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Physical Symbol System Hypothesis

Computer Science as Empirical Enquiry: Symbols and Search
Newell and Simon (1976)

2024-09-05

Newell and Simon are trying to lay the foundational basis for the
science of artificial intelligence.

What are the structural requirements for intelligence?

Can we define laws of qualitative structure for the systems
being studied?

What is a symbol, that intelligence may use it, and
intelligence, that it may use a symbol? (McCulloch)
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Physical Symbol Systems

The adjective “physical” denotes two important aspects:
* Such systems clearly obey the laws of physics -- they are
realizable by engineered systems made of engineered components.

* The use of the term “symbol” is not restricted to human symbol systems.

2024-09-05 3

A physical symbol system consists of:

* a set of entities called symbols which are physical patterns that can occur as
components of another type of entity called an expression (or symbol structure).

* At any instant of time the system will contain a collection of symbol structures.

 The system also contains a collection of processes that operate on expressions

to produce other expressions: processes of creation, modification, reproduction,
and destruction.

A physical-symbol system is a machine that produces through time an evolving

collection of symbol structures and exists in a world of objects wider than
just those symbol structures themselves.
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Designation & Interpretation

There are two concepts central to these structures of expressions,
symbols and objects:

Designation - An expression designates an object if, given the expression,
the system can either effect the object itself or behave in ways depending on
the object.  [Causal relationship between expression and object]

Interpretation - The system can interpret an expression if the expression
designates a process and 1f, given the expression, the system can carry out
the process. [ Expressions of a certain type can evoke processes]

Some additional requirements in the paper
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Physical-Symbol System Hypothesis

The Physical-Symbol System Hypothesis - A physical-symbol

system has the necessary and sufficient means for general
intelligent action.

necessary - any system exhibiting intelligence will prove
upon analysis to be a physical symbol system.

sufficient - any physical-symbol system of sufficient size can
be organized further to exhibit general intelligence.

Controversial!

2024-09-05

LINKOPING
II.“ UNIVERSITY



TDDC17 - HT24 - Fredrik Heintz - LE2 Search | (based on slides by Patrick Doherty) 2024-09-05 6

PSS Hypothesis: Graphical Summary

Symbol Systems
comprised of]

Symbol Structures < Proces ses
Expressions
Patterns
designate \
Can be interprete.d:
Obj ec tS Pr()cesse carry out the designated processes

™~

SS’s can effect objects
can be affected by objects

Artificial Cognitive Systems

David Vernon, MIT Press
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Human and Computational Thinking

Figure 1: A Comparison of System 1 and System 2 Thinking

System 1
“Fast”

DEFINING CHARACTERISTICS
Unconscious
Effortless
Automatic

WITHOUT self-awareness or control
“What you see is all there is.”

ROLE

Assesses the situation
Delivers updates

System 2
“Slow”

DEFINING CHARACTERISTICS
Deliberate and conscious
Effortful
Controlled mental process

WITH self-awareness or control
Logical and skeptical

ROLE

Seeks new/missing information
Makes decisions

2024-09-05

THANKING,
FAST.. SLOW

T R—
D ANILEL

KAHNEMAN

WINNER OF THE NOBEL PRIZE IN ECONOMICS
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Heuristic Search Hypothesis

Heuristic Search Hypothesis - The solutions to problems are
represented as symbol structures. A physical-symbol system
exercises its intelligence in problem solving by search -- that is,
by progressively modifying symbol structures until it produces a

solution structure.

Initial Heuristic Goal

Symbol g h Symbol

Structures €arc Structures
Deals with the problem of

Limited computational resources
The idea of “satisficing”

8
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Recall: State Machine Agent

1 Can one make explicit and
Feawre |0 internalize some of the
vector, Xt 0 : : : :
1 designers intentions in the
1 architecture itself?
S —
I;;Zf’y _|Perceptual
Processing | Action .
X+.1 » _ — Action
t- F un Ctl on In other words,
dt-1 dt can we “reify” and
make independent
World model : 1(1$e of world tr.nodcils
memaory, actions
through additional
. M emory . generic processes
previous feature vector* which act on those
previous action) I— world models?
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Problem Solving Agent: Version |

Sensory ey

Input

Perceptual
Processing

current state /

goal state

<.

@ /
State Space Graph

Find

> —»

Action Sequence| Actions

2024-09-05
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Planning
(graph search)
Task achieving
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Algorithmic, Knowledge-Based and Learning-Based Al

Knowledge added Training data added
by domain experts by domain experts

Al-program
written by

programmers

Algorithmic Knowledge-based Learning-based
(Pattern-based)
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Romania Route Finding Problem

Oradea
71
Neamt
i 87
75 151
i Iasi
Ara c
L/ 92
Sibiu 99 Fagaras
118 Vaslui
80
T Rimnicu Vilcea
Timisoara
142
. . 211
111 Lugoj Pitesti
70 98
. 85 Hirsova
Mehadia 101 o, O Urziceni
J 2
75 138 Sucharest
Drobeta 120
90
Craiova Giurgiu Eforie
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Problem Formulation

® State Space - A set of possible states that the environment can be in

® Cities in the Romania map.

® |nitial State - The state the agent starts in
® Arad

® ACTIONS(State) - A description of what actions are applicable in each state.
® ACTIONS(Arad)= {ToSibiu, ToTimisoara, ToZerind}

® RESULT(State, Action) - A description of what each action does (Transition Model)
® RESULT(Arad, ToZerind)= Zerind

® Goal Test - Tests whether a given state is a goal
® Often a set of states: { Bucharest }

® An Action Cost Function - denoted ACTION-COST(s,a,s’) when programming, or c(s,a,s’) when doing math.
® Gives the numeric cost of doing a in s to reach state s”.

® Cost functions should reflect the agents performance measure: distance, time taken, etc.
® Solution - A path from the start state to the goal state

LINKOPING
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3 Partial Search Trees: Route Findin
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Figure 3.1 A simplified road map of part of Romania, with road distances in miles.

LINKOPING
I.“ UNIVERSITY




TDDC17 - HT24 - Fredrik Heintz - LE2 Search | (based on slides by Patrick Doherty) 2024-09-05 15

Problem Formulation: Vacuum cleaning world

State Space:
1 2
2 positions, dirt or no dirt ?J o8 o35 é

-> 8 world states

Actions:

Left (L), Right (R), or Suck (S) 3 gﬂ 4 o2 AQ

Transition model: next slide

Initial State: Choose.

. 2 A 6 A
Goal States: SR pr
A A

States with no dirt in the rooms

Action costs:

one unit per action
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2024-09-05

Vacuum World: State Space Graph

.

LCIEA .

Q L

080
2%
3
2%

DR

0

N ADR

S

S

If the environment is completely accessible, the vacuum cleaner always
knows where it is and where the dirt is. The solution then can be found by
searching for a path from the initial state to the goal state.

States for the search: The world states 1-8.

16
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Solving the Vacuum World

~

R
=
L d‘
38 |eiz L
——— b
S

o

=/
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Solving the Vacuum World without Sensors
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Problem Formulation: Missionaries and Cannibals

Informal problem description:

- Three missionaries and three cannibals are on one side of a river that
they wish to cross.

- A boat is available that can hold at most two people.

- You must never leave a group of missionaries outnumbered by
cannibals on the same bank.

= How should the state space be represented?
= What is the initial state?

= What is the goal state?

= What are the actions?

LINKOPING
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One Formalization

State Space: triple (x,y,z) with 0 < x,y,z < 3, where X,y, and z represent the
number of missionaries, cannibals and boats currently on the original

bank.

Initial State: (3,3,1)
Actions: see transition model

Transition Model: from each state, either bring one missionary, one
cannibal, two missionaries, two cannibals, or one of each type to the other
bank.

Note: not all states are attainable (e.g., (0,0,1)), and some are illegal.

Goal States: {(0,0,0)}

Action Costs: 1 unit per crossing

Many other formalisations

LINKOPING
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General Search

From the initial state, produce all successive states step
by step —> search tree.

M,C,B
(a)initial state (3,31
(b) after expansion (3,3,1)

TS

[w (3,2,0) (2,20) (1,369 (31,0

(c) after expansion (3,31

of [3,2/0] A/l\\

(2307 (3,j2,01 (220 (387 ((310)

(3,31
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Examples of Real-World Problems

- Route Planning, Shortest Path Problem

-Routing video streams in computer networks, airline travel planning, military
operations planning...

- Travelling Salesperson Problem (TSP)

-A common prototype for NP-complete problems
- VLSI (integrated circuits) Layout

-Another NP-complete problem
- Robot Navigation (with high degrees of freedom)

-Difficulty increases quickly with the number of degrees of freedom. Further possible
complications: errors of perception, unknown environments

- Assembly Sequencing
-Planning of the assembly of complex objects (by robots)

LINKOPING
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Search Algorithms

We focus on algorithms that superimpose a search tree over the state space graph

Important distinction between search tree and state space!

Search tree Construction State Space Graph

Oradea

Expanded

Generated

Not Expanded Graph-Search: Only add a child if the state associated with it

has not already been reached:
Avoid cycles
Avoid redundant paths

Frontier (choose from here)

Oradea: has 2 successor states, but already reached
by other paths, so do not expand.

Oradea

23
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Loopy Paths & Redundant Paths

Arad-Sibiu-Arad

Loopy Path - makes the complete search space infinite even though there are
only 20 states

Arad-Sibiu
Arad- Zerind-Oradea-Sibiu
Redundant Path -

more than one way
to get from one state

[ | Oradea

to another 1 v astui
=] Timisoara
L1 Hirsova
[ | Mehadia
Cycles are a special case 75 86
. Bucharest
of redundant paths but easier Drobeta [
to deal with.

v . Eforie
Craiova [] Giurgiu

24
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Search Algorithms

- T -

The frontier (green) separates the interior (lavender) form the exterior (faint dashed)

Any state with a node generated for it is said to be reached

What is the best way to search through a state space in a systematic
manner in order to reach a goal state?

LINKOPING
II.“ UNIVERSITY



TDDC17 - HT24 - Fredrik Heintz - LE2 Search | (based on slides by Patrick Doherty) 2024-09-05 26

Search Strategies

A strategy is defined by picking the order of node expansion.
« Strategies can be evaluated along the following dimensions:
» Completeness — does it find a solution if it exists?
» Time Complexity — number of nodes generated/expanded
* Space Complexity — maximum number of nodes in memory
« Optimality — does it always find a least cost solution
« Time and space complexity are measured in terms of:
* b — maximum branching factor of search tree
* d — depth of the least cost solution in the search tree
 m — maximum length of any path in the state space (possibly infinite)

LINKOPING
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Some Search Classes

» Uninformed Search (Blind Search)
 No additional information about states besides that in the problem
definition
 Can only generate successors and compare against state.
« Some examples:
 Breadth-first search, Depth-first search, Iterative deepening DFS
 Informed Search (Heuristic Search)

» Strategies have additional information as to whether non-goal states
are more promising than others.

« Some examples:
» Greedy Best-First Search, A* Search

27
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Implementing the Search Tree

Data structure for nodes in the search tree:

STATE: state in the state space

PARENT: Predecessor nodes

ACTION: The operator that generated the node

DEPTH: number of steps along the path from the initial state
PATH-COST: Cost of the path from the initial state to the node

Operations on a queue/frontier (4th Edition):
IS-EMPTY(frontier): Empty test

POP(frontier): Returns the first element of the queue
TOP(frontier): Returns the first element

ADD(node, frontier): Inserts new elements into the queue

Operations on a queue (3rd Edition):
Make-Queue(Elements): Creates a queue
Empty?(Queue): Empty test

First(Queue): Returns the first element of the queue

Remove-First(Queue): Returns the first element

Insert(Element, Queue): Inserts new elements into the queue

(various possibilities)

2024-09-05

Three kinds of Queues:

Priority Queue - min cost first
FIFO Queue - first in, first out
LIFO Queue - last in, first out

Insert-All(Elements, Queue): Inserts a set of elements into the queue

28
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States (in state space) and Nodes (in a search tree)

node.STATE

PATH-COST - Total cost of the path

node.PARENT
node.ACTION
node.PATH-COSili

ACTION = Right
PATH-COST =6

from initial state to this node

s | 4 Node

STATE

Can have a finite set of states in state space, but sometimes
infinite nodes in a search tree (when loops are allowed)

Can have several nodes with the same state due to multiple paths to the state

The search tree describes paths between states leading towards a goal
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Best-First Search

function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure

node <— NODE(STATE=problem .INITIAL)
frontier < a priority queue ordered by f, with node as an element |y ——ueie) flrSTBookkeeping o

reached < a lookup table, with one entry with key problem.INITIAL and value node GERMEAGTBENENGI
while not IS-EMPTY(frontier) do Goal test during redundant paths
node < POP(frontier) selection for expansion

if problem .IS-GOAL(node.STATE) then return node S ReRi et o s CHEr O
for each child in EXPAND(problem, node) do
s < child.STATE
if s is not in reached or child . PATH-COST < reached[s|.PATH-COST then
reached[s] < child

add chuld to frontier
return failure

function EXPAND( problem, node) yields nodes

$ < node.STATE
for each action in problem .ACTIONS(s) do

s’ < problem RESULT(s, action)
cost <— node PATH-COST + problem.ACTION-COST(s, action, s’)

yield NODE(STATE=s’, PARENT=node, ACTION=action, PATH-COST=cost)
Yields sequence of child nodes

Different evaluation functions f(n), will generate different algorithms

LINKOPING
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Uniform-Cost Search

function UNIFORM-COST-SEARCH( problem) returns a solution node, or failure
return BEST-FIRST-SEARCH(problem, PATH-COST)

When actions have different costs, BEST-FIRST SEARCH
can be used where the cost-function f(n) = n.PATH-COST

Computer Science: Djikstra’s Algorithm
Artificial Intelligence: Uniform Cost Search

Search tree spreads out in waves of uniform cost

2024-09-05
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Uniform-Cost Search; Romania

2024-09-05 32

Zerind[75] Timisoara[118] Sibiu[140]

Riminicu
6 D\ Vilcea[220]

Cravia[366] Pitesti[317]

O ® o
Bucharest[450]

Drobeta[374] _ l
13

Oradea[146] Lugoj[229] Fagaras[239]

Mehadia[299]

Goal test during

selection for expansion

‘ 12 ) ‘ ' rather than at node generation
Bucharest[418]

II inkopng ¢+ Cost-optimal: 1st solution found has cost at least as low as any in the frontier
oW Uiiversiry . Complete: Systematically checks paths in order of increasing cost
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Early Goal Test / Late Goal Test

. Early Goal Test: Test during node generation
. Late Goal Test: Test when popped off the queue (best-first search)

ey e Uniform-Cost Search
ibiu

99 Fagaras

80
Rimnicu Vilcea
80+97=17

( )
E N

Expanded &
Frontier

ﬁ

Popped &
\EXplored y

Do not choose at
generation!

177+101=278

Bucharest

33
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Redundant Paths Re-visited

A search algorithm is called a graph search if it

it checks for redundant paths

A search algorithm is called a tree-like search if

if it does not check for redundant paths.
Tree-like because the state space is still the same
graph. We just choose to treat it as if it is a tree.

3 approaches to redundant paths:

1. Remember all previously reached states, allowing detection
of redundant paths, keep only the best path to each state.

2. Do not worry about repeating the past. Don’t track reached
states and don’t check for redundant paths

3. Compromise and just check for cycles (loopy paths).
Just follow chain of parents up a path. No need for
additional memory.

LINKOPING
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Breadth-First Search

Assume all actions have the same cost

Search by Minimal Depth:

Figure 3.8 Breadth-first search on a simple binary tree. At each stage, the node to be ex-
panded next is indicated by the triangular marker.

Could be implemented using Best-First-Search:

function BREADTH-FIRST-SEARCH problem) returns a solution node, or failure
return BEST-FIRST-SEARCH(problem, DEPTH )

Is a better way!

f(n) = n.DEPTH

2024-09-05
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Breadth-First Search

function BREADTH-FIRST-SEARCH( problem) returns a solution node or failure

node <— NODE(problem .INITIAL)

if problem.IS-GOAL(node.STATE) then return node FIFO Queue

frontier +— a FIFO queue, with node as an element

reached < {problem .INITIAL}
while not IS-EMPTY(frontier) do
node <— POP(frontier)

Reached is a set of states

for each child in EXPAND(problem, node) do

s < child.STATE

if problem.I1s-GOAL(s) then return child Ear]y Goal Test

if s is not in reached then
add s to reached
add child to frontier

return failure

36

Optimizations:

FIFO queue is faster than a priority queue

Reached is a set of states rather than a mapping

from states to nodes

Can do an Early Goal Test when node is generated

. Once a state is reached, can never find a better
path to the state

LINKOPING
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Breadth-First Search: Romania

Arad[]
Arad
Fagaras
Zerind[] Timisoaral] | - .

_ Mehadia 5 ° Hirsova
‘ Eforie

Oradeal] Vilceal] Fagaras]] E

Mehadial Cravia[] Pitesti[]
Bucharest([]

Cost-optimal for problems where all actions have same cost
Finds solution with minimal number of actions goto(Bucharest)
It is complete

LINKOPING
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Depth-First Search

Assume all actions have the same cost

Always expands
deepest node
in the frontier first

Usually implemented not as
graph search but as
tree-like search (without a
table of reached states)

LINKOPING
UNIVERSITY
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Figure 3.11 A dozen steps (left to right, top to bottom) in the progress of a depth-first search
on a binary tree from start state A to goal M. The frontier is in green, with a triangle marking
the node to be expanded next. Previously expanded nodes are lavender, and potential future
nodes have faint dashed lines. Expanded nodes with no descendants in the frontier (very faint
lines) can be discarded.

38
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Depth-First Search

Could be implemented using Best-First-Search:

function IDEPTH-FIRST-SEARCHI( problem) returns a solution node, or failure
return BEST-FIRST-SEARCH(problem, NEGDEPTH )

f(n) = NEGDEPTH = - n.DEPTH

There is a Better way!

2024-09-05
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Depth-First Search (Graph Search)

function DEPTH -FIRST-SEARCH( problem) returns a solution node or failure

node <— NODE(problem .INITIAL)
if problem.IS-GOAL(node.STATE) then return node
frontier < a LIFO queue, with node as an element
reached < {problem INITIAL}
while not IS-EMPTY(frontier) do
node <— POP(frontier)
for each child in EXPAND(problem, node) do
s <— child .STATE
if problem.Is-GOAL(s) then return child
if s is not in reached then Early Goal Test
add s to reached
add child to frontier
return failure

Optimizations:
. LIFO queue is faster than a priority queue
. Can do an Early Goal Test when node is generated

2024-09-05
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Depth-First Search (Graph Search): Romania

Oradea

Arad

Arad

Fagaras

99

Timisoara :
Zerind . .
Vaslui
Timisoara Rimnicu Vilcea
_ R.|m|n|cu Oradea Lugoj Pitesti
Vilcea
Fagaras Mehadia T SRS
86
75 Bucharest
Drobeta
90
Bucharest
. In this case, we find a solution directly
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Depth-First Search (Tree-like Search)

function DEPTH -FIRST-SEARCH( problem) returns a solution node or failure
node <— NODE(problem .INITIAL)
if problem.IS-GOAL(node.STATE) then return node

frontier <—a LIFO iueue, with node as an element LIFO Queue

while not IS-EMPTY(frontier) do

42

node <— POP(frontier) Note, although it is tree-like search,
for each child in EXPAND(problem, node) do a cycle check could be added and often is
s <— child .STATE
if problem.Is-GOAL(s) then return child
No bookkeeping of reached
nodes

add child to frontier But:

i . For tree-like search
But: uses very small amount
. DFS (both graph and tree-like) is not cost-optimal of memory
. For finite state spaces that are trees: Complete . Because of this, it is the
. For cyclic state spaces, can get stuck in infinite loop basic workhorse of many
. For infinite state spaces, not systematic, can get stuck areas of Al

in an infinite path . In particular: DFS with
- Bottom line: not cost-optimal, not complete in general backtracking uses even
II.“ LINKOPING less memory
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Depth-Limited Search (Tree-like Search)

 Deals with failure of depth-first search in infinite state spaces

e Introduce a pre-determined cut-off depth limit [
function DEPTH-LIMITED-SEARCH( problem, ) returns a node or failure or cutoff
frontier <— a LIFO queue (stack) with NODE(problem.INITIAL) as an element

result <— failure
while not IS-EMPTY(frontier) do

node <— POP(frontier)
if problem.1S-GOAL(node.STATE) then return node

if DEPTH(node) > { then
Cycle-check: can

result < cutoff
. be full cycle check
else if not Is-CYCLE(node) do i S

for each child in EXPAND(problem, node) do
add child to frontier
return result

If | < d then we may not find the goal and DLS is incomplete

If | > d then DLS is not optimal
DLS with [ = oo is in fact depth-first search

Sometimes a good depth-limit can be chosen based on the problem
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Iterative-Deepening Search

. Combines the best of depth-first search and breadth-first search

function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution node or failure
for depth =0 to oo do
result < DEPTH-LIMITED-SEARCH( problem, depth)
if result # cutoff then return result

. Gradually increases the depth-limit of depth-first search by increments

(0,1,2...).
i« Each increment basically does a breadth-first search to that limit

Complete when the branching factor is finite

Optimal when the path cost is a non-decreasing function of the
depth of the node

In general, Iterative-Deepening is the preferred uninformed

search method when the state space is larger than can fit
in memory and the solution depth is unknown
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Iterative-Deepening Search: Example

limit: 0 >®

limit: 1 >®

limit: 2 >@®

limit: 3 >@®

2024-09-05
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Figure 3.13 Four iterations of iterative deepening search for goal M on a binary tree, with

the depth limit varying from 0 to 3. Note the interior nodes form a single path. The triangle

LlNKOplNG marks the node l(;)cxpand next; green noldes with dark OJltlines are on the frontier; the very
faint nodes provably can’t be part of a solution with this depth limit.
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Analying Depth-First (Tree-like Search)

d=1

Ist expand at depth d

d=

Branching Factor: b=4
Goal Depth: d=2

For any tree-like search, when checking for a goal node at level d, at most

d(b-1) nodes must be stored in the frontier.

Space Complexity: O(d(b-1))
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Analysing Breadth-First Search (Tree-Like Search)

=0

nl o n2 o n3 O 2 n4 d=1

@ © O 8 @ @ O O O @ 8 @ O © O O d=2
n21 n31 n4l g

Branching Factor: b=4
goal depth: d=2

. For any graph search, every expanded node is stored in the reached set.
. For tree-like search: O(b%) nodes in the frontier set.
. The space complexity is dominated by the nodes in the frontier.

Space Complexity: O(b9)

47
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Uninformed Search Algorithms: Comparison

Tree-Like Search Versions *
i Breadth- Uniform- Depth-  Depth- Iterative Bidirectional
First Cost First Limited Deepening (if applicable)
Complete? Yes? Yes!2 No No Yes! Yes!4
Optimal cost? Yes?3 Yes No No Yes? Yes3:4
Time oY) OBy owm) o) O o(b¥/2)
Space o0d)  OMW™ICT/d)y  O®mm)  O®m)  O(bd) O(b4/2)

Figure 3.15 Evaluation of search algorithms. b is the branching factor; m is the maximum
depth of the search tree; d is the depth of the shallowest solution, or is /m when there is
no solution; ¢ is the depth limit. Superscript caveats are as follows: ! complete if b is
finite, and the state space either has a solution or is finite. 2 complete if all action costs are
> € > 0; 3 cost-optimal if action costs are all identical; # if both directions are breadth-first
or uniform-cost.

For Graph-Search Versions:
m t-énsglczngth ofanypathinthe |, DFS is complete for Finite Spaces

. All algorithms: Space and Time complexities bounded by the
size of the state space: |Vertices| + |Edges|
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