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Robotics – application perspective
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Application

Base Platform

Sensors

Autonomy,
modes of 
operation

Computer systems
Software architecture
Communication:
• WiFi, 4G/5G, 

dedicated comm 
links

Purpose/Task
Environment
Budget

Mobility:
• Wheels, belts, 

legs, propellers, 
rotors?

Manipulators:
• arms, grippers?

Accuracy
Range
Reliability
Redundancy

…



Sensors

Summary of most commonly used sensors for mobile robots.
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Any 
weather

Any 
light

Detection in 
15m

Fast 
response

Weight Affordable

CCD Camera/stereo/
Omnidirectional/o. flow C C C C

Ultrasonic C C C C
Scanning laser

(LiDAR, LRF) C C C C

3D Scanning laser C C C*
Millimeter Wave Radar C C C C

* scanning laser on a tilting unit



Sensors cont’d
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waymo.com



Sensors cont’d
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tesla.com



Sensors - common interfaces

• analog - voltage level

• digital:
• pulse width modulation - PWM

• serial connections e.g.:

• RS232

• I2C

• SPI

• USB

• Ethernet

• …

7TDDC17 Robotics/Perception II



Outline
• Sensors - summary
• Computer systems
• Robotic architectures
• Navigation:
•Mapping and Localization
•Motion planning
•Motion control



Computer systems

Many challenges and trade-offs!

• power consumption
• size & weight

• computational power

• robustness

• different operational conditions: moisture, temperature, dirt, 
vibrations, etc.

• cloud computing?
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Computer systems cont’d

PC104 - standardised form factor

• industrial grade
• relatively small size

• highly configurable

• variety of components

• build your own stack!
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~10x10cm



Computer systems cont’d

NUC - Next Unit of Computing

• small form-factor
• single board computer

• limited IO capability
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~10x10cm

https://www.intel.com/content/www/us/en/products/details/nuc/mini-pcs/products.html

https://www.intel.com/content/www/us/en/products/details/nuc/mini-pcs/products.html


Computer systems cont’d

Custom made embedded systems

• with integrated sensor suite
• micro scale, light weight

• fitted for platform design
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Computer systems cont’d

Example system design:
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Telesystems/Telemanipulators
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Delay

https://www.youtube.com/watch?v=YUxii1yV-2c



Reactive systems

Robot responses directly to sensor stimuli.
Intelligence emerges from combination of simple behaviours.
For example - subsumption architecture (Rodney Brooks, MIT):

• concurrent behaviours

• higher levels subsume behaviours of lower layers

• no internal representation

• finite state machines
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Sense Act

https://www.youtube.com/watch?v=9u0CIQ8P_qk

https://www.youtube.com/watch?v=9u0CIQ8P_qk


Limitations of Reactive Systems

• Agents without environment models must have sufficient 
information available from local environment

• Decisions are based on local environment - how does it take into 
account non-local information

• Difficult to make reactive agents that learn

• Behaviour emerges from component interactions within the 
environment - hard to engineer specific agents (no principled 
methodology exists)

• Dynamics of interactions between behaviours become too 
complex to understand
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Hierarchical Systems

Sensors
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Sense ActPlan

Actuators

Extract
features

combine features 
into model Plan task Execute 

task
Control 
motors



Hierarchical Systems (Shakey Example)

Shakey (1966 - 1972)

• Developed at the Stanford Research Institute
• Used STRIPS planner (operators, pre and post conditions)

• Navigated in an office environment, trying to satisfy a goal given to it 
on a teletype. It would, depending on the goal and circumstances, 
navigate around obstacles consisting of large painted blocks and 
wedges, push them out of the way, or push them to some desired 
location.

• Primary sensor: black-and-white television camera

• Sting symbolic logic model of the world in the form of first order 
predicate calculus

• Very careful engineering of the environment
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https://www.youtube.com/watch?v=GmU7SimFkpU

https://www.youtube.com/watch?v=GmU7SimFkpU


Hybrid systems (three-layer architecture)
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Sense Act

Plan



Hybrid systems (Minerva Example)

Tour guide at the Smithsonian's National

Museum of American History (1998)
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http://www.cs.cmu.edu/~thrun/movies/minerva.mpg

http://www.cs.cmu.edu/~thrun/movies/minerva.mpg


Hybrid systems (HDR3 – AIICS/IDA @ LiU Example)
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Navigation
Mapping – Localization – SLAM – State Estimation – Control
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Navigation

Mapping

Create a model of the 
environment.
Assumes that we know 
where the robot and 
its sensors are.

Localization SLAM

Motion 
Planning Control

State 
Estimation

How do I safely get from 
point A to B?

Estimate position (pose) of 
a robot in the environment, 
or poses of landmarks in the 
environment – sensor data 
can be noisy

Where am I?
Application of state 
estimation
to calculate robot location
(e.g. x, y, orientation - 
pose).

One of the basic 
functionalities required 
for any real world 
deployment:
• need to know where 

we are
• what the 

environment looks 
like

Simultaneous Localization 
and Mapping

How do I execute planned 
motion?
E.g. generate control signals 
to follow planned trajectory 
(velocity, position 
commands, etc.)



0o
View from top

LiDAR – recap

Active sensor based on time of flight principle

• emits light waves from a laser
• measures the time it took for the signal to return to calculate the 

distance
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View from top

LiDAR – recap cont’d

SICK LMS (single line sensor):

• Range (d): 80m

• Field of View - horizontal (a): 0o-180o

• Angular resolution - horizontal (b): 
0.25o-1o
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a
b

d

View from side

Velodyne Puck (multi-line sensor):

• Range (d): 100m

• Field of View - horizontal (a): 360o

• Angular resolution - horizontal (b): 
0.1o-0.4o

• Field of View - vertical (g): ±15o

• Angular resolution - vertical (f): 2o

g

f



LiDAR – recap cont’d
27TDDC17 Robotics/Perception II

Velodyne:
https://www.youtube.com/watch?v=WPtHRVdWXSI
https://www.youtube.com/watch?v=KxWrWPpSE8I

SICK LMS stationary
range data at certain height

SICK LMS with tilt 
mechanism

Velodyne stationary

https://www.youtube.com/watch?v=WPtHRVdWXSI
https://www.youtube.com/watch?v=KxWrWPpSE8I


Mapping
Assume we use a mobile robot platform equipped with a LiDAR sensor
Simple idea: combine measurement of robot motion with LiDAR sensor readings

Measurement of robot motion - state estimation, e.g. odometry, dead reckoning
• Simple odometry - wheel encoders that calculate how many times wheels turned
• Visual odometry etc. – e.g. optical flow sensor, or use sensor fusion to produce more 

accurate estimation of motion
There will always be a measurement error when calculating the state - depending on the 
technique/sensor used it can be smaller or larger
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Scan at x0,y0 Scan at x1,y1 Scans added
y

x



Mapping cont’d
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Based only on odometry + LiDAR range data



Scan matching
Calculate rotation and translation between two consecutive LiDAR scans, which will correct for odometry 

error.

Iterative Closest Point (ICP) – iteratively minimize the sum of square differences between two pairs of 

points which are selected from reference and a source scan.

Input: reference scan (blue), source scan (red).

Output: rotation and translation between reference and source scans. 
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https://en.wikipedia.org/wiki/Iterative_closest_point

?

https://en.wikipedia.org/wiki/Iterative_closest_point


Mapping cont’d
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Based only on odometry + LiDAR range data + scan matching (ICP)



Mapping cont’d
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Based only on odometry + LiDAR range data + scan matching (ICP)
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Temporal inference from sequences of actions and measurements → dynamic Bayes 
network of first order Markov process

Example: holonomic robot with range sensor, 

estimate pose while moving – map is known!

next belief state? → Bayesian inference problem

Localization
34TDDC17 Robotics/Perception II

Xt = (xt, yt, q) – state of the robot at time t -> not observable

Zt = (range1, range2, range3, …) – sensor reading at time t -> observable

At = (vt, wt) – known action executed at time t

P(Xt) = P(Xt |z1:t , a1:t-1) – current believe state (captures past)

P(Xt+1 |z1:t+1 , a1:t) = ? given P(Xt) and new observation zt+1

Xt

range1

range2

range3

…



Graphical Model
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known actions

unknown

sensor readings

M known map



Recursive filtering equation

using Bayes’ rule, Markov assumption, theorem of total probability

Motion model: deterministic state prediction + noise

Sensor model: likelihood of making observation zt+1 when robot is in state Xt+1
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P(Xt+1 |z1:t+1 , a1:t) = !  P(zt+1 |Xt+1) ∫  P(Xt+1 | xt, at)     P(Xt | z1:t, a1:t-1)   dxt

sensor model motion model previous
believe state



Motion and sensor model

Assume Gaussian noise in motion prediction, sensor range measurements
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Graphical Model
38TDDC17 Robotics/Perception II

known actions

unknown

sensor readings

sensor model

motion model

M known map



Localization algorithms

Particle filter (Monte Carlo localization):
• belief state - a collection of particles that correspond to states

• belief state sampled, each sample weighted by likelihood it assigns to new 
evidence, population resampled using weights

Kalman filter:
• belief state - a single multivariate Gaussian

• each step maps a Gaussian into a new Gaussian, i.e. it computes a new mean 
and covariance matrix from the previous mean and covariance matrix

• assumes linear motion and measurement models (linearisation →extended KF)
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Global Localization (Particle Filter Examples)
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P(Xt+1 |z1:t+1 , a1:t) = !  P(zt+1 |Xt+1) 

∫  P(Xt+1 | xt, at)     P(Xt | z1:t, a1:t-1) dxt

sensor model

motion model previous believe state



Global Localization (Particle Filter Examples)
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Intuitive explanation:
• initialize particles
• execute known action
• apply motion model
• update particle 

weights based on 
sensor model

• resample based on 
weights

• repeat



Global Localization (Particle Filter Examples)
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After several iterations – two likely robot 
position estimates:

After more iterations – converged to a single  
robot position estimation:



Global Localization 
(Particle Filter Examples; sonar vs laser)
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SLAM

Localization: given map and observed landmarks, update pose distribution

Mapping: given pose and observed landmarks, update map distribution

SLAM: given observed landmarks, update pose and map distribution

Probabilistic formulation of SLAM:

add landmark locations L1, . . . , Lk to the state vector, proceed as for localization

Problems:
• dimensionality of map features has to be adjusted dynamically

• identification of already mapped features

44TDDC17 Robotics/Perception II



SLAM Example
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https://youtu.be/F8pdObV_df4
http://wiki.ros.org/hector_slam

https://youtu.be/F8pdObV_df4
http://wiki.ros.org/hector_slam
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Motion Planning

Motion types:

• point-to-point

• compliant motion (screwing, pushing boxes)

Representations: configuration space vs workspace

Kinematic state: robot’s configuration (location, orientation, joint angles), no 
velocities, no forces

Path planning: find path from one configuration to another

Problem: continuous state space, can be high-dimensional
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Motion Planning - representations

Workspace - physical 3D space (e.g. joint positions)
Robot has rigid body of finite size
Well-suited for collision checking

Problem: linkage constraints (not all workspace coordinates attainable) 
makes path planning difficult in workspace

Configuration Space (C-space) - space of robot states (e.g. joint angles)
Robot is a point, obstacles have complex shapes

Problem: tasks are expressed in workspace coordinates, obstacle 
representation problematic
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Workspace vs. Configuration Space
49TDDC17 Robotics/Perception II



Cfree

Workspace vs. Configuration Space
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O

Cobs

O

x x

yy

q – a robot configuration e.g. (x1,y1,q1) 
A(q) – set of points on the robot in configuration q

.

x1

y1
q1

x1

y1

A(q)

W – workspace world either ℝ2 or ℝ3 

O – obstacle region, O⊂W
C – all possible robot configurations
Cobs = {q : q ∈ C  and  A(q) ∩ O ≠ {} }
Cfree=C – Cobs



Motion Planning - representations

Free space (attainable configurations) 

vs

occupied space (not attainable configurations, obstacles)

Planner may generate configurations in configuration space but check for collisions 
in workspace
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Workspace
Configuration 

Space

Inverse kinematics
(often hard and ill-posed problem)

Forward Kinematics
(simple, well-posed problem)



Path Planning

Basic problem: convert infinite number of states into finite state space

Cell decomposition:

• divide up space into simple cells,

• each of which can be traversed “easily”

Skeletonization:

• identify a finite number of easily connected points/lines

• form a graph such that any two points are connected by a path
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Cell Decomposition
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Grayscale shading - cost from the grid 
cell do the goal



Cell Decomposition

Problem: may be no path in pure free space cells

Soundness

(wrong solution if cells are mixed)

vs.

Completeness

(no solution if only pure free cells considered)

Solution: recursive decomposition of mixed (free+obstacle) cells or exact decomposition. 
Does not scale well for higher dimensions.
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Skeletonization
Visibility graphs
Find lines connecting obstacle vertices through free space, build and search graph; not for higher 

dimensions

Voronoi graphs
find all points in free space equidistant to two or more obstacles, build and search graph; not for higher 

dimensions

Sample-based approaches
Probabilistic roadmaps (PRM):

• Offline Phase: generate randomly large number of configurations in free space, build graph

• Online Phase: search graph

Rapidly exploring Random Trees (RRT):

• generate a tree rooted in start configuration by random sampling of free space until goal 

configuration is reached (query phase)

Scales to higher dimensions but incomplete
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Visibility and Voronoi Graph
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PRM and RRT planning procedure example
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PRM Example
(construction phase)
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Generate random 
configurations

Make connectionsGenerate random 
configurations

Resulting free space graph 
representation



PRM Example
(query phase)
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Add start and goal 
configurations to the 
roadmap

A* search
(+optional postprocessing)

start

goal

start

goal

start

goal



PRM Example
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RRT
61TDDC17 Robotics/Perception II

https://en.wikipedia.org/wiki/Rapidly-exploring_random_tree

RAND_CONF – samples random configuration from free space qrand.
NEAREST_VERTEX – find qnear i.e. the closest vertex in existing graph G from qrand.
NEW_CONF – select new configuration qnew by moving at incremental distance Dq from qnear in 
the direction of qrand.

qrand1

qnear

qrand2

qnew1

qnew2

Dq

Dq

Demo: https://demonstrations.wolfram.com/RapidlyExploringRandomTreeRRTAndRRT/

https://en.wikipedia.org/wiki/Rapidly-exploring_random_tree
https://demonstrations.wolfram.com/RapidlyExploringRandomTreeRRTAndRRT/


RRT*

Asymptotically optimal: Converges to the optimal solution as more and more milestones are sampled.
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https://www.youtube.com/watch?v=YKiQTJpPFkA

https://www.youtube.com/watch?v=YKiQTJpPFkA


PRM/RRT - Post Processing Example

Example curve replacement and path optimization:

63TDDC17 Robotics/Perception II

Transformation from linear to cubic (smooth) path segments:

Alignment of nodes for improved path quality:
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Motion Control

• Path planner assumes robot can follow any path

• Path following involves forces: friction, gravity, inertia,

• Dynamic state: kinematic state + robot’s velocities

• Transition models expressed as differential equations

• Robot’s inertia limits manoeuvrability

• Problem: including dynamic state in planners makes motion planning intractable

• Solution: simple kinematic planners + low-level controller for force calculation

• Other solution: motion control without planning: potential field and reactive 
control
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Path Execution Example
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State
Estimators

Trajectory 
Generator

Attitude 
Controller

Collision-free 
path

Control
inputs

Position/Velocity 
Controller

Vehicle 
Dynamics

Outer control loop Inner control loop

• Controllers: techniques for generating robot controls in real time using feedback 
from the environment to achieve a control objective



PID Example
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x0=0; v0=0 xgoal=15

e(t0)=xgoal-x0=15

present

past

future



Closed-loop control
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P control:
KP= 1.0

P control:
KP= 0.1

PD control:
KP= 0.3 KD=0.3



Model Predictive Control

1. At time k, solve open loop optimal control problem over a specified finite time horizon
2. Apply first input
3. At time k+1, repeat from step 1.
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https://en.wikipedia.org/wiki/Model_predictive_control

https://en.wikipedia.org/wiki/Model_predictive_control


Model Predictive Control
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https://www.youtube.com/watch?v=dL_ZFSvLXlU

Optimizer

Predictor 
(Model)

Reference
trajectory

Predicted outputs

+

-

Future errors Process

Cost
function

Constraints

Output

Future
inputs

MPC

Predictor/Model: fundamental or empirical
Constraints e.g. on inputs, outputs, state are respected 

https://www.youtube.com/watch?v=dL_ZFSvLXlU


MPC – simple example
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https://medium.com/@david010/vehicle-mpc-controller-33ae813cf3be
https://github.com/cipher982/MPC-vehicle-controller

https://medium.com/@david010/vehicle-mpc-controller-33ae813cf3be
https://github.com/cipher982/MPC-vehicle-controller


MPC and Learning
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https://www.youtube.com/watch?v=QYYknZ20Zcw
https://www.youtube.com/watch?v=xa53w1tyZl0

https://doi.org/10.3384/diss.diva-163419

https://www.youtube.com/watch?v=QYYknZ20Zcw
https://www.youtube.com/watch?v=xa53w1tyZl0
https://doi.org/10.3384/diss.diva-163419


MPC and Learning
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https://www.youtube.com/watch?v=QYYknZ20Zcw
https://www.youtube.com/watch?v=xa53w1tyZl0

https://doi.org/10.3384/diss.diva-163419

https://www.youtube.com/watch?v=QYYknZ20Zcw
https://www.youtube.com/watch?v=xa53w1tyZl0
https://doi.org/10.3384/diss.diva-163419


MPC and Learning
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https://www.youtube.com/watch?v=dL_ZFSvLXlU

https://www.youtube.com/watch?v=dL_ZFSvLXlU
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