
•

•

•

Computer Science as Empirical Enquiry: Symbols and Search

Newell and Simon (1976)

[Causal relationship between expression and object]

[Expressions of a certain type can evoke processes]

necessary - any system exhibiting intelligence will prove
upon analysis to be a physical symbol system.

sufficient - any physical-symbol system of sufficient size can
be organized further to exhibit general intelligence.

Controversial!

Symbol Systems

Objects Processes

designate designate

Symbol Structures
Expressions
Patterns

Processes
Produce, destroy, modify

comprised of comprised of

Can be interpreted:
carry out the designated processes

SS’s can effect objects
can be affected by objects

Artificial Cognitive Systems
David Vernon, MIT Press

Heuristic Search Hypothesis - The solutions to problems are
represented as symbol structures. A physical-symbol system
exercises its intelligence in problem solving by search -- that is,
by progressively modifying symbol structures until it produces a
solution structure.

Initial
Symbol
Structures

Goal
Symbol
Structures

Heuristic
Search

Deals with the problem of
Limited computational resources
The idea of “satisficing”

In other words,
can we “reify” and
make independent
use of world models
(memory, actions)
through additional
generic processes
which act on those
world models?

• State Space - A set of possible states that the environment can be in

• Cities in the Romania map.

• Initial State - The state the agent starts in

• Arad

• ACTIONS(State) - A description of what actions are applicable in each state.

• ACTIONS(Arad)= {ToSibiu, ToTimisoara, ToZerind}

• RESULT(State, Action) - A description of what each action does (Transition Model)

• RESULT(Arad, ToZerind)= Zerind

• Goal Test - Tests whether a given state is a goal

• Often a set of states: { Bucharest }

• An Action Cost Function - denoted ACTION-COST(s,a,s’) when programming, or c(s,a,s’) when doing math.

• Gives the numeric cost of doing a in s to reach state s’.

• Cost functions should reflect the agents performance measure: distance, time taken, etc.

• Solution - A path from the start state to the goal state

Initial state

After expanding Arad

After expanding Sibiu

- State Space:

2 positions, dirt or no dirt
-> 8 world states

- Actions:

Left (L), Right (R), or Suck (S)

- Transition model: next slide

- Initial State: Choose.

- Goal States:

States with no dirt in the rooms

- Action costs:

one unit per action

If the environment is completely accessible, the vacuum cleaner always
knows where it is and where the dirt is. The solution then can be found by
searching for a path from the initial state to the goal state.

States for the search: The world states 1-8.

Informal problem description:

- Three missionaries and three cannibals are on one side of a river that
they wish to cross.

- A boat is available that can hold at most two people.

- You must never leave a group of missionaries outnumbered by
cannibals on the same bank.

➡How should the state space be represented?
➡What is the initial state?
➡What is the goal state?
➡What are the actions?

State Space: triple (x,y,z) with 0 ≤ x,y,z ≤ 3, where x,y, and z represent the
number of missionaries, cannibals and boats currently on the original
bank.

Initial State: (3,3,1)

Actions: see transition model

Transition Model: from each state, either bring one missionary, one
cannibal, two missionaries, two cannibals, or one of each type to the other
bank.

Note: not all states are attainable (e.g., (0,0,1)), and some are illegal.

Goal States: {(0,0,0)}

Action Costs: 1 unit per crossing
Many other formalisations

From the initial state, produce all successive states step
by step —> search tree.

- Route Planning, Shortest Path Problem

-Routing video streams in computer networks, airline travel planning, military
operations planning...

- Travelling Salesperson Problem (TSP)

-A common prototype for NP-complete problems

- VLSI (integrated circuits) Layout

-Another NP-complete problem

- Robot Navigation (with high degrees of freedom)

-Difficulty increases quickly with the number of degrees of freedom. Further possible
complications: errors of perception, unknown environments

- Assembly Sequencing

-Planning of the assembly of complex objects (by robots)

We focus on algorithms that superimpose a search tree over the state space graph

Expanded

Generated

Not Expanded

Sequence of search trees superimposed
(each node only has one parent)

Graph-Search: Only add a child if the state associated with it
has not already been reached:

Avoid cycles
Avoid redundant paths

Oradea

Oradea: has 2 successor states, but already reached
by other paths, so do not expand.

Important distinction between search tree and state space!

Frontier (choose from here)

State Space GraphSearch tree Construction

Arad-Sibiu-Arad
Loopy Path - makes the complete search space infinite even though there are
only 20 states

Arad-Sibiu
Arad- Zerind-Oradea-Sibiu

Redundant Path -
more than one way
to get from one state
to another

Cycles are a special case
of redundant paths but easier
to deal with.

Separation property of graph search

The frontier (green) separates the interior (lavender) form the exterior (faint dashed)

Any state with a node generated for it is said to be reached

What is the best way to search through a state space in a systematic
manner in order to reach a goal state?

• A strategy is defined by picking the order of node expansion.

• Strategies can be evaluated along the following dimensions:

• Completeness – does it find a solution if it exists?

• Time Complexity – number of nodes generated/expanded

• Space Complexity – maximum number of nodes in memory

• Optimality – does it always find a least cost solution

• Time and space complexity are measured in terms of:

• b – maximum branching factor of search tree

• d – depth of the least cost solution in the search tree

• m – maximum length of any path in the state space (possibly infinite)

• Uninformed Search (Blind Search)

• No additional information about states besides that in the problem

definition

• Can only generate successors and compare against state.

• Some examples:

• Breadth-first search, Depth-first search, Iterative deepening DFS

• Informed Search (Heuristic Search)

• Strategies have additional information as to whether non-goal states

are more promising than others.

• Some examples:

• Greedy Best-First Search, A* Search

Data structure for nodes in the search tree:

STATE: state in the state space

PARENT: Predecessor nodes

ACTION: The operator that generated the node

DEPTH: number of steps along the path from the initial state

PATH-COST: Cost of the path from the initial state to the node

Operations on a queue/frontier (4th Edition):

IS-EMPTY(frontier): Empty test

POP(frontier): Returns the first element of the queue

TOP(frontier): Returns the first element

ADD(node, frontier): Inserts new elements into the queue

Operations on a queue (3rd Edition):

Make-Queue(Elements): Creates a queue

Empty?(Queue): Empty test

First(Queue): Returns the first element of the queue

Remove-First(Queue): Returns the first element

Insert(Element, Queue): Inserts new elements into the queue

(various possibilities)

Insert-All(Elements, Queue): Inserts a set of elements into the queue

Three kinds of Queues:
• Priority Queue - min cost first
• FIFO Queue - first in, first out
• LIFO Queue - last in, first out

Can have a finite set of states in state space, but sometimes
infinite nodes in a search tree (when loops are allowed)

Can have several nodes with the same state due to multiple paths to the state

The search tree describes paths between states leading towards a goal

node.STATE

node.PARENT

node.ACTION

node.PATH-COST

PATH-COST - Total cost of the path
from initial state to this node

Evaluation function: f(n)

Minimum of f(n) first
Bookkeeping for
dealing with loopy and
redundant paths

Expand node, generate children

Yields sequence of child nodes

Place child in reached if not there already, or if there but
path cost is cheaper, then add to frontier

Reached states

Goal test during
selection for expansion
rather than at node generation

Different evaluation functions f(n), will generate different algorithms

When actions have different costs, BEST-FIRST SEARCH
can be used where the cost-function f(n) = n.PATH-COST

Computer Science: Djikstra’s Algorithm
Artificial Intelligence: Uniform Cost Search

Search tree spreads out in waves of uniform cost

Drobeta[374]

Zerind[75] Timisoara[118] Sibiu[140]

4

Arad[0]

Oradea[146] Lugoj[229]
Riminicu

Vilcea[220]
Fagaras[239]

Cravia[366] Pitesti[317]

Bucharest[450]

Mehadia[299]

1

2 3

5 67 8

9 1011

12

Bucharest[418]

13

goto(Sibiu)

goto(Riminicu_Vilcea)

goto(Bucharest)

goto(Pitesti)

Goal test during
selection for expansion
rather than at node generation

Late Goal Test

• Cost-optimal: 1st solution found has cost at least as low as any in the frontier
• Complete: Systematically checks paths in order of increasing cost

80+97=17

7
99+211=310

99

80

Popped &

Explored

Expanded &

Frontier
177+101=278

Do not choose at

generation!

• Early Goal Test: Test during node generation
• Late Goal Test: Test when popped off the queue (best-first search)

Late Goal Test!

Uniform-Cost Search

• A search algorithm is called a graph search if it
it checks for redundant paths

• A search algorithm is called a tree-like search if
if it does not check for redundant paths.
• Tree-like because the state space is still the same

graph. We just choose to treat it as if it is a tree.

3 approaches to redundant paths:
1. Remember all previously reached states, allowing detection

of redundant paths, keep only the best path to each state.
2. Do not worry about repeating the past. Don’t track reached

states and don’t check for redundant paths
3. Compromise and just check for cycles (loopy paths).

Just follow chain of parents up a path. No need for
additional memory.

Search by Minimal Depth:

Assume all actions have the same cost

Could be implemented using Best-First-Search:

BREADTH-FIRST-SEARCH

DEPTH)

f(n) = n.DEPTH
Is a better way!

Optimizations:
• FIFO queue is faster than a priority queue
• Reached is a set of states rather than a mapping

from states to nodes
• Can do an Early Goal Test when node is generated

• Once a state is reached, can never find a better
path to the state

Early Goal Test

FIFO Queue

Reached is a set of states

Zerind[] Timisoara[] Sibiu[]

4

Arad[]

Oradea[] Lugoj[]
Riminicu

Vilcea[]
Fagaras[]

Cravia[] Pitesti[]

Bucharest[]

Mehadia[]

1

2 3

5 6 7 8

goto(Sibiu)

goto(Bucharest)

goto(Fagaras)

• Cost-optimal for problems where all actions have same cost
• Finds solution with minimal number of actions
• It is complete

Assume all actions have the same cost

Always expands
deepest node
in the frontier first

Usually implemented not as
graph search but as
tree-like search (without a
table of reached states)

Could be implemented using Best-First-Search:

DEPTH-FIRST-SEARCH

NEGDEPTH)

f(n) = NEGDEPTH = - n.DEPTH

There is a Better way!

DEPTH

LIFO

Optimizations:
• LIFO queue is faster than a priority queue
• Can do an Early Goal Test when node is generated

Early Goal Test

LIFO Queue

Sibiu Timisoara Zerind

Arad

Bucharest

Fagaras

Riminicu

Vilcea
Oradea

goto(Sibiu)

goto(Fagaras)

goto(Bucharest)

1

2

3

In this case, we find a solution directly

DEPTH

LIFO

But:
• DFS (both graph and tree-like) is not cost-optimal
• For finite state spaces that are trees: Complete
• For cyclic state spaces, can get stuck in infinite loop
• For infinite state spaces, not systematic, can get stuck

in an infinite path
• Bottom line: not cost-optimal, not complete in general

Early Goal Test

LIFO Queue

No bookkeeping of reached
nodes

But:
• For tree-like search

uses very small amount
of memory

• Because of this, it is the
basic workhorse of many
areas of AI

• In particular: DFS with
backtracking uses even
less memory

add child to frontier

Note, although it is tree-like search,

a cycle check could be added and often is

• Deals with failure of depth-first search in infinite state spaces
• Introduce a pre-determined cut-off depth limit 𝑙

Cycle-check: can
be full cycle check
up to l or just k<l

Sometimes a good depth-limit can be chosen based on the problem

If 𝑙 < 𝑑 then we may not find the goal and DLS is incomplete
If 𝑙 > 𝑑 then DLS is not optimal
DLS with 𝑙 = ∞ is in fact depth-first search

• Combines the best of depth-first search and breadth-first search

• Gradually increases the depth-limit of depth-first search by increments
(0,1,2...).

• Each increment basically does a breadth-first search to that limit

Complete when the branching factor is finite

Optimal when the path cost is a non-decreasing function of the
depth of the node

In general, Iterative-Deepening is the preferred uninformed
search method when the state space is larger than can fit
in memory and the solution depth is unknown

Space Complexity: O(d(b-1))

• For any tree-like search, when checking for a goal node at level d, at most
d(b-1) nodes must be stored in the frontier.

Branching Factor: b=4
Goal Depth: d=2

Space Complexity: O(bd)

• For any graph search, every expanded node is stored in the reached set.
• For tree-like search: O(bd) nodes in the frontier set.
• The space complexity is dominated by the nodes in the frontier.

Branching Factor: b=4
goal depth: d=2

Tree-Like Search Versions

For Graph-Search Versions:
• DFS is complete for Finite Spaces
• All algorithms: Space and Time complexities bounded by the

size of the state space: |Vertices| + |Edges|

𝑚 -max length of any path in the

state space

www.ida.liu.se/~TDDC17

	Slide 1: TDDC17 LE2 HT2024 – Search I
	Slide 2: Physical Symbol System Hypothesis
	Slide 3: Physical Symbol Systems
	Slide 4: Designation & Interpretation
	Slide 5: Physical-Symbol System Hypothesis
	Slide 6: PSS Hypothesis: Graphical Summary
	Slide 7: Human and Computational Thinking
	Slide 8: Heuristic Search Hypothesis
	Slide 9: Recall: State Machine Agent
	Slide 10: Problem Solving Agent: Version I
	Slide 11: Algorithmic, Knowledge-Based and Learning-Based AI
	Slide 12: Romania Route Finding Problem
	Slide 13: Problem Formulation
	Slide 14: 3 Partial Search Trees: Route Finding
	Slide 15: Problem Formulation: Vacuum cleaning world
	Slide 16: Vacuum World: State Space Graph
	Slide 17: Solving the Vacuum World
	Slide 18: Solving the Vacuum World without Sensors
	Slide 19: Problem Formulation: Missionaries and Cannibals
	Slide 20: One Formalization
	Slide 21: General Search
	Slide 22: Examples of Real-World Problems
	Slide 23: Search Algorithms
	Slide 24: Loopy Paths & Redundant Paths
	Slide 25: Search Algorithms
	Slide 26: Search Strategies
	Slide 27: Some Search Classes
	Slide 28: Implementing the Search Tree
	Slide 29: States (in state space) and Nodes (in a search tree)
	Slide 30: Best-First Search
	Slide 31: Uniform-Cost Search
	Slide 32: Uniform-Cost Search: Romania
	Slide 33: Early Goal Test / Late Goal Test
	Slide 34: Redundant Paths Re-visited
	Slide 35: Breadth-First Search
	Slide 36: Breadth-First Search
	Slide 37: Breadth-First Search: Romania
	Slide 38: Depth-First Search
	Slide 39: Depth-First Search
	Slide 40: Depth-First Search (Graph Search)
	Slide 41: Depth-First Search (Graph Search): Romania
	Slide 42: Depth-First Search (Tree-like Search)
	Slide 43: Depth-Limited Search (Tree-like Search)
	Slide 44: Iterative-Deepening Search
	Slide 45: Iterative-Deepening Search: Example
	Slide 46: Analying Depth-First (Tree-like Search)
	Slide 47: Analysing Breadth-First Search (Tree-Like Search)
	Slide 48: Uninformed Search Algorithms: Comparison
	Slide 49: TDDC17 AI LE2 HT2024: Physical Symbol Systems Heuristic Search Hypothesis Search I: Uninformed Search Algorithms (Ch 3)

