
•

•

•



Separation property of graph search

Systematic Search
through the state space

Find a heuristic measure h(n) which estimates how close 
a node n in the frontier is to the nearest goal state and
then order the frontier queue accordingly relative to 
closeness. 

f(n) = .... + h(n)

The evaluation function f(n), previously discussed will include h(n):

h(n) is intended to provide domain 
specific hints about location of goals



Evaluation function: f(n)

Minimum of f(n) first

Different evaluation functions f(n), 
will generate different algorithms

f(n) = … + h(n)

Heuristic Search Algorithm:



Evaluation function: f(n)

Minimum of f(n) first

f(n) = h(n)

Greedy Best-First Search:

GREEDY-BEST-FIRST-SEARCH     

Don’t care about anything except 

how close a node is to a goal!



Let’s find a heuristic!
Straight line distance from city n to goal city n’

Assume the cost to get somewhere is 
a function of the distance traveled

Straight line distance to 
Bucharest from any city

hSLD()

f(n) = hSLD(n)

Heuristic:

Notice the SLD under estimates the actual cost!



Zerind[374] Timisoara[329] Sibiu[253]

Arad[366]

Riminicu

Vilcea[193]
Oradea[380]

Fagaras[176]

Bucharest[0]

1

2

3

goto(Sibiu)

goto(Bucharest)

goto(Fagaras)

Straight line distance to 
Bucharest from any city

hSLD()



No, the actual costs:
Path Chosen: Arad-Sibiu-Fagaras-Bucharest = 450

Optimal Path: Arad-Sibiu-Rimnicu Vilcea-Pitesti-Bucharest = 418

The search cost is minimal but 
not optimal! What’s missing?

Zerind[374] Timisoara[329] Sibiu[253]

Arad[366]

Riminicu

Vilcea[193]
Oradea[380]

Fagaras[176]

Bucharest[0]

1

2

3

goto(Sibiu)

goto(Bucharest)

goto(Fagaras)

140

99

211



• GBF (Graph search) is 
complete in finite spaces but 
not in infinite spaces

• GBF (Tree-like search) is not 
even complete in finite spaces. 

Consider going from Iasi to Fagaras?

Neamt is chosen 1st because h(Neamt) is closer than h(Vaslui), but Neamt is a dead-
end. Expanding Neamt still puts Iasi 1st on the frontier again since h(Iasi) is closer 
than h(Vaslui)...which puts Neamt 1st again!

• GBF (Graph Search): Time/Space Complexity: O(|V|)
• GBF (Tree-Like Search): Time/Space Complexity: O(bm)
• With good heuristics, complexity can be reduced substantially

* m -maximum length of any path in 
the search space (possibly infinite) 



Greedy Best-First Search finds a goal 
as fast as possible by using the h(n)

function to estimate n’s closeness to 
the goal.

Greedy Best-First Search chooses any 
goal node without concerning itself 
with the shallowness of the goal node 
or the cost of getting to n in the 1st 
place.

Rather than choosing a node based just on distance to the 
goal we could include a quality notion such as 
expected depth of the nearest goal

g(n) - the actual cost of getting to node n
h(n) - the estimated cost of getting from n to a goal state

f(n) = g(n) + h(n)

f(n) is the estimated cost of the cheapest solution through n



f(n) = g(n) + h(n)

Note: This algorithm only works as is, if
the heuristic function h(n) is consistent.
More on this soon. 

g(n)

A*-SEARCH  Evaluation function: f(n)

Minimum of f(n) first



Straight line distance to 
Bucharest from any city

h(n) = hSLD(n)

f(n) = g(n) + h(n)
g(n) - Actual distance from root node to n
h(n) - hSLD(n) straight line distance from n to Bucharest 

Heuristic (with Bucharest as goal):

g(n)

A* Tree-like Search

g(Arad)+h(Arad)



Straight line distance to 
Bucharest from any city

h(n) = hSLD(n)g(n)

A* Tree-like Search



Straight line distance to 
Bucharest from any city

h(n) = hSLD(n)g(n)

A* Tree-like Search



Straight line distance to 
Bucharest from any city

h(n) = hSLD(n)g(n)

A* Tree-like Search



Straight line distance to 
Bucharest from any city

h(n) = hSLD(n)g(n)

A* Tree-like Search



Place in frontier
Expand
Late Testing Goal Straight line distance to 

Bucharest from any city
h(n) = hSLD(n)g(n)

A* Tree-like Search



An admissible heuristic is one that never overestimates the cost to reach a goal (It is optimistic)

h(n) takes a node n and returns a non-negative real number that is an 
estimate of the cost of the least-cost path from node n to a goal node

h(n) is an admissible heuristic, if h(n) is always less than or equal to 
the actual cost of a least-cost path from node n to a goal.

Admissibility does not ensure that every intermediate node selected from 
the frontier is on an optimal path from the start node to the goal node. It 
may change its mind about which partial path is best while searching and 
the frontier may include multiple paths to the same state.

Admissibility with A*(tree-like) search does ensure that 
first solution found will be cost-optimal

This implies that the A* (graph) search algorithm

may not be cost-optimal for A* with 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛),

where ℎ(𝑛) is only admissible. Additional bookkeeping is 

required. A*(tree-like) search is cost-optimal, but is less efficient.



A consistent heuristic is a non-negative function ℎ(𝑛) on a node 𝑛
that satisfies the constraint: ℎ(𝑛) ≤ 𝑐𝑜𝑠𝑡(𝑛, 𝑛′) + ℎ(𝑛′)
for any two nodes 𝑛 and 𝑛′, where 𝑐𝑜𝑠𝑡(𝑛, 𝑛′) is the cost of the 
least-cost path from 𝑛 to 𝑛′.

The estimated cost of going from 𝑛 to a goal should not be

more than the estimated cost of first going to 𝑛′ and then to a goal

𝑛 𝑔

𝑛′

ℎ(𝑛)

𝑐𝑜𝑠𝑡(𝑛, 𝑛′) ℎ(𝑛′)

Triangle inequality



Consistency is guaranteed if the heuristic function satisfies

the monotone restriction: ℎ(𝑛) ≤ 𝑐(𝑛, 𝑎, 𝑛′) + ℎ(𝑛′), ∀𝑎, 𝑛, 𝑛′

Easier to check than consistency: Just check arcs in state space 

graph rather than all pairs of states.

Consistency/Monotonicity guarantees:
• f-paths selected from the frontier are monotonically non-decreasing 

(f-values do not get smaller)
• First time we reach a state on the frontier it will be on an optimal path, so

• We never need to re-add a state to the frontier
• We never need to change an entry in reached This implies that the A* (graph) search algorithm

can be used for A* with 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛), where ℎ(𝑛)
is consistent.

If ℎ(𝑛) is a consistent heuristic then it is 

also an admissible heuristic



n

G

Start

A* using (Tree-Like) SEARCH is cost 
optimal if h(n) is admissible

Proof:

See example:
n = Pitesti (417)

= Bucharest (450)

will not be expanded and A* is optimal!

Then𝑓(𝑛) ≤ 𝐶∗ ≤ 𝑓(𝐺2)

So, 𝐺2

𝐺2

𝐺2

Since       is suboptimal and h(    )=0 (     is a goal node),𝐺2 𝐺2 𝐺2

𝑓(𝐺2) = 𝑔(𝐺2) + ℎ(𝐺2) = 𝑔(𝐺2) > 𝐶∗

Assume the cost of the optimal solution is C*.
Suppose a suboptimal goal node      appears on the 
fringe.

𝐺2

Now consider the fringe node n that is on an optimal 
solution path. If h(n) does not over-estimate the cost of 
completing the solution path then 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) ≤ 𝐶∗



A* using GRAPH-SEARCH is cost- optimal

if ℎ(𝑛) is consistent (monotonic)
Step Cost

𝑛

successors(𝑛): …𝑛𝑘

𝐺𝑛
:Goal node closest to 𝑛

Step cost:

Estimated cost of getting to 𝐺𝑛 from 𝑛: 𝑓(𝑛), can not be more than going 

through a successor of 𝑛 to 𝐺𝑛: 𝑓(𝑛′) , otherwise it would violate the 

property that ℎ(𝑛) is a lower bound on the cost to reach 𝐺𝑛

𝑐(𝑛, 𝑎, 𝑛′)
ℎ(𝑛)

ℎ(𝑛′)

ℎ(𝑛) is consistent ℎ(𝑛) ≤ 𝑐(𝑛, 𝑎, 𝑛′) + ℎ(𝑛′), ∀𝑎, 𝑛, 𝑛′

𝑛′…

As one extends a path from 𝑛 to 𝑛′

this assures that 𝑓(𝑛) ≤ 𝑓(𝑛′):

𝑔(𝑛) + ℎ(𝑛) ≤ 𝑔(𝑛) + 𝑐(𝑛, 𝑎, 𝑛′) + ℎ(𝑛′)

Triangle inequality 
argument:
Length of a side of a 
triangle is always less 
than the sum of the 
other two.



• If h(n) is consistent, then the values f(n) along any path are non-decreasing
• Whenever A* selects a node n for expansion from the frontier, the optimal 

path to that node has been found

Steps to show in the proof:

If this is the case, the values along any path are non-decreasing
and A* fans out in concentric bands of increasing f-cost

Map of Romania showing contours at
f=380, f=400, and f=420 with Arad as 
start state. Nodes inside a given contour 

have f-costs ≤ to the contour value.



• Cost-Optimal -

• for a given admissible heuristic (tree-like search)

• for a given consistent heuristic (tree-like, graph-search)

• Consistent heuristics are admissible heuristics but not vice-versa.

• Complete - Eventually reach a contour equal to the path of the least-cost to the goal state.

• Optimally efficient - No other algorithm, that extends search paths from a root is 
guaranteed to expand fewer nodes than A* for a given heuristic function.

• The exponential growth for most practical heuristics will eventually overtake the 
computer (run out of memory)

• The number of states within the goal contour is still exponential in the length of the 
solution.

• There are variations of A* that bound memory....



h(n) is an admissible heuristic if it never over-
estimates the cost to reach the goal from n.

Admissible Heuristics are optimistic because they always 
think the cost of solving a problem is less than it actually is.

The 8 Puzzle

How would we choose an admissible 
heuristic for this problem?



ℎ1(𝑛): The number of pieces that are out of place.
(8) Any tile that is out of place must be moved at least once. Definite under estimate of moves! 

ℎ2(𝑛): The sum of the Manhattan distances for each tile that is out of place.
(3+1+2+2+2+3+3+2=18) . The Manhattan distance is an under-estimate because there are tiles in the way.

True solution is 26 
moves. (C*)



• A problem with fewer restrictions is called a relaxed problem
• The cost of an optimal solution to a relaxed problem is in fact an admissible 

heuristic to the original problem

If the problem definition can be written down in a formal
language, there are possibilities for automatically 
generating relaxed problems automatically!

A tile can move from square A to square B if
A is horizontally or vertically adjacent to B 
and B is blank

Sample rule:



A tile can move from square A to square B if
A is horizontally or vertically adjacent to B 
and B is blank

Sample rule:

1. A tile can move from square A to square B if A is adjacent to B
2. A tile can move from square A to square B if B is blank
3. A tile can move from square A to square B

(1) gives us Manhattan distance: ℎ2(𝑛)
(3) gives us misplaced tiles: ℎ1(𝑛)



Chapter 4



Bad Solution

Good Solution

• Local Search:
• the path to the goal is irrelevant!
• we do not care about reached states
• complete state formulation is a 

straightforward representation: 
• 8 queens, one in each column

• operate by searching from start state to 
neighbouring states, choose the best 
neighbour so far, repeat

8 Queens is a candidate for use of local search!

88 (about 16 million configurations)

Problem:
Place 8 queens on a chessboard such that
No queens attacks another



• Advantages:
• They use very little memory
• Often find solutions in large/infinite search spaces 

where systematic algorithms would be unreasonable
• Can be used to solve optimisation problems

• Disadvantages
• Since they are not systematic they may not find solutions because

they leave parts of the search space unexplored.
• Performance is dependent on the topology of the search space
• Search may get stuck in local optima

Global Optimum: The best possible solution to a problem. 

Local Optimum: A solution to a problem that is better than all other solutions that 
are slightly different, but worse than the global optimum

Greedy Local Search: A search algorithm that always takes the best immediate, 
or local, solution while finding an answer. Greedy algorithms find the overall, 
or globally optimal solution for some optimization problems, but may find 
less-than-optimal  solutions for some instances of other problems. (They may 
also get stuck!)



When using heuristic functions: steepest descent version



Aim: Find the global maximum

Hill Climbing: Modify the current state to try and improve it

One dimensional 
state space
landscape 



Gradient Descent Techniques often used



Problem:
Place 8 queens on a chessboard such that
No queen attacks any other.

Successor Function
Return all possible states generated by moving a single 
queen to another square in the same column. (8*7=56)

Heuristic Cost Function
The number of pairs of queens that are attacking 
each other either directly or indirectly (allow 
intervening pieces).
Global minimum - 0



Current state: h=17
The value of h is shown for each possible 
successor state. The 12’s are the best 
choices for the local move (Using steepest 
descent). Choose randomly on ties.

Any move will
increase h.

Global minimum h=0Local minimum: h=1



State Space:          88 ≈ 17 ∗ 106

Branching Factor:  8 ∗ 7 = 56

• Starting from a random 8 queen state:
• Steepest hill descent gets stuck 86% of the time.
• It is quick: average of 3 steps when it fails, 4 steps when it  

succeeds.

• 88 ≈17 million states!

How can we avoid local maxima, shoulders, flat maxima, etc.?



• Stochastic Hill Climbing

• Choose among uphill moves at random, weighting choice by probability 
with the steepness of the move

• First Choice Hill Climbing

• Implements stochastic hill climbing by randomly generating successors 
until one is generated that is better than the current state.

• Random-Restart Hill Climbing

• Conducts a series of hill-climbing searches from randomly generated 
initial states until a goal is found. 



Start with k 
random states

If any successors are goal states
then finished

Determine 
successors
of all k  
random states

. . . 

. . . 

Else select k 
best states from 
union of successors 
and repeat

. . . 

Can suffer from lack of diversity among the k states (concentrated in 
small region of search space).

Stochastic variant: choose k successors at random with probability of 
choosing the successor being an increasing function of its value.



• Escape local maxima by allowing “bad” moves (random)

• Idea: but gradually decrease their size and frequency

• Origin of concept: metallurgical annealing

• Bouncing ball analogy (gradient descent):

• Shaking hard (= high temperature)

• Shaking less (= lower the temperature)

• If Temp decreases slowly enough, best state is reached

Hill Climbing + Random Walk



/ Temperature is a function of time t

/ Random Ascent

/ Descent

Gradient descent version: Minimize cost

The probability decreases exponentially with the “badness” of the move - the 

negative amount Δ𝐸 by which the evaluation is worsened. 

The probability also decreases as the “temperature” T goes down: 
“bad” moves are more likely to be allowed at the start when the 
temperature is high, and more unlikely as T decreases.

Note: error in 4th Ed of book: 𝑒−Δ𝐸/𝑇 should be 𝑒Δ𝐸/𝑇 since Δ𝐸 is negative: Corrected in Global edition!

Boltzman 
Distribution



Temp: 90 80 70 60 50

-5 -5 -5 -5 -5

94,59

%

93,94

%
- -

90,48

%

-10 -10 -10 -10 -10

89,48

%

88,25

%
- -

81,87

%

Increase

in badness

of

move

Δ𝐸

Decrease in Temperature 𝑇



Often used for difficult
non-linear optimisation
problems

Variants of Stochastic Beam Search using the
metaphor of natural selection in biology



board 
encodings

Non-attacking
pairs of queens

probability of choosing 
proportional to fitness

select pairs randomly
for reproduction

choose crossover
point randomly

crossover: breed offspring 
in next generation3  2  7 5 2 4 1 1 2 4 7 4 8 5 4 2

3 2 7 4 8 5 4 2

random mutation
small prob.



Weights for individuals are computed by the fitness function
Fitness function returns # of non-attacking pairs of queens per individual





Board games are one of the oldest branches of AI 
(Shannon and Turing 1950).

• Board games present a very abstract and pure form of 
competition between two opponents and clearly 
require a form of “intelligence”.

• The states of a game are easy to represent

• The possible actions of the players are well-defined

• Realization of the game as a search problem

• It is nonetheless a contingency problem, because 
the characteristics of the opponent are not known 
in advance



Board games are not only difficult because they are contingency problems, 
but also because the search trees can become astronomically large.

Good game programs have the properties that they

• delete irrelevant branches of the game tree,

• use good evaluation functions for in-between states, and

• look ahead as many moves as possible.

Examples:

• Chess: On average 35 possible actions from every position, 

100 possible moves/ply (50 each player): 35100 ≈ 10150 nodes in the 

search tree (with “only” 1040 distinct chess positions (states)).

• Go: On average 200 possible actions with circa 300 moves: 200300 ≈
10700 nodes.



• Multi-Agent Environments

• agents must consider the actions of other agents and how these agents affect or constrain their 
own actions.

• environments can be cooperative or competitive.

• One can view this interaction as  a “game” and if the agents are competitive, their search 
strategies may be viewed as “adversarial”.

• Most often studied: Two-agent, zero-sum games of perfect information

• Each player has a complete and perfect model of the environment and of its own and other agents 
actions and effects

• Each player moves until one wins and the other loses, or there is a draw.

• The utility values at the end of the game are always equal and opposite, thus the name zero-sum.

• Chess, checkers, Go, Backgammon (uncertainty)



• The Game

• Two players: One called MIN, the other MAX. MAX moves first.

• Each player takes an alternate turn until the game is over.

• At the end of the game points are awarded to the winner, penalties to the loser.

• Formal Problem Definition:

• Initial State: 𝑆0 – Initial board position

• TO-MOVE(s) - The player whose turn it is to move in state s

• ACTION(s) - The set of legal moves in state s

• RESULT(s,a) - The transition model: the state resulting from taking action a in state s.

• IS-TERMINAL(s) - A terminal test. True when game is over. 

• UTILITY(s,p) – A utility function. Gives final numeric value to player p when the game ends in 
terminal state s. 

• For example, in Chess: win (1), lose (-1), draw (0):



• Game trees can be infinite
• Often large! Chess has: 

• 1040 distinct states
• average of 50 moves
• average b-factor of 35
• 35100 = 10154 nodes

• ≈ 9! = 362,880 terminal nodes

• 5,478 distinct states



1. Generate the complete game tree using depth-first search.

2. Apply the utility function to each terminal state.

3. Beginning with the terminal states, determine the utility of the 

predecessor nodes (parent nodes) as follows:

1. Node is a MIN-node

Value is the minimum of the successor nodes

2. Node is a MAX-node

Value is the maximum of the successor nodes

4. From the initial state (root of the game tree), MAX chooses the move that 

leads to the highest value (minimax decision).

Note: Minimax assumes that MIN plays perfectly. Every weakness (i.e. 
every mistake MIN makes) can only improve the result for MAX.



• Interpreted from MAX’s perspective
• Assumption is that MIN plays optimally
• The minimax value of a node is the utility for MAX
• MAX prefers to move to a state of maximum value and MIN prefers 

minimum value

What move should MAX make from the Initial state?





Recursive algorithm that proceeds all the way down to the
leaves of the tree and then backs up the minimax values 
through the tree as the recursion unwinds

Assume max depth of the tree is 𝑚
and 𝑏 legal moves at each point:

• Time complexity: 𝐎(𝑏𝑚)
• Space complexity:

• Actions generated at same time: 𝐎(𝑏𝑚)
• Actions generated one at a time: 𝐎(𝑚)

Serves as a basis for mathematical analysis
of games and development of approximations
to the minimax algorithm



• Minimax search examines a number of game states that is 
exponential in the number of moves (depth in the tree).

• Can be improved by using  Alpha-Beta Pruning.

• The same move is returned as  minmax would

• Can effectively cut the number of nodes visited in half (still 
exponential, but a great improvement).

• Prunes branches that can not possibly influence the final 
decision.

• Can be applied to infinite game trees using cutoffs.



Consider a node 𝑛 somewhere in the tree

Such that the player has a choice of moving to 𝑛

If the player has a better choice at the same level 𝑚′,

or a better choice at any point higher up in the 

tree 𝑚, then 𝑛 (and the subtree below) will never

be chosen (searched)

How do we determine when 𝑚,𝑚′ is 

a better choice than 𝑛?



alpha – the value of the best (i.e., highest value) choice we 
have found so far at any choice point along the path for MAX. 
(actual value is at least alpha)....lower bound

beta - the value of the best (i.e., lowest value) choice we have 
found so far at any choice point along the path for MIN. 
(actual value is at most beta)...upper bound

Lower bound      [𝛼 , 𝛽]      Upper bound

Associate lower and upper bounds 
on values of nodes in the search tree



At most 3

At most 3

B exactly 3

𝛼 = 𝛽

At least 3

At most  2

But B = 3, so MAX would never choose C
Because its value is at most 2 and could be worse
No need to search in the subtrees (terminal nodes)



At most 14

At most 14 14>3 so keep
searching

2nd successor is 5
5 > 3, so keep
Searching

3rd successor is 2

D exactly 2

𝛼 = 𝛽

Max moves to B
Giving value of 3

Minimax is a depth-first search, so we only 
need to think of nodes/values along single paths
when recursing values upwards.



Similar to Minimax search.
Functions are the same except
Bounds are maintained 

on variables 𝛼 and 𝛽

Returns a move for MAX

Effectiveness of 𝛼−𝛽
pruning is sensitive to
to order in which states
are examined.

With perfect move-ordering
scheme, alpha-beta uses

𝐎(𝑏 Τ𝑚 2) nodes to pick a move 

rather than Minimax’s 𝐎(𝑏𝑚)
nodes. But perfect move-ordering
is not possible. One can get close
though.

Minimax with alpha-beta pruning
is still not adequate for games
like chess and Go due to the
huge state spaces involved. 
Need something better!



Intuition:
Due to limited computation time, cutoff the search early
and apply a heuristic evaluation function to states,
Effectively treating non-terminal nodes as if they were terminal 

Recall MINIMAX(s)



𝐸𝑉𝐴𝐿(𝑠) = 𝑤1𝑓1(𝑠) + 𝑤2𝑓2(𝑠) + ⋯+ 𝑤𝑛𝑓𝑛(𝑠) = ∑
𝑖=1

𝑛

𝑤𝑖𝑓𝑖(𝑠)

Example (Chess):

where each 𝑓𝑖 represents the material value of a chess piece (bishop = 3, queen=9)

and the weights 𝑤𝑖 represent how important a feature is in a state. Weights should be

normalised so their sum is between range of: loss(0) to a win(+1)

• Replace the 𝑈𝑇𝐼𝐿𝐼𝑇𝑌(𝑠, 𝑝) fn with an 𝐸𝑉𝐴𝐿(𝑠, 𝑝) fn which estimates the expected utility of state 𝑠 to player 𝑝.
• Replace the 𝐼𝑆−𝑇𝐸𝑅𝑀𝐼𝑁𝐴𝐿(𝑠) test with an 𝐼𝑆−𝐶𝑈𝑇𝑂𝐹𝐹(𝑠, 𝑑)

test which must return true for terminal states, but is otherwise free to decide 
when to cut off the search, possibly using search depth so far or any other
state properties deemed useful.



𝐢𝐟𝑔𝑎𝑚𝑒. IS−CUTOFF(state, depth)𝐭𝐡𝐞𝐧𝐫𝐞𝐭𝐮𝐫𝐧game. EVAL(state, player), null

𝐢𝐟𝑔𝑎𝑚𝑒. IS−CUTOFF(state, depth)𝐭𝐡𝐞𝐧𝐫𝐞𝐭𝐮𝐫𝐧game. EVAL(state, player), null

Add bookkeeping so current 
depth is incremented on 
each recursive call



• Two major weaknesses of Alpha-Beta Search:
• GO has a branching factor starting at 361

• limiting alpha-beta search to 4-5 ply (ply is a half move taken by 1 player)
• Difficult to figure out a good evaluation function for GO

• Material value not a strong indicator and most positions in flux until the 
end of the game

Modern GO programs instead use:

Monte Carlo Search (MCTS)

+ Lots of other techniques!



• MCTS does not use a heuristic evaluation function:

• The value of a state is estimated as the average utility over a number of simulations of 
complete games starting from the state.

• Average utility could be win percentage for example

• Simulations (also called playouts or rollouts)

• Chooses moves first for one player and then the other until a terminal node is reached.

• Simple policy: choose randomly 

• How do we choose moves during playouts??

• MCTS uses playout policies which are mappings between states and actions

• Playout policies bias moves toward good ones

• For GO and other games, playout policies can be learned from self-play using 
Neural Networks (Deep Learning) 



• Given a playout policy: 

• From what positions do we start the playouts?

• How many playouts do we allocate to each position?

• Pure Monte Carlo search:

• Do N simulations starting from each child in the current state of the game (determine quality of 
direct children (without a selection policy) and then select a move, repeat, until time runs out)

• Focus is symmetric

• For most games this is not adequate.

• Selection Policy selectively focuses computational resources on important parts of the game tree

• Builds an asymmetric tree (capitalises on rich parts of search area)

• Balances: 

• Exploitation (states that have done well in past playouts)

• Exploration ( states that have had few playouts)

• One popular and effective selection policy is UCT (upper confidence bounds applied to trees)



MCTS maintains a search tree and grows
it on each iteration using the following steps:

Starting at the root of the search 
tree, choose a move using the 
selection policy, repeating the 
process until a leaf node is reached 

Grow the search tree
by generating a new
child/children.

Perform a playout
from a child using
the playout policy. These 
moves are not recorded 
in the search tree

Use the simulation result
to update the utilities of
the nodes going back
up to the root.

After X times: Choose the best move from start state



• White has previously moved. 
• What should blacks move be (2nd level)?
• White has won 37 out of 100 playouts 

(37/100) done so far
• Suppose we will do 1000 iterations. What

does the 101th iteration look like?

• Black selects a node
where it has won 60 
of 79 playouts (60/79)

• Uses UCT selection metric
• Selection continues to a leaf 

node where black has won 27 
out of 35 playouts (27/35)

• Generate a new child node
labeled 0/0

• Execute a playout
• Black wins this simulation

• Results of the simulation are
back propagated up the tree
branch.

• Black won, so black nodes are
incremented in 
# of wins/# of playouts

• White loses, white nodes are
incremented in number of 
playouts only.

White

Black

Black

White

# of wins/# of playouts

White (current state of game)

Black moves

White moves

Black moves



𝑈𝐶𝐵1(𝑛) =
𝑈(𝑛)

𝑁(𝑛)
+ 𝐶 ×

𝑙𝑛𝑁(𝑃𝑎𝑟𝑒𝑛𝑡(𝑛))

𝑁(𝑛)

UCT: upper confidence bound applied to trees
Ranks each possible move based on an upper confidence bound formula called UCB1:

• 𝑈(𝑛): Total utility of all playouts that go through 𝑛
• 𝑁(𝑛): The number of playouts through node 𝑛
• 𝑃𝑎𝑟𝑒𝑛𝑡(𝑛): The parent node of node 𝑛
•

𝑈(𝑛)

𝑁(𝑛)
-term: is the exploitation term. The average utility of 𝑛. For example win percentage.

• - term : is the exploration term.

• Numerator: 𝑙𝑛 of the number of times we have explored the parent

• If 𝑛 is selected some non-zero % of the time, the exploration term goes to zero as the counts 

increase, and eventually the playouts are given to the node with the highest average utility.

• Denominator: count 𝑁(𝑛)
• The exploration term will be high for nodes only explored a few times

• 𝐶: Constant that balances  exploitation and exploration. 

• Theoretically, 2 is best value for 𝐶, but this constant is often learned or chosen through trial and 

error.

• 𝐶 = 1.4 would choose the Τ60 79 (more exploitation) node in the example during Selection, while 

𝐶 = 1.5 would choose the Τ2 11 node (more exploration) during Selection.



• When iterations terminate, the node with the highest number of playouts (less uncertainty) 
is returned rather than highest average utility.
• The UCT/UCB1 selection strategy ensures that the node with the most playouts is almost 

always the node with the highest win percentage
• The time to complete a playout is linear in the depth of the game tree, so there is time for 

multiple playouts
• Example: game with branching factor of 32, where average game is 100 ply:

• Suppose we have computational power to consider a billion states before moving 
• Minimax can search 6 ply deep
• Alpha-Beta Pruning can search 12 ply deep with perfect move ordering
• Monte Carlo search can do 10 million playouts



Start

Current =
Root state

Current =
First new child 
node

For each available 
action from Current, 
add a new state to the 
tree

Is Current a leaf node?

Is visit count for Current 
0?

For each available 
action from Current, 
add a new state to the 
tree

Current =
First new child 
node

Tree Traversal
(Selection step) 

Back-propagation
Rollout
(Simulate)

No
Yes

Yes

No



ALPHAGO [2016] put four ideas together:
• Visual pattern recognition
• Reinforcement learning
• Neural networks
• Monte Carlo search

Defeated:
• Lee Sedol (by a score of 4-1 in 2015)
• Kie Jie ( by a score of 3-0 in 2016)

“After humanity spent thousands of years improvising
our tactics, computers tell us that humans are completely
wrong. I would go as far as to say not a single human has 
touched the edge of the truth of Go.”

Kie Jie

Lee Sedol

Lee Sedol retired from Go lamenting:

“Even if I became number 1, there is an entity that can not be defeated”

2018: ALPHAZERO surpassed ALPHAGO at Go!!
• Also defeated top programs in chess and Shogi
• Learns through self-play without human expert 

knowledge and without access to past games
• Uses reinforcement and deep learning



• 1952 - Computer masters Tic-Tac-Toe

• 1994 - Computer masters Checkers

• 1997 - IBM’s Deep Blue defeats Garry Kasparov in Chess

• 2011 - IBM’s WATSON defeats human Jeopardy champions

• 2014 - Google’s algorithms learn to play Atari Games

• 2015 - Wikipedia - “ Thus it is very unlikely that it will be possible to program a reasonably 
fast algorithm for playing the Go endgame flawlessly, let alone the whole Go game”.

• 2015 - Google’s AlphaGo defeats Fan Hui (2-dan player) in Go

• 2016 - Google’s AlphGo defeats Lee Sedol 4-1 (9-dan player) in Go

• 2017 - Google’sAlphaZero defeats STOCKFISH (2017 TCEC computer chess champion) 

• 2018 - Google’s AlphaZero surpasses AlphGo at Go (no human expertise, just self play)

• 2019 - Deep Mind’s ALPHASTAR program ranks in top 0.02% of officially ranked human 
players for StarCraft



www.ida.liu.se/~TDDC17
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