP is an assignment of each variable to a value in its domain that violates no constraint

- a constraint is a condition that every solution to a problem must satisfy
- a CSP is defined by
 - a finite set of variables
 - a domain for each variable
 - a set of constraints
- a solution for a CSP is an assignment of each variable to a value in its domain that violates no constraint

variables and domains in cross-word puzzle? constraints?

- a constraint is a condition that every solution to a problem must satisfy
- a CSP is defined by
 - a finite set of variables
 - a domain for each variable
 - a set of constraints
- a solution for a CSP is an assignment of each variable to a value in its domain that violates no constraint
- variables and domains in cross-word puzzle? constraints?
- \rightarrow one variable for each cell with domain $\{A, \ldots, Z\}$

- a constraint is a condition that every solution to a problem must satisfy
- a CSP is defined by
 - a finite set of variables
 - a domain for each variable
 - a set of constraints
- a solution for a CSP is an assignment of each variable to a value in its domain that violates no constraint
- variables and domains in cross-word puzzle? constraints?
- \rightarrow one variable for each cell with domain $\{A, \ldots, Z\}$
- $\rightarrow\,$ constraints: length of "boxes", horizontal and vertical words must not contradict each other

CSPs	Examples	Solutions	Complexity	Exercise
000●00	000000	00000	000	000

Definition

Definition (Constraint Satisfaction Problem)

A constraint satistfaction problem (or constraint network)

- is a 3-tuple $C = \langle V, dom, C \rangle$ such that:
 - V is a non-empty and finite set of variables,
 - *dom* is a function that assigns a non-empty domain to each variable $v \in V$, and
 - *C* is a set of constraints $c = \langle \text{scope}, \text{rel} \rangle$, where $\text{scope}(c) = \langle v_1, \dots, v_n \rangle$ is a *n*-tuple of (pairwise distinct) variables and $\text{rel}(c) \subseteq dom(v_1) \times \dots \times dom(v_n)$

restrictions considered here:

- finite domains
- unary or binary constraints

CSPs	Examples	Solutions	Complexity	Exercise
0000●0	000000	00000	000	000
Line my Const	ve inte			

Unary Constraints

- **a** unary constraint c has scope(c) = (v) for $v \in V$
- c restricts dom(v) to the values allowed by c
- it is often useful to have additional restrictions on single variables as constraints
- formally, unary constraints are not necessary, but they often allow to describe CSPs more clearly

CSPs	Examples	Solutions	Complexity	Exercise
0000●0	000000	00000	000	000
	atualista			

Unary Constraints

- **a** unary constraint c has scope(c) = (v) for $v \in V$
- c restricts dom(v) to the values allowed by c
- it is often useful to have additional restrictions on single variables as constraints
- formally, unary constraints are not necessary, but they often allow to describe CSPs more clearly

c = ⟨(v₁₃), {(4)}⟩
 (for a specific instance)

Binary Constraints

- a binary constraint has scope(c) = (u, v) for $u, v \in V$, $u \neq v$
- c expresses which joint assignments to *u* and *v* are allowed
- c is trivial if rel(c) = dom(u) × dom(v) → c is usually not given explicitly (c exists formally)
- constraint c' with scope(c') = (v, u) refers to same variables ~> only c or c' is usually given explicitly (both exist formally)

Binary Constraints

- **a** binary constraint has scope(c) = (u, v) for $u, v \in V$, $u \neq v$
- c expresses which joint assignments to *u* and *v* are allowed
- c is trivial if rel(c) = dom(u) × dom(v) → c is usually not given explicitly (c exists formally)
- constraint c' with scope(c') = (v, u) refers to same variables ~> only c or c' is usually given explicitly (both exist formally)

$$c = \langle (v_{11}, v_{21}), \{ (x, y) \mid x \neq y \} \rangle$$

$$c' = \langle (v_{21}, v_{11}), \{ (y, x) \mid y \neq x \} \rangle$$

CSPs	Examples	Solutions	Complexity	Exercise
000000	●00000	00000	000	000

Examples

Open Distribution Complexity Exemplexity Exemplexity <th< th=""><th>Solutions Complexity Exercise</th><th>Examples So O●OOOO OO</th><th>CSPs 000000</th></th<>	Solutions Complexity Exercise	Examples So O●OOOO OO	CSPs 000000
--	-------------------------------	--------------------------	----------------

CSP Examples

$$\begin{cases} x_1 + x_2 - 3x_3 = -10\\ 6x_2 - 2x_3 + x_4 = 7\\ 2x_3 - 3x_4 = 13 \end{cases}$$

Example: Graph Coloring

Given a graph and $k \in \mathbb{N}$, how can we

- color the vertices using k colors
- such that two neighboring vertices never have the same color?

How to formalize this CSP?

Example: Graph Coloring

Given a graph and $k \in \mathbb{N}$, how can we

- color the vertices using k colors
- such that two neighboring vertices never have the same color?

variables: V = {WA, NT, Q, NSW, VI, SA, T}
domains: dom(v) = {r, g, b} for all v ∈ V
constraints: {c_{uv} | for all connected u, v ∈ V}, where $c_{uv} = \langle (u, v), \{(k, \ell) \in \{r, g, b\} \times \{r, g, b\} | k \neq \ell \}$

 $e.g., \ c_{\text{WA,NT}} = \langle (\text{WA,NT}), \{ (r,g), (r,b), (g,r), (g,b), (b,r), (b,g) \} \rangle$

Four Color Problem

famous problem in mathematics: Four Color Problem

- Is it always possible to color a planar graph with 4 colors?
- conjectured by Francis Guthrie (1852)
- 1890 first proof that 5 colors suffice
- several wrong proofs surviving for over 10 years

Four Color Problem

famous problem in mathematics: Four Color Problem

- Is it always possible to color a planar graph with 4 colors?
- conjectured by Francis Guthrie (1852)
- 1890 first proof that 5 colors suffice
- several wrong proofs surviving for over 10 years
- solved by Appel and Haken in 1976: 4 colors suffice
- Appel and Haken reduced the problem to 1936 cases, which were then checked by computers
- first famous mathematical problem solved (partially) by computers
 - \rightsquigarrow led to controversy: is this a mathematical proof?

numberphile video:

https://www.youtube.com/watch?v=NgbK43jB4rQ

Example: 8 Queens Problem

How can we

- place 8 queens on a chess board
- such that no two queens threaten each other?

- originally proposed in 1848
- variants: board size; other pieces; higher dimension
- there are 92 solutions (12 non-symmetric ones)

Example: 8 Queens Problem

How can we

- place 8 queens on a chess board
- such that no two queens threaten each other?

- variables: $V = \{v_1, ..., v_8\}$
- domains: $dom(v) = \{1, \dots, 8\}$ for all $v \in V$

• constraints: $\{c_{ij} \mid \text{for all } 1 \le i < j \le 8\}$, where $c_{i,j} = \langle (v_i, v_j), \{(k, \ell) \in \{1, \dots, 8\} \times \{1, \dots, 8\} \mid k \ne \ell \land |k - \ell| \ne |i - j|\} \rangle$

e.g.,
$$c_{1,3} = \langle (v_1, v_3), \{ (1, 2), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (2, 1), (2, 3), (2, 5), (2, 6), (2, 7), (2, 8), (2, 7), (2,$$

 $(8, 1), (8, 2), (8, 3), (8, 4), (8, 5), (8, 7)\}\rangle$

CSPs	Examples	Solutions	Complexity	Exercise
000000	00000●	00000	000	000
Evamplo	Sudoku			

Example: Sudoku

How can we

- completely fill an already partially filled 9 × 9 matrix with numbers from {1,2,...,9}
- such that each row, each column, and each of the nine 3 × 3 blocks contains every number exactly once?

2	5			3		9		1
	1				4			
4		7				2		8
		5	2					
				9	8	1		
	4				3			
			3	6			7	2
	7							3
9		3				6		4

-								
2	5	8	7	3	6	9	4	1
6	1	9	8	2	4	3	5	7
4	3	7	9	1	5	2	6	8
3	9	5	2	7	1	4	8	6
7	6	2	4	9	8	1	3	5
8	4	1	6	5	3	7	2	9
1	8	4	3	6	9	5	7	2
5	7	6	1	4	2	8	9	3
9	2	3	5	8	7	6	1	4

CSPs	Examples	Solutions	Complexity	Exercise
000000	00000	00000	000	000

Example: Sudoku

How can we

- completely fill an already partially filled 9 × 9 matrix with numbers from {1,2,...,9}
- such that each row, each column, and each of the nine
 - 3×3 blocks contains every number exactly once?

2	5			3		9		1
	1				4			
4		7				2		8
		5	2					
				9	8	1		
	4				3			
			3	6			7	2
	7							3
9		3				6		4

• variables: $V = \{v_{ij} \mid 1 \le 1, j \le 9\}$

- domains: $dom(v) = \{1, \ldots, 9\}$ for all $v \in V$
- unary constraints: $c_{v_{ij}} = \{k\}$ for all cells $\langle i, j \rangle$ with predefined value k
- binary constraints: $c_{v_{ij}v_{i'j'}} = \langle (v_{ij}, v_{i'j'}), \{(a, b) \in \{1, \dots, 9\}^2 \mid a \neq b \}$ for all $v_{ij}, v_{i'j'} \in V$ with
 - i = i' (same row), or
 - ij = j' (same column), or
 - $\langle \lceil \frac{i}{3} \rceil, \lceil \frac{j}{3} \rceil \rangle = \langle \lceil \frac{i'}{3} \rceil, \lceil \frac{j'}{3} \rceil \rangle$ (same block)

CSPs	Examples	Solutions	Complexity	Exercise
000000	000000	●0000	000	000

Solutions

CSPs	Examples	Solutions	Complexity	Exercise
000000	000000	○●○○○	000	000

Assignments

Definition (assignment, partial assignment)

Let $C = \langle V, dom, C \rangle$ be a CSP. A partial assignment of C (or of V) is a function $\alpha : V' \to \bigcup_{v \in V} dom(v)$ with $V' \subseteq V$ and $\alpha(v) \in dom(v)$ for all $v \in V'$.

If V' = V, then α is also called total assignment (or assignment).

- ightarrow partial assignments assign values to some or to all variables
- \rightsquigarrow (total) assignments are defined on all variables

CSPs	Examples	Solutions	Complexity	Exercise
000000	000000	00000	000	000

Consistency

Definition (inconsistent, consistent, violated)

A partial assignment α of a CSP *C* is called inconsistent if there are variables *u*, *v* such that α is defined for both *u* and *v*, and there is $c \in C$ s.t. scope(c) = (u, v) and $(\alpha(u), \alpha(v)) \notin \text{rel}(c)$.

In this case, we say α violates the constraint c.

A partial assignment is called consistent if it is not inconsistent.

CSPs	Examples	Solutions	Complexity	Exercise
000000	000000	000●0	000	000

Solution

Definition (solution, solvable)

Let C be a CSP.

A consistent and total assignment of C is called a solution of C.

If a solution of *C* exists, *C* is called solvable.

If no solution exists, C is called inconsistent.

Consistency vs. Solvability

Note: Consistent partial assignments α cannot necessarily be extended to a solution.

It only means that so far (i.e., on the variables where α is defined) no constraint is violated.

$$\begin{aligned} \mathbf{x} &= \{\mathbf{v}_1 \mapsto \mathbf{1}, \mathbf{v}_2 \mapsto \mathbf{3}, \mathbf{v}_3 \mapsto \mathbf{5}, \\ \mathbf{v}_4 \mapsto \mathbf{7}, \mathbf{v}_5 \mapsto \mathbf{2}, \mathbf{v}_6 \mapsto \mathbf{4}, \mathbf{v}_7 \mapsto \mathbf{6}\} \end{aligned}$$

CSPs	Examples	Solutions	Complexity	Exercise
000000	000000	00000	●○○	000

Complexity

Complexity of Constraint Satisfaction Problems

Proposition (CSPs are NP-complete)

Deciding whether a given CSP is solvable is NP-complete.

Proof

Membership in NP:

Guess and check: guess a solution and check it for validity. This can be done in polynomial time in the size of the input.

NP-hardness:

The graph coloring problem is a special case of CSPs and is already known to be NP-complete.

Compact Encodings and General CSP Solvers

CSPs allow for compact encodings of large sets of assignments:

- consider a CSP with *n* variables with domains of size *k*
- $\rightarrow k^n$ assignments

Compact Encodings and General CSP Solvers

CSPs allow for compact encodings of large sets of assignments:

- consider a CSP with *n* variables with domains of size *k*
- \rightsquigarrow k^n assignments
 - for the description as a CSP, at most $\binom{n}{2}$, i.e., $O(n^2)$ constraints have to be provided
 - every (binary) constraint consists of at most $O(k^2)$ pairs
- \rightarrow encoding size $O(n^2k^2)$
- $\rightsquigarrow\,$ the number of assignments is exponentially larger than the description of the CSP

Compact Encodings and General CSP Solvers

CSPs allow for compact encodings of large sets of assignments:

- consider a CSP with *n* variables with domains of size *k*
- \rightsquigarrow k^n assignments
 - for the description as a CSP, at most $\binom{n}{2}$, i.e., $O(n^2)$ constraints have to be provided
 - every (binary) constraint consists of at most $O(k^2)$ pairs
- \rightarrow encoding size $O(n^2k^2)$
- $\rightsquigarrow\,$ the number of assignments is exponentially larger than the description of the CSP
 - as a consequence, such descriptions can be used as inputs of general constraint solvers

CSPs	Examples	Solutions	Complexity	Exercise
000000	000000	00000	000	•00
				000

Exercise
CSPs Exar 000000 000	mples S	Solutions C	Complexity 000	Exercise
-------------------------	---------	-------------	-------------------	----------

CSP Exercise

Consider a variant of the graph coloring problem where each vertex has a set of allowed colors.

- Formalize the example as a binary constraint network.
- Is the constraint network solvable? If yes, provide a solution of the constraint network. If not, justify your answer.
- Provide a <u>minimal</u> consistent partial assignment that <u>cannot</u> be extended to a solution.
- Provide an inconsistent partial assignment.

(binary) constraints:

$$\begin{aligned} &R_{v_1,v_2} = \{ \langle b, g \rangle, \langle b, r \rangle, \langle g, r \rangle \} \\ &R_{v_1,v_3} = \{ \langle b, r \rangle, \langle g, b \rangle, \langle g, r \rangle \} \\ &R_{v_1,v_4} = \{ \langle b, g \rangle, \langle b, r \rangle, \langle g, b \rangle, \langle g, r \rangle \} \\ &R_{v_2,v_4} = \{ \langle g, b \rangle, \langle g, r \rangle, \langle r, b \rangle, \langle r, g \rangle \} \\ &R_{v_3,v_4} = \{ \langle b, g \rangle, \langle b, r \rangle, \langle r, b \rangle, \langle r, g \rangle \} \end{aligned}$$

Solvable. Solution: $\alpha_1 = \{v_1 \mapsto b, v_2 \mapsto r, v_3 \mapsto r, v_4 \mapsto g\}$

(There is second solution: $\alpha_2 = \{v_1 \mapsto g, v_2 \mapsto r, v_3 \mapsto r, v_4 \mapsto b\}$) **a** $\alpha_1 = \{v_2 \mapsto g\}$ or $\alpha_2 = \{v_4 \mapsto r\}$ or $\alpha_3 = \{v_3 \mapsto b\}$ **b** Inconsistent partial assignment: $\alpha = \{v_1 \mapsto b, v_3 \mapsto b\}$

Artificial Intelligence CSP 2: Backtracking and Inference

Jendrik Seipp

Linköping University

based on slides by Thomas Keller and Malte Helmert (University of Basel)

CSP Algorithms

we now consider algorithms for solving CSPs

basic concepts:

- search: check partial assignments systematically
- backtracking: discard inconsistent partial assignments
- inference: derive equivalent, but tighter constraints to reduce the size of the search space

aive Backtracking	
00000 -	

Node Consistenc

Arc Consistency

Path Consistency

Backtracking Without Inference (= Naive Backtracking)

Inference 00000 Node Consistenc

Arc Consistency

Path Consistency

Naive Backtracking: Example

Consider the CSP for the following graph coloring instance:

Node Consistency

Arc Consistency

Path Consistency

Naive Backtracking: Example

- fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values

Node Consistency

Arc Consistency

Path Consistency

Naive Backtracking: Example

- fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values

Node Consistency

Arc Consistency

Path Consistency

Naive Backtracking: Example

- fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values

Inference 00000 Node Consistenc

Arc Consistency

Path Consistency

Naive Backtracking: Example

- fixed variable order v₁, v₇, v₄, v₅, v₆, v₃, v₂
- alphabetical order of the values

Inference 00000 Node Consistency

Arc Consistency

Path Consistency

Naive Backtracking: Example

- fixed variable order v₁, v₇, v₄, v₅, v₆, v₃, v₂
- alphabetical order of the values

Inference 00000 Node Consistency

Arc Consistency

Path Consistency

Naive Backtracking: Example

- fixed variable order v₁, v₇, v₄, v₅, v₆, v₃, v₂
- alphabetical order of the values

Inference 00000 Node Consistenc

Arc Consistency

Path Consistency

Naive Backtracking: Example

- fixed variable order v₁, v₇, v₄, v₅, v₆, v₃, v₂
- alphabetical order of the values

Inference 00000 Node Consistenc

Arc Consistency

Path Consistency

Naive Backtracking: Example

- fixed variable order v₁, v₇, v₄, v₅, v₆, v₃, v₂
- alphabetical order of the values

Inference 00000 Node Consistenc

Arc Consistency

Path Consistency

Naive Backtracking: Example

- fixed variable order v₁, v₇, v₄, v₅, v₆, v₃, v₂
- alphabetical order of the values

Inference 00000 Node Consistenc

Arc Consistency

Path Consistency

Naive Backtracking: Example

- fixed variable order v₁, v₇, v₄, v₅, v₆, v₃, v₂
- alphabetical order of the values

Inference 00000 Node Consistenc

Arc Consistency

Path Consistency

Naive Backtracking: Example

- fixed variable order v₁, v₇, v₄, v₅, v₆, v₃, v₂
- alphabetical order of the values

Inference 00000 Node Consistenc

Arc Consistency

Path Consistency

Naive Backtracking: Example

- fixed variable order v₁, v₇, v₄, v₅, v₆, v₃, v₂
- alphabetical order of the values

Inference 00000 Node Consistenc

Arc Consistency

Path Consistency

Naive Backtracking: Example

- fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values

Inference 00000 Node Consistenc

Arc Consistency

Path Consistency

Naive Backtracking: Example

- fixed variable order v₁, v₇, v₄, v₅, v₆, v₃, v₂
- alphabetical order of the values

Inference 00000 Node Consistenc

Arc Consistency

Path Consistency

Naive Backtracking: Example

- fixed variable order $v_1, v_7, v_4, v_5, v_6, v_3, v_2$
- alphabetical order of the values

Inference 00000 Node Consistenc

Arc Consistency

Path Consistency

Naive Backtracking: Example

- fixed variable order v₁, v₇, v₄, v₅, v₆, v₃, v₂
- alphabetical order of the values

Inference 00000 Node Consistenc

Arc Consistency

Path Consistency

Naive Backtracking: Example

- fixed variable order v₁, v₇, v₄, v₅, v₆, v₃, v₂
- alphabetical order of the values

Is This a New Algorithm?

we have already seen this algorithm:

Backtracking corresponds to depth-first search

with the following state space:

- states: partial assignments
- initial state: empty assignment Ø
- goal states: consistent total assignments
- **actions:** $assign_{v,d}$ assigns value $d \in dom(v)$ to variable v
- action costs: all 0 (all solutions are of equal quality)

transitions:

- for each non-total consistent assignment α, choose variable v = SELECT-UNASSIGNED-VARIABLE assign_{v,d}
- transition $\alpha \xrightarrow{a \mapsto a \mapsto v, a} \alpha \cup \{v \mapsto d\}$ for each $d \in dom(v)$

Why Depth-First Search?

depth-first search is particularly well-suited for CSPs:

- path length bounded (by the number of variables)
- solutions located at the same depth (lowest search layer)
- state space is directed tree, initial state is the root → no duplicates

hence none of the problematic cases for depth-first search occurs

Naive Backtracking: Discussion

00000

- naive backtracking often has to exhaustively explore similar search paths (i.e., partial assignments that are identical except for a few variables)
- "critical" variables are not recognized and hence considered for assignment (too) late
- decisions that necessarily lead to constraint violations are only recognized when all variables involved in the constraint have been assigned.
- \rightarrow more intelligence by focusing on critical decisions and by inference of consequences of previous decisions

Naive Backtracking	Variable and Value Orders	Inference	Node Consistency
000000	●0000	00000	
Naive Backtracking	Variable and Value Orders ●0000	Inference 00000	Node Consistency

Variable and Value Orders

Variable Orders

- SELECT-UNASSIGNED-VARIABLE method in backtracking search allows to influence order in which variables are considered for assignment
- selected order can strongly influence the search space size and hence the search performance
- general aim: make critical decisions as early as possible

Variable Orders

two common variable ordering criteria:

minimum remaining values:

prefer variables that have small domains

- intuition: few subtrees → smaller tree
- extreme case: only one value \sim forced assignment
- most constraining variable:

prefer variables contained in many nontrivial constraints

■ intuition: constraints tested early ~> inconsistencies recognized early ~> smaller tree

combination: use minimum remaining values criterion, then most constraining variable criterion to break ties

Naive Backtracking 000000	Variable and Value Orders 000●0	Inference 00000	Node Consistency	Arc Consistency	Path Consistency

Value Orders

- ORDER-DOMAIN-VALUES method in backtracking search allows to influence order in which values of the selected variable v are considered
- this is less important because it does not matter in subtrees without a solution
- in subtrees with a solution, ideally a value that leads to a solution should be chosen
- general aim: make most promising assignments first

Naive Backtracking	Variable and Value Orders 0000●	Inference 00000	Node Consistency	Arc Consistency	Path Consistency
Value Ord	ers				

Definition (conflict)

Let $C = \langle V, dom, C \rangle$ be a CSP. For variables $v \neq v'$ and values $d \in dom(v)$, $d' \in dom(v')$, the assignment $v \mapsto d$ is in conflict with $v' \mapsto d'$ if there is $c \in C$ with scope(c) = (v, v') s.t. $(d, d') \notin rel(c)$.

value ordering criterion for partial assignment α and selected variable *v*:

minimum conflicts: prefer values $d \in dom(v)$ such that $v \mapsto d$ causes as few conflicts as possible with variables that are unassigned in α

Naive Backtracking	Variable and Value Orders	Inference 00000	Node Consistency	Arc Consistency 0000000	Path Consistency 000

Naive Backtracking	Variable and Value Orders	Inference ○○○○○	Node Consistency	Arc Consistency	Path Consistency
Inference					

Derive additional constraints (here: unary or binary) that are implied by the given constraints, i.e., that are satisfied in all solutions.

example: CSP with variables v_1 , v_2 , v_3 with domain $\{1, 2, 3\}$ and constraints $v_1 < v_2$ and $v_2 < v_3$.

we can infer:

- v_2 cannot be equal to 3 (new unary constraint on v_2)
- <((v1, v2), {(1, 2), (1, 3), (2, 3)} can be tightened to ((v1, v2), {(1, 2)} (tighter binary constraint)

■ v₁ < v₃

("new" binary constraint = trivial constraint tightened)

Naive Backtracking Variable and Value Orders **Inference** Node Consistency Arc Consistency Path Consi DOOOOO DOOOOO DOOOOO OOO OOO OOO

Trade-Off Search vs. Inference

Inference formally

Replace a given CSP C with an equivalent, but tighter CSP.

trade-off:

- the more complex the inference, and
- the more often inference is applied,
- the smaller the resulting state space, but
- the higher the complexity per search node.

When to Apply Inference?

different possibilities to apply inference:

- once as preprocessing before search
- combined with search: before recursive calls during backtracking procedure
 - already assigned variable v → d corresponds to dom(v) = {d} → more inferences possible
 - during backtracking, derived constraints have to be retracted because they were based on the given assignment
 - ightarrow powerful, but possibly expensive

Backtracking with Inference: Discussion

- INFERENCE method in backtracking search allows to apply different inference methods
- inference methods can recognize unsolvability (given α)
- efficient implementations of inference are often incremental: the last assigned variable/value pair $v \mapsto d$ is taken into account to speed up the inference computation
| Naive Backtracking | Variable and Value Orders | Inference
00000 | Node Consistency
●○○ | Arc Co
0000 |
|--------------------|---------------------------|--------------------|-------------------------|----------------|
| | | | | |

rc Consistency

Path Consistency

Node Consistency

Node Consistency

We start with a simple inference method:

Node Consistency

Remove all values from the domain of all variable *v* that are in conflict with a unary constraint on *v*.

Node Consistency: Discussion

properties of node consistency:

- correct inference method (retains equivalence)
- affects domains (= unary constraints), but not binary constraints
- cheap, but often still useful inference method
- ightarrow minimal inference method that should (almost) always be used

Naive Backtracking	

Arc Consistency

Node Consistenc

Arc Consistency

Path Consistency

Arc Consistency: Definition

Definition (Arc Consistent)

Let $C = \langle V, dom, C \rangle$ be a CSP.

 A variable v ∈ V is arc consistent with respect to another variable v' ∈ V, if for every value d ∈ dom(v) there exists a value d' ∈ dom(v') with ⟨d, d'⟩ ∈ c with scope(c) = (v, v')

```
The CSP C is arc consistent,
```

if every variable $v \in V$ is arc consistent

with respect to every other variable $v' \in V$.

remarks:

- definition for variable pair is not symmetrical
- v always arc consistent with respect to v' if the constraint between v and v' is trivial

Naive Backtracking

Variable and Value Orders 00000 Inference

Node Consistenc

Arc Consistency

Path Consistency

Arc Consistency: Example

Consider a CSP with variables v_1 and v_2 , domains $dom(v_1) = dom(v_2) = \{1, 2, 3\}$ and the constraint expressed by $v_1 < v_2$.

Naive Backtracking

Variable and Value Orders

Inference

Node Consistenc

Arc Consistency

Path Consistency

Arc Consistency: Example

Consider a CSP with variables v_1 and v_2 , domains $dom(v_1) = dom(v_2) = \{1, 2, 3\}$ and the constraint expressed by $v_1 < v_2$.

Arc consistency of v_1 with respect to v_2 and of v_2 with respect to v_1 are violated.

Enforcing Arc Consistency

- enforcing arc consistency, i.e., removing values from dom(v) that violate the arc consistency of v with respect to v', is a correct inference method
- more powerful than node consistency:
 - node consistency is a special case: enforcing arc consistency of all variables with respect to the just assigned variable corresponds to node consistency.

Processing Variable Pairs: REVISE

```
function REVISE(\langle V, dom, C \rangle, v, v'):

revised = false

let c = \langle (v, v'), rel \rangle \in C

for each d \in dom(v):

if there is no d' \in dom(v') s.t. (d, d') \in rel(c):

remove d from dom(v)

revised = true

return revised
```

effect: v arc consistent with respect to v'.

All violating values in dom(v) are removed.

time complexity: $O(k^2)$, where k is maximal domain size

Node Consistend

Arc Consistency

Path Consistency

	king		

Node Consistenc

Arc Consistency

Path Consistency

	king	

Node Consistend

Arc Consistency

Path Consistency

Node Consistend

Arc Consistency

Path Consistency

Node Consistent

Arc Consistency

Path Consistency

Enforcing Arc Consistency: AC-3

idea:

- transform C into equivalent arc consistent CSP
- store potentially inconsistent variable pairs in a queue

function AC-3(C):

 $\langle V, dom, C \rangle := C$

queue := \emptyset

```
for each nontrivial constraint c with scope(c) = (u, v):
```

```
insert \langle u, v \rangle into queue insert \langle v, u \rangle into queue
```

```
while queue \neq \emptyset:
```

```
remove an arbitrary element \langle u, v \rangle from queue
```

if Revise(C, u, v):

for each $w \in V \setminus \{u, v\}$ where c is nontrivial:

```
insert \langle w, u \rangle into queue
```

Naive Backtracking	

Node Consistency

Arc Consistency

Path Consistency ●○○

Path Consistency

Path Consistency

idea of arc consistency:

- for every assignment to a variable u there must be a suitable assignment to every other variable v
- If not: remove values of u for which no suitable "partner" assignment to v exists
- \rightarrow tighter unary constraint on *u*

this idea can be extended to three variables (path consistency):

- for every joint assignment to variables u, v there must be a suitable assignment to every third variable w
- if not: remove pairs of values of u and v for which no suitable "partner" assignment to w exists.
- \rightarrow tighter binary constraint on *u* and *v*

Node Consistenc

Arc Consistency

Path Consistency

Path Consistency: Example

arc consistent, but not path consistent

 $c_{12} = \langle (v_1, v_2), \{ (r, b), (b, r), (g, r), (g, b) \}$ $c_{13} = \langle (v_1, v_3), \{ (r, b), (b, r), (g, r), (g, b) \}$ $c_{23} = \langle (v_2, v_3), \{ (r, b), (b, r) \}$

Node Consistenc

Arc Consistency

Path Consistency

Path Consistency: Example

arc consistent, but not path consistent

 $c_{12} = \langle (v_1, v_2), \{ (r, b), (b, r), (g, r), (g, b) \}$ $c_{13} = \langle (v_1, v_3), \{ (r, b), (b, r), (g, r), (g, b) \}$ $c_{23} = \langle (v_2, v_3), \{ (r, b), (b, r) \}$

Node Consistenc

rc Consistency

Path Consistency

Path Consistency: Example

not arc consistent, but path consistent

$$c_{12} = \langle (v_1, v_2), \{(g, r), (g, b) \}$$

$$c_{13} = \langle (v_1, v_3), \{(g, r), (g, b) \}$$

$$c_{23} = \langle (v_2, v_3), \{(r, b), (b, r) \}$$

Node Consistenc

Arc Consistency

Path Consistency

Path Consistency: Example

arc consistent and path consistent

$$\begin{split} c_{12} &= \langle (v_1, v_2), \{ (g, r), (g, b) \} \\ c_{13} &= \langle (v_1, v_3), \{ (g, r), (g, b) \} \\ c_{23} &= \langle (v_2, v_3), \{ (r, b), (b, r) \} \end{split}$$