
Mariusz Wzorek
IDA/AIICS

TDDC17
Robotics/Perception II

Outline
• Sensors - summary
• Computer systems
• Robotic architectures
• Navigation:
•Mapping and Localization
•Motion planning
•Motion control

Robotics – application perspective
3TDDC17 Robotics/Perception II

Application

Base Platform

Sensors

Autonomy,
modes of
operation

Computer systems
Software architecture
Communication:
• WiFi, 4G/5G,

dedicated comm
links

Purpose/Task
Environment
Budget

Mobility:
• Wheels, belts,

legs, propellers,
rotors?

Manipulators:
• arms, grippers?

Accuracy
Range
Reliability
Redundancy

…

Sensors

Summary of most commonly used sensors for mobile robots.

4TDDC17 Robotics/Perception II

Any
weather

Any
light

Detection in
15m

Fast
response

Weight Affordable

CCD Camera/stereo/
Omnidirectional/o. flow C C C C

Ultrasonic C C C C
Scanning laser

(LiDAR, LRF) C C C C

3D Scanning laser C C C*
Millimeter Wave Radar C C C C

* scanning laser on a tilting unit

Sensors cont’d
5TDDC17 Robotics/Perception II

waymo.com

Sensors cont’d
6TDDC17 Robotics/Perception II

tesla.com

Sensors - common interfaces

• analog - voltage level

• digital:
• pulse width modulation - PWM

• serial connections e.g.:

• RS232

• I2C

• SPI

• USB

• Ethernet

• …

7TDDC17 Robotics/Perception II

Outline
• Sensors - summary
• Computer systems
• Robotic architectures
• Navigation:
•Mapping and Localization
•Motion planning
•Motion control

Computer systems

Many challenges and trade-offs!

• power consumption
• size & weight

• computational power

• robustness

• different operational conditions: moisture, temperature, dirt,
vibrations, etc.

• cloud computing?

9TDDC17 Robotics/Perception II

Computer systems cont’d

PC104 - standardised form factor

• industrial grade
• relatively small size

• highly configurable

• variety of components

• build your own stack!

10TDDC17 Robotics/Perception II

~10x10cm

Computer systems cont’d

NUC - Next Unit of Computing

• small form-factor
• single board computer

• limited IO capability

11TDDC17 Robotics/Perception II

~10x10cm

https://www.intel.com/content/www/us/en/products/details/nuc/mini-pcs/products.html

https://www.intel.com/content/www/us/en/products/details/nuc/mini-pcs/products.html

Computer systems cont’d

Custom made embedded systems

• with integrated sensor suite
• micro scale, light weight

• fitted for platform design

12TDDC17 Robotics/Perception II

Computer systems cont’d

Example system design:

13TDDC17 Robotics/Perception II

!"#$
• !"#$!%&'!()*+,-./!

• !"!%0!12/!

• !"!%0!3456!789:)!

%&#$
• !;<<!/&'!()*+,-!===!

• !>?@!/0!12/!

• !?">!/0!3456!789:)!

'%#$
• !;<<!/&'!()*+,-!===!

• !>?@!/0!12/!

• !?">!/0!3456!789:)!

AB6)8*)B!

CD9BE6!

FFG!FHIH8!

F4-)84!

J6)8-4I!

F4-)84!

(4*!

J9IB!

K*9B!

L4-464!1/2M!NL2CO!L2FCP!

048H-)B89E!(8)55,8)!2I+-)B)8!

%(C!1)E)9:)8!

Q45)8!14*R)!S9*7)8!

/H7,I)!

AB6)8*)B!T97)H!C)8:)8!

U<>#""V!W98)I)55!0897R)!

%C/!/H7)-5!

()8E)X+H*!C)*5H8!C,9B)!

FH--,*9E4+H*!/H7,I)!

(SF!C)*5H8!C,9B)!

CB)8)H.T959H*!

/H7,I)!

(HD)8!/4*4R)-)*B!K*9B!

AB6)8*)B!

1C>Y>!

2*4IHR!

S98)D98)!

/9*9GT!

1)EH87)85!

Outline
• Sensors - summary
• Computer systems
• Robotic architectures
• Navigation:
•Mapping and Localization
•Motion planning
•Motion control

Telesystems/Telemanipulators
15TDDC17 Robotics/Perception II

Delay

https://www.youtube.com/watch?v=YUxii1yV-2c

Reactive systems

Robot responses directly to sensor stimuli.
Intelligence emerges from combination of simple behaviours.
For example - subsumption architecture (Rodney Brooks, MIT):

• concurrent behaviours

• higher levels subsume behaviours of lower layers

• no internal representation

• finite state machines

16TDDC17 Robotics/Perception II

Sense Act

https://www.youtube.com/watch?v=9u0CIQ8P_qk

https://www.youtube.com/watch?v=9u0CIQ8P_qk

Limitations of Reactive Systems

• Agents without environment models must have sufficient
information available from local environment

• Decisions are based on local environment - how does it take into
account non-local information

• Difficult to make reactive agents that learn

• Behaviour emerges from component interactions within the
environment - hard to engineer specific agents (no principled
methodology exists)

• Dynamics of interactions between behaviours become too
complex to understand

17TDDC17 Robotics/Perception II

Hierarchical Systems

Sensors

18TDDC17 Robotics/Perception II

Sense ActPlan

Actuators

Extract
features

combine features
into model Plan task Execute

task
Control
motors

Hierarchical Systems (Shakey Example)

Shakey (1966 - 1972)

• Developed at the Stanford Research Institute
• Used STRIPS planner (operators, pre and post conditions)

• Navigated in an office environment, trying to satisfy a goal given to it
on a teletype. It would, depending on the goal and circumstances,
navigate around obstacles consisting of large painted blocks and
wedges, push them out of the way, or push them to some desired
location.

• Primary sensor: black-and-white television camera

• Sting symbolic logic model of the world in the form of first order
predicate calculus

• Very careful engineering of the environment

19TDDC17 Robotics/Perception II

https://www.youtube.com/watch?v=GmU7SimFkpU

https://www.youtube.com/watch?v=GmU7SimFkpU

Hybrid systems (three-layer architecture)
20TDDC17 Robotics/Perception II

Sense Act

Plan

Hybrid systems (Minerva Example)

Tour guide at the Smithsonian's National

Museum of American History (1998)

21TDDC17 Robotics/Perception II

http://www.cs.cmu.edu/~thrun/movies/minerva.mpg

http://www.cs.cmu.edu/~thrun/movies/minerva.mpg

Hybrid systems (HDR3 – AIICS/IDA @ LiU Example)
22TDDC17 Robotics/Perception II

Outline
• Sensors - summary
• Computer systems
• Robotic architectures
• Navigation:
•Mapping and Localization
•Motion planning
•Motion control

Navigation
Mapping – Localization – SLAM – State Estimation – Control

24TDDC17 Robotics/Perception II

Navigation

Mapping

Create a model of the
environment.
Assumes that we know
where the robot and
its sensors are.

Localization SLAM

Motion
Planning Control

State
Estimation

How do I safely get from
point A to B?

Estimate position (pose) of
a robot in the environment,
or poses of landmarks in the
environment – sensor data
can be noisy

Where am I?
Application of state
estimation
to calculate robot location
(e.g. x, y, orientation -
pose).

One of the basic
functionalities required
for any real world
deployment:
• need to know where

we are
• what the

environment looks
like

Simultaneous Localization
and Mapping

How do I execute planned
motion?
E.g. generate control signals
to follow planned trajectory
(velocity, position
commands, etc.)

0o
View from top

LiDAR – recap

Active sensor based on time of flight principle

• emits light waves from a laser
• measures the time it took for the signal to return to calculate the

distance

25TDDC17 Robotics/Perception II

View from top

LiDAR – recap cont’d

SICK LMS (single line sensor):

• Range (d): 80m

• Field of View - horizontal (a): 0o-180o

• Angular resolution - horizontal (b):
0.25o-1o

26TDDC17 Robotics/Perception II

a
b

d

View from side

Velodyne Puck (multi-line sensor):

• Range (d): 100m

• Field of View - horizontal (a): 360o

• Angular resolution - horizontal (b):
0.1o-0.4o

• Field of View - vertical (g): ±15o

• Angular resolution - vertical (f): 2o

g

f

LiDAR – recap cont’d
27TDDC17 Robotics/Perception II

Velodyne:
https://www.youtube.com/watch?v=WPtHRVdWXSI
https://www.youtube.com/watch?v=KxWrWPpSE8I

SICK LMS stationary
range data at certain height

SICK LMS with tilt
mechanism

Velodyne stationary

https://www.youtube.com/watch?v=WPtHRVdWXSI
https://www.youtube.com/watch?v=KxWrWPpSE8I

Mapping
Assume we use a mobile robot platform equipped with a LiDAR sensor
Simple idea: combine measurement of robot motion with LiDAR sensor readings

Measurement of robot motion - state estimation, e.g. odometry, dead reckoning
• Simple odometry - wheel encoders that calculate how many times wheels turned
• Visual odometry etc. – e.g. optical flow sensor, or use sensor fusion to produce more

accurate estimation of motion
There will always be a measurement error when calculating the state - depending on the
technique/sensor used it can be smaller or larger

28TDDC17 Robotics/Perception II

Scan at x0,y0 Scan at x1,y1 Scans added
y

x

Mapping cont’d
29TDDC17 Robotics/Perception II

Based only on odometry + LiDAR range data

Scan matching
Calculate rotation and translation between two consecutive LiDAR scans, which will correct for odometry

error.

Iterative Closest Point (ICP) – iteratively minimize the sum of square differences between two pairs of

points which are selected from reference and a source scan.

Input: reference scan (blue), source scan (red).

Output: rotation and translation between reference and source scans.

30TDDC17 Robotics/Perception II

https://en.wikipedia.org/wiki/Iterative_closest_point

?

https://en.wikipedia.org/wiki/Iterative_closest_point

Mapping cont’d
31TDDC17 Robotics/Perception II

Based only on odometry + LiDAR range data + scan matching (ICP)

Mapping cont’d
32TDDC17 Robotics/Perception II

Based only on odometry + LiDAR range data + scan matching (ICP)

Outline
• Sensors - summary
• Computer systems
• Robotic architectures
• Navigation:
•Mapping and Localization
•Motion planning
•Motion control

Temporal inference from sequences of actions and measurements → dynamic Bayes
network of first order Markov process

Example: holonomic robot with range sensor,

estimate pose while moving – map is known!

next belief state? → Bayesian inference problem

Localization
34TDDC17 Robotics/Perception II

Xt = (xt, yt, q) – state of the robot at time t -> not observable

Zt = (range1, range2, range3, …) – sensor reading at time t -> observable

At = (vt, wt) – known action executed at time t

P(Xt) = P(Xt |z1:t , a1:t-1) – current believe state (captures past)

P(Xt+1 |z1:t+1 , a1:t) = ? given P(Xt) and new observation zt+1

Xt

range1

range2

range3

…

Graphical Model
35TDDC17 Robotics/Perception II

known actions

unknown

sensor readings

M known map

Recursive filtering equation

using Bayes’ rule, Markov assumption, theorem of total probability

Motion model: deterministic state prediction + noise

Sensor model: likelihood of making observation zt+1 when robot is in state Xt+1

36TDDC17 Robotics/Perception II

P(Xt+1 |z1:t+1 , a1:t) = ! P(zt+1 |Xt+1) ∫ P(Xt+1 | xt, at) P(Xt | z1:t, a1:t-1) dxt

sensor model motion model previous
believe state

Motion and sensor model

Assume Gaussian noise in motion prediction, sensor range measurements

37TDDC17 Robotics/Perception II

Graphical Model
38TDDC17 Robotics/Perception II

known actions

unknown

sensor readings

sensor model

motion model

M known map

Localization algorithms

Particle filter (Monte Carlo localization):
• belief state - a collection of particles that correspond to states

• belief state sampled, each sample weighted by likelihood it assigns to new
evidence, population resampled using weights

Kalman filter:
• belief state - a single multivariate Gaussian

• each step maps a Gaussian into a new Gaussian, i.e. it computes a new mean
and covariance matrix from the previous mean and covariance matrix

• assumes linear motion and measurement models (linearisation →extended KF)

39TDDC17 Robotics/Perception II

Global Localization (Particle Filter Examples)
40TDDC17 Robotics/Perception II

P(Xt+1 |z1:t+1 , a1:t) = ! P(zt+1 |Xt+1)

∫ P(Xt+1 | xt, at) P(Xt | z1:t, a1:t-1) dxt

sensor model

motion model previous believe state

Global Localization (Particle Filter Examples)
41TDDC17 Robotics/Perception II

Intuitive explanation:
• initialize particles
• execute known action
• apply motion model
• update particle

weights based on
sensor model

• resample based on
weights

• repeat

Global Localization (Particle Filter Examples)
42TDDC17 Robotics/Perception II

After several iterations – two likely robot
position estimates:

After more iterations – converged to a single
robot position estimation:

Global Localization
(Particle Filter Examples; sonar vs laser)

43TDDC17 Robotics/Perception II

SLAM

Localization: given map and observed landmarks, update pose distribution

Mapping: given pose and observed landmarks, update map distribution

SLAM: given observed landmarks, update pose and map distribution

Probabilistic formulation of SLAM:

add landmark locations L1, . . . , Lk to the state vector, proceed as for localization

Problems:
• dimensionality of map features has to be adjusted dynamically

• identification of already mapped features

44TDDC17 Robotics/Perception II

SLAM Example
45TDDC17 Robotics/Perception II

https://youtu.be/F8pdObV_df4
http://wiki.ros.org/hector_slam

https://youtu.be/F8pdObV_df4
http://wiki.ros.org/hector_slam

Outline
• Sensors - summary
• Computer systems
• Robotic architectures
• Navigation:
•Mapping and Localization
•Motion planning
•Motion control

Motion Planning

Motion types:

• point-to-point

• compliant motion (screwing, pushing boxes)

Representations: configuration space vs workspace

Kinematic state: robot’s configuration (location, orientation, joint angles), no
velocities, no forces

Path planning: find path from one configuration to another

Problem: continuous state space, can be high-dimensional

47TDDC17 Robotics/Perception II

Motion Planning - representations

Workspace - physical 3D space (e.g. joint positions)
Robot has rigid body of finite size
Well-suited for collision checking

Problem: linkage constraints (not all workspace coordinates attainable)
makes path planning difficult in workspace

Configuration Space (C-space) - space of robot states (e.g. joint angles)
Robot is a point, obstacles have complex shapes

Problem: tasks are expressed in workspace coordinates, obstacle
representation problematic

48TDDC17 Robotics/Perception II

Workspace vs. Configuration Space
49TDDC17 Robotics/Perception II

Cfree

Workspace vs. Configuration Space
50TDDC17 Robotics/Perception II

O

Cobs

O

x x

yy

q – a robot configuration e.g. (x1,y1,q1)
A(q) – set of points on the robot in configuration q

.

x1

y1
q1

x1

y1

A(q)

W – workspace world either ℝ2 or ℝ3

O – obstacle region, O⊂W
C – all possible robot configurations
Cobs = {q : q ∈ C and A(q) ∩ O ≠ {} }
Cfree=C – Cobs

Motion Planning - representations

Free space (attainable configurations)

vs

occupied space (not attainable configurations, obstacles)

Planner may generate configurations in configuration space but check for collisions
in workspace

51TDDC17 Robotics/Perception II

Workspace
Configuration

Space

Inverse kinematics
(often hard and ill-posed problem)

Forward Kinematics
(simple, well-posed problem)

Path Planning

Basic problem: convert infinite number of states into finite state space

Cell decomposition:

• divide up space into simple cells,

• each of which can be traversed “easily”

Skeletonization:

• identify a finite number of easily connected points/lines

• form a graph such that any two points are connected by a path

52TDDC17 Robotics/Perception II

Cell Decomposition
53TDDC17 Robotics/Perception II

Grayscale shading - cost from the grid
cell do the goal

Cell Decomposition

Problem: may be no path in pure free space cells

Soundness

(wrong solution if cells are mixed)

vs.

Completeness

(no solution if only pure free cells considered)

Solution: recursive decomposition of mixed (free+obstacle) cells or exact decomposition.
Does not scale well for higher dimensions.

54TDDC17 Robotics/Perception II

Skeletonization
Visibility graphs
Find lines connecting obstacle vertices through free space, build and search graph; not for higher

dimensions

Voronoi graphs
find all points in free space equidistant to two or more obstacles, build and search graph; not for higher

dimensions

Sample-based approaches
Probabilistic roadmaps (PRM):

• Offline Phase: generate randomly large number of configurations in free space, build graph

• Online Phase: search graph

Rapidly exploring Random Trees (RRT):

• generate a tree rooted in start configuration by random sampling of free space until goal

configuration is reached (query phase)

Scales to higher dimensions but incomplete

55TDDC17 Robotics/Perception II

Visibility and Voronoi Graph
56TDDC17 Robotics/Perception II

PRM and RRT planning procedure example
57TDDC17 Robotics/Perception II

PRM Example
(construction phase)

58TDDC17 Robotics/Perception II

Generate random
configurations

Make connectionsGenerate random
configurations

Resulting free space graph
representation

PRM Example
(query phase)

59TDDC17 Robotics/Perception II

Add start and goal
configurations to the
roadmap

A* search
(+optional postprocessing)

start

goal

start

goal

start

goal

PRM Example
60TDDC17 Robotics/Perception II

RRT
61TDDC17 Robotics/Perception II

https://en.wikipedia.org/wiki/Rapidly-exploring_random_tree

RAND_CONF – samples random configuration from free space qrand.
NEAREST_VERTEX – find qnear i.e. the closest vertex in existing graph G from qrand.
NEW_CONF – select new configuration qnew by moving at incremental distance Dq from qnear in
the direction of qrand.

qrand1

qnear

qrand2

qnew1

qnew2

Dq

Dq

Demo: https://demonstrations.wolfram.com/RapidlyExploringRandomTreeRRTAndRRT/

https://en.wikipedia.org/wiki/Rapidly-exploring_random_tree
https://demonstrations.wolfram.com/RapidlyExploringRandomTreeRRTAndRRT/

RRT*

Asymptotically optimal: Converges to the optimal solution as more and more milestones are sampled.

62TDDC17 Robotics/Perception II

https://www.youtube.com/watch?v=YKiQTJpPFkA

https://www.youtube.com/watch?v=YKiQTJpPFkA

PRM/RRT - Post Processing Example

Example curve replacement and path optimization:

63TDDC17 Robotics/Perception II

Transformation from linear to cubic (smooth) path segments:

Alignment of nodes for improved path quality:

Outline
• Sensors - summary
• Computer systems
• Robotic architectures
• Navigation:
•Mapping and Localization
•Motion planning
•Motion control

Motion Control

• Path planner assumes robot can follow any path

• Path following involves forces: friction, gravity, inertia,

• Dynamic state: kinematic state + robot’s velocities

• Transition models expressed as differential equations

• Robot’s inertia limits manoeuvrability

• Problem: including dynamic state in planners makes motion planning intractable

• Solution: simple kinematic planners + low-level controller for force calculation

• Other solution: motion control without planning: potential field and reactive
control

65TDDC17 Robotics/Perception II

Path Execution Example
66TDDC17 Robotics/Perception II

State
Estimators

Trajectory
Generator

Attitude
Controller

Collision-free
path

Control
inputs

Position/Velocity
Controller

Vehicle
Dynamics

Outer control loop Inner control loop

• Controllers: techniques for generating robot controls in real time using feedback
from the environment to achieve a control objective

PID Example
67TDDC17 Robotics/Perception II

x0=0; v0=0 xgoal=15

e(t0)=xgoal-x0=15

present

past

future

Closed-loop control
68TDDC17 Robotics/Perception II

P control:
KP= 1.0

P control:
KP= 0.1

PD control:
KP= 0.3 KD=0.3

Model Predictive Control

1. At time k, solve open loop optimal control problem over a specified finite time horizon
2. Apply first input
3. At time k+1, repeat from step 1.

69TDDC17 Robotics/Perception II

https://en.wikipedia.org/wiki/Model_predictive_control

https://en.wikipedia.org/wiki/Model_predictive_control

Model Predictive Control
70TDDC17 Robotics/Perception II

https://www.youtube.com/watch?v=dL_ZFSvLXlU

Optimizer

Predictor
(Model)

Reference
trajectory

Predicted outputs

+

-

Future errors Process

Cost
function

Constraints

Output

Future
inputs

MPC

Predictor/Model: fundamental or empirical
Constraints e.g. on inputs, outputs, state are respected

https://www.youtube.com/watch?v=dL_ZFSvLXlU

MPC – simple example
71TDDC17 Robotics/Perception II

https://medium.com/@david010/vehicle-mpc-controller-33ae813cf3be
https://github.com/cipher982/MPC-vehicle-controller

https://medium.com/@david010/vehicle-mpc-controller-33ae813cf3be
https://github.com/cipher982/MPC-vehicle-controller

MPC and Learning
72TDDC17 Robotics/Perception II

https://www.youtube.com/watch?v=QYYknZ20Zcw
https://www.youtube.com/watch?v=xa53w1tyZl0

https://doi.org/10.3384/diss.diva-163419

https://www.youtube.com/watch?v=QYYknZ20Zcw
https://www.youtube.com/watch?v=xa53w1tyZl0
https://doi.org/10.3384/diss.diva-163419

MPC and Learning
73TDDC17 Robotics/Perception II

https://www.youtube.com/watch?v=QYYknZ20Zcw
https://www.youtube.com/watch?v=xa53w1tyZl0

https://doi.org/10.3384/diss.diva-163419

https://www.youtube.com/watch?v=QYYknZ20Zcw
https://www.youtube.com/watch?v=xa53w1tyZl0
https://doi.org/10.3384/diss.diva-163419

MPC and Learning
74TDDC17 Robotics/Perception II

https://www.youtube.com/watch?v=dL_ZFSvLXlU

https://www.youtube.com/watch?v=dL_ZFSvLXlU

75TDDC17 Robotics/Perception II

