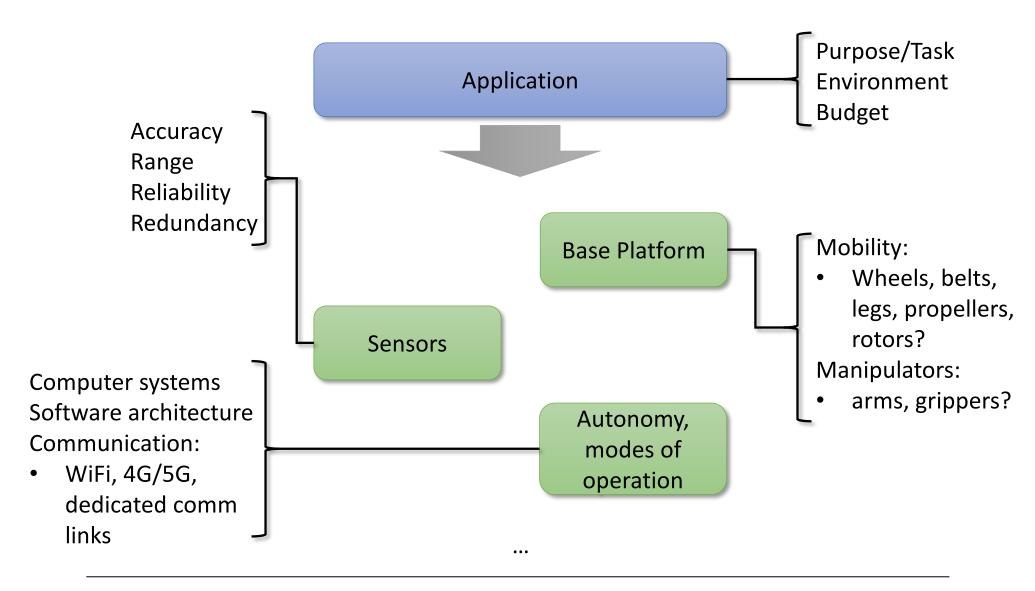
Mariusz Wzorek IDA/AIICS

Outline

- Sensors summary
- Computer systems
- Robotic architectures
- Navigation:
 - Mapping and Localization
 - Motion planning
 - Motion control

Robotics – application perspective



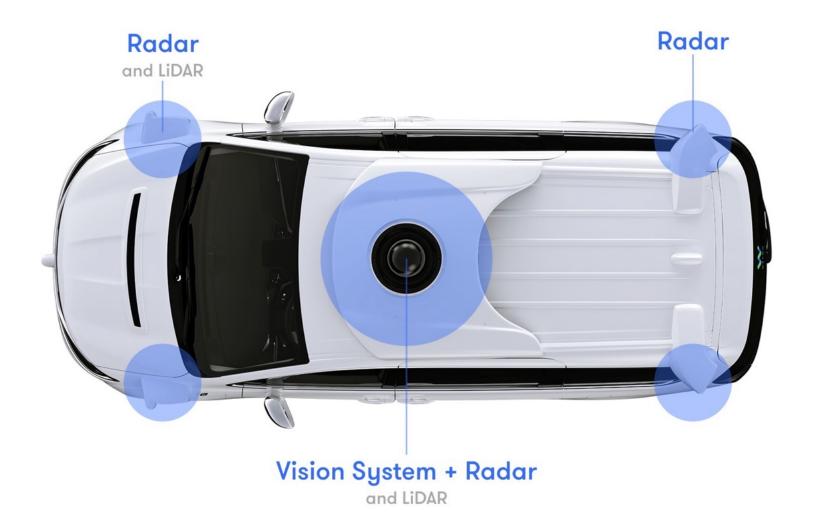
Sensors

Summary of most commonly used sensors for mobile robots.

	Any weather	Any light	Detection in 15m	Fast response	Weight	Affordable
CCD Camera/stereo/ Omnidirectional/o. flow						
Ultrasonic						
Scanning laser (LiDAR, LRF)		(
3D Scanning laser			(*
Millimeter Wave Radar						

^{*} scanning laser on a tilting unit

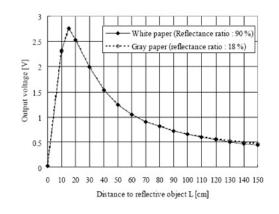
Sensors cont'd

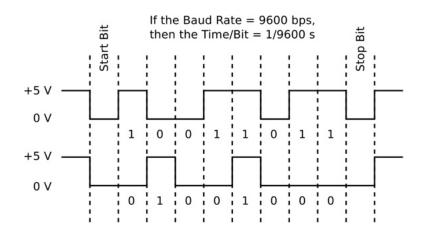


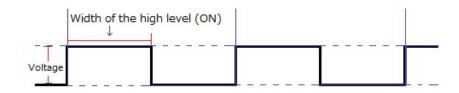
Sensors cont'd

Sensors - common interfaces

- analog voltage level
- digital:
 - pulse width modulation PWM
 - serial connections e.g.:
 - RS232
 - 12C
 - SPI
 - USB
 - Ethernet
 - •







Outline

- Sensors summary
- Computer systems
- Robotic architectures
- Navigation:
 - Mapping and Localization
 - Motion planning
 - Motion control

Computer systems

Many challenges and trade-offs!

- power consumption
- size & weight
- computational power
- robustness
- different operational conditions: moisture, temperature, dirt, vibrations, etc.
- cloud computing?

Computer systems cont'd

PC104 - standardised form factor

- industrial grade
- relatively small size
- highly configurable
- variety of components
- build your own stack!

~10x10cm

Computer systems cont'd

NUC - Next Unit of Computing

- small form-factor
- single board computer
- limited IO capability

Computer systems cont'd

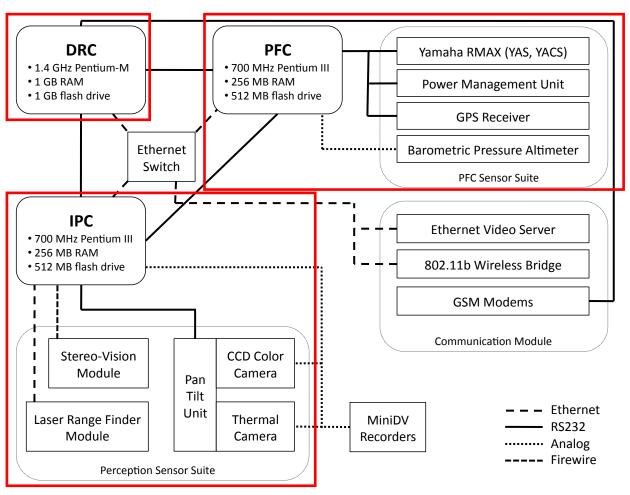
Custom made embedded systems

- with integrated sensor suite
- micro scale, light weight
- fitted for platform design



Computer systems cont'd

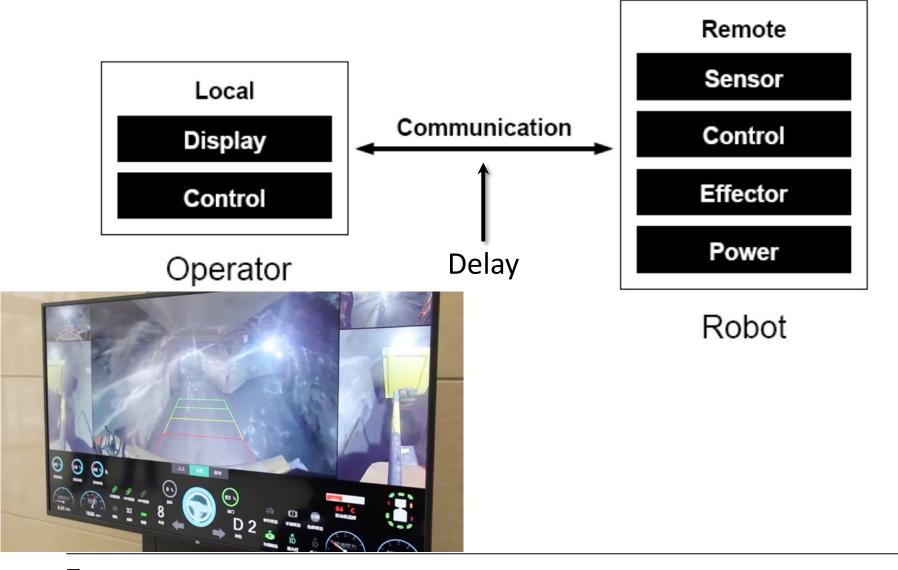
Example system design:



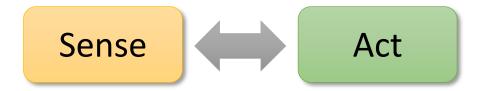
Outline

- Sensors summary
- Computer systems
- Robotic architectures
- Navigation:
 - Mapping and Localization
 - Motion planning
 - Motion control

Telesystems/Telemanipulators



Reactive systems

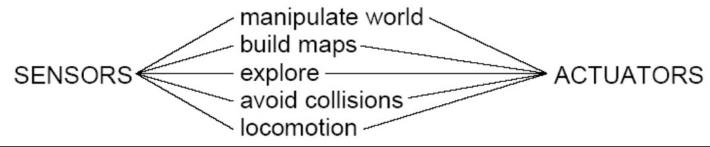


Robot responses directly to sensor stimuli.

Intelligence emerges from combination of simple behaviours.

For example - <u>subsumption architecture</u> (Rodney Brooks, MIT):

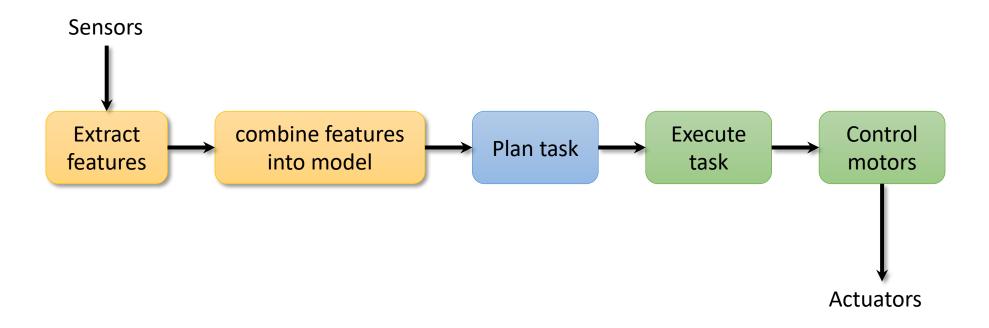
- concurrent behaviours
- higher levels subsume behaviours of lower layers
- no internal representation
- finite state machines



Limitations of Reactive Systems

- Agents without environment models must have sufficient information available from local environment
- Decisions are based on *local* environment how does it take into account *non-local* information
- Difficult to make reactive agents that learn
- Behaviour emerges from component interactions within the environment - hard to engineer specific agents (no principled methodology exists)
- Dynamics of interactions between behaviours become too complex to understand

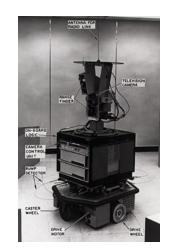
Hierarchical Systems



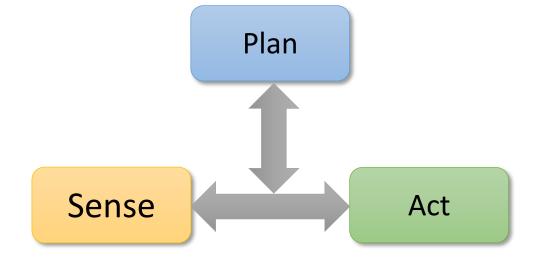
Hierarchical Systems (Shakey Example)

Shakey (1966 - 1972)

- Developed at the Stanford Research Institute
- Used STRIPS planner (operators, pre and post conditions)
- Navigated in an office environment, trying to satisfy a goal given to it on a teletype. It would, depending on the goal and circumstances, navigate around obstacles consisting of large painted blocks and wedges, push them out of the way, or push them to some desired location.
- Primary sensor: black-and-white television camera
- Sting symbolic logic model of the world in the form of first order predicate calculus
- Very careful engineering of the environment



Hybrid systems (three-layer architecture)



Deliberative layer (planning)

Executive layer (sequencing)

Reactive layer (skills, control)

Hybrid systems (Minerva Example)

Tour guide at the Smithsonian's National Museum of American History (1998)

high-level control and learning

(mission planning, scheduling)

human interaction modules

("emotional" FSA, Web interface)

navigation modules

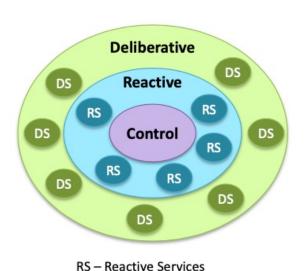
(localization, map learning, path planning)

hardware interface modules

(motors, sensors, Internet)

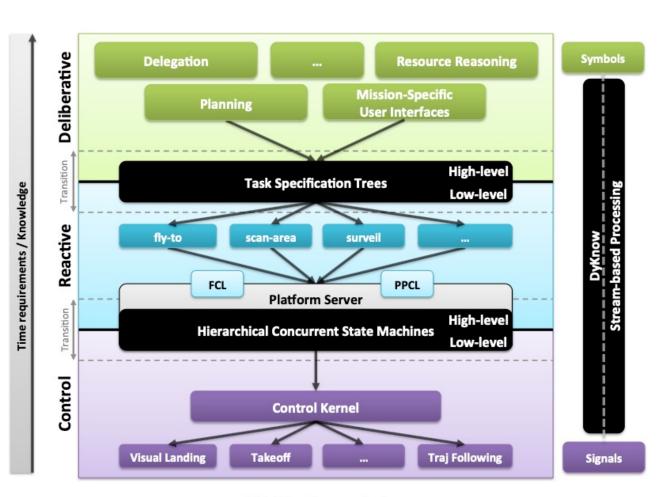
Table 1: Minerva's layered software architecture

Hybrid systems (HDR3 – AIICS/IDA @ LiU Example)



(a) The concentric view

DS - Deliberative Services



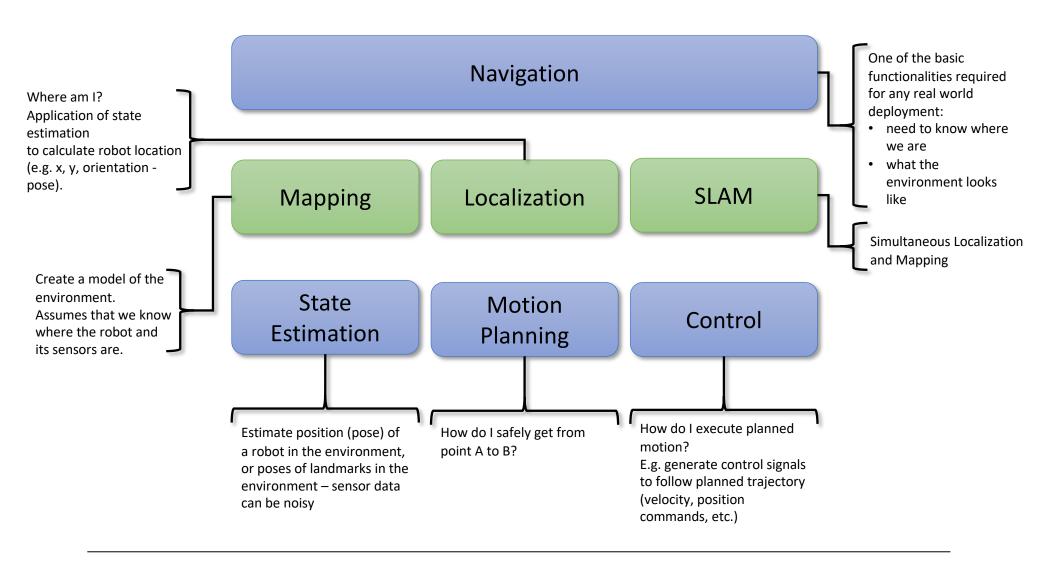
(b) The layered view

Outline

- Sensors summary
- Computer systems
- Robotic architectures
- Navigation:
 - Mapping and Localization
 - Motion planning
 - Motion control

Navigation

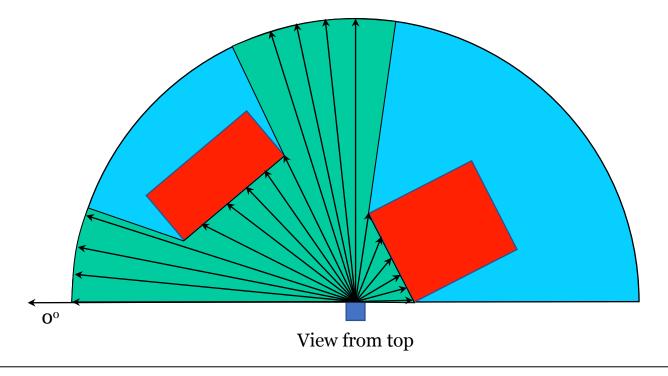
Mapping – Localization – SLAM – State Estimation – Control



LiDAR – recap

Active sensor based on time of flight principle

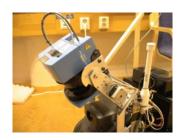
- emits light waves from a laser
- measures the time it took for the signal to return to calculate the distance



LiDAR – recap cont'd

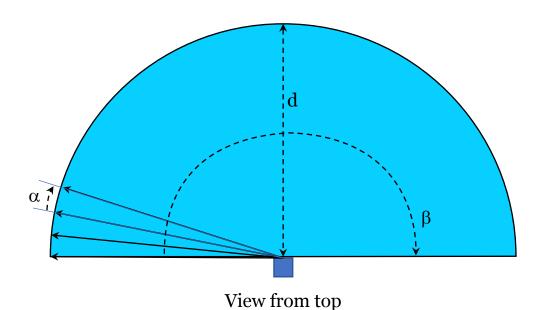
SICK LMS (single line sensor):

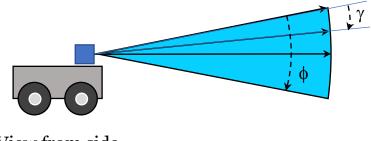
- Range (d): 80m
- Field of View horizontal (a): 0°-180°
- Angular resolution horizontal (b): 0.25°-1°



Velodyne Puck (multi-line sensor):

- Range (d): 100m
- Field of View horizontal (a): 360°
- Angular resolution horizontal (b): 0.1°-0.4°
- Field of View vertical (g): ±15°
- Angular resolution vertical (f): 2°

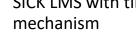


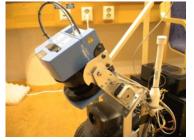


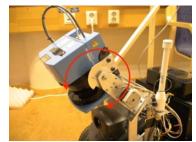
View from side

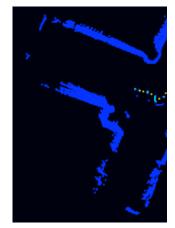
LiDAR – recap cont'd

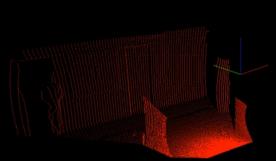
SICK LMS stationary

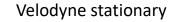














Velodyne:

https://www.youtube.com/watch?v=WPtHRVdWXSI https://www.youtube.com/watch?v=KxWrWPpSE8I

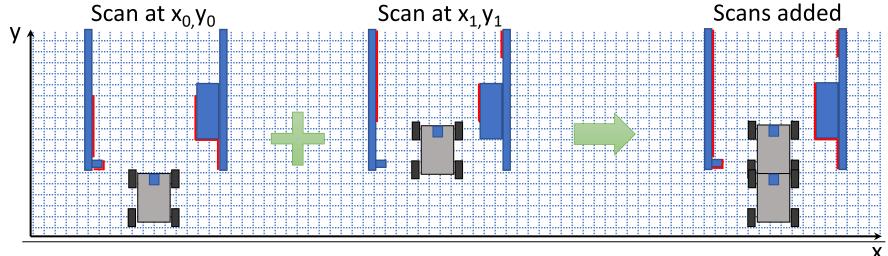
Mapping

Assume we use a mobile robot platform equipped with a LiDAR sensor Simple idea: combine measurement of robot motion with LiDAR sensor readings

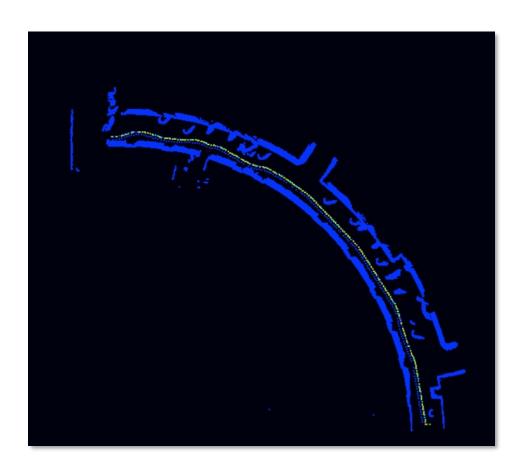
Measurement of robot motion - state estimation, e.g. odometry, dead reckoning

- Simple odometry wheel encoders that calculate how many times wheels turned
- Visual odometry etc. e.g. optical flow sensor, or use sensor fusion to produce more accurate estimation of motion

There will always be a measurement error when calculating the state - depending on the technique/sensor used it can be smaller or larger



Mapping cont'd



Based only on odometry + LiDAR range data

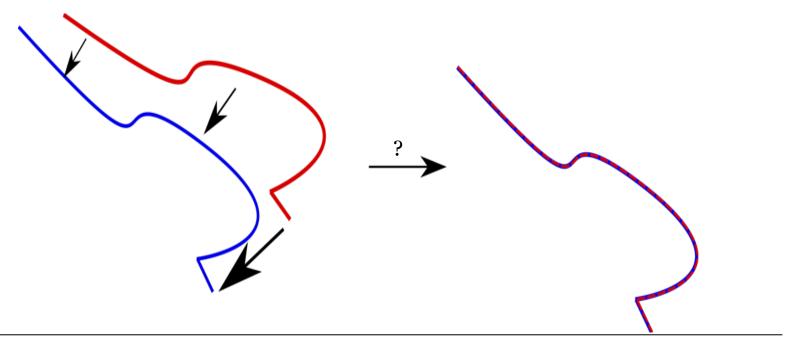
Scan matching

Calculate rotation and translation between two consecutive LiDAR scans, which will correct for odometry error.

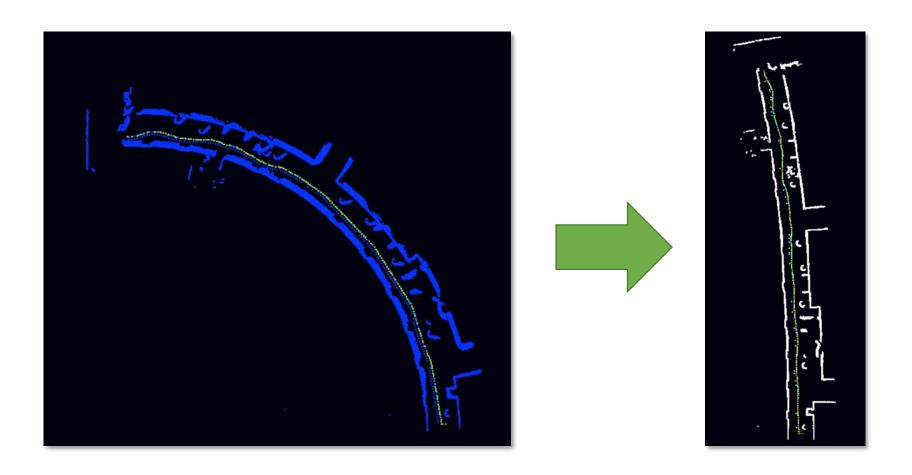
Iterative Closest Point (ICP) – iteratively minimize the sum of square differences between two pairs of points which are selected from reference and a source scan.

Input: reference scan (blue), source scan (red).

Output: rotation and translation between reference and source scans.

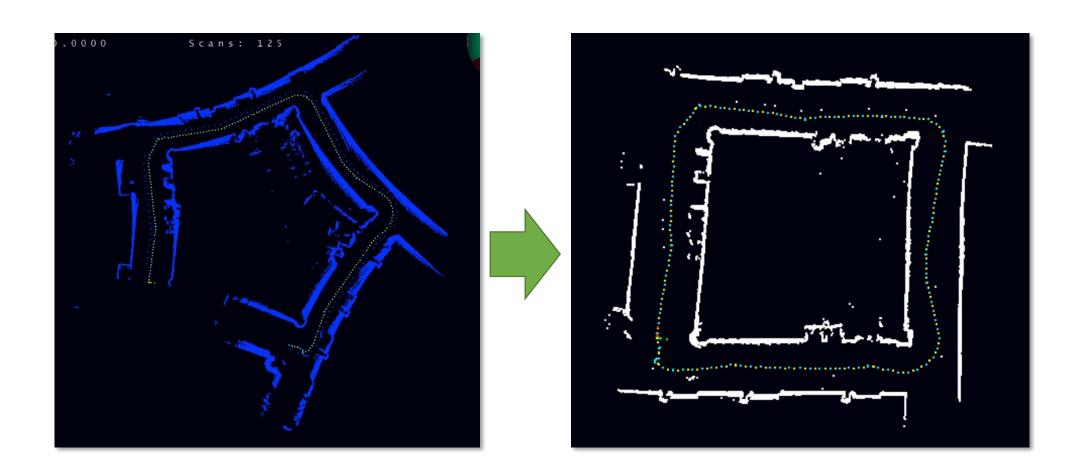


Mapping cont'd



Based only on odometry + LiDAR range data + scan matching (ICP)

Mapping cont'd



Based only on odometry + LiDAR range data + scan matching (ICP)

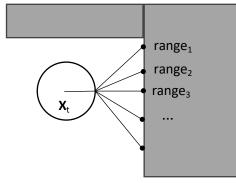
Outline

- Sensors summary
- Computer systems
- Robotic architectures
- Navigation:
 - Mapping and Localization
 - Motion planning
 - Motion control

Localization

Temporal inference from sequences of actions and measurements → dynamic Bayes network of first order Markov process

Example: holonomic robot with range sensor, estimate pose while moving – map is known!



 $X_t = (x_t, y_t, q)$ – state of the robot at time t -> not observable

 $Z_t = (range_1, range_2, range_3, ...) - sensor reading at time t -> observable$

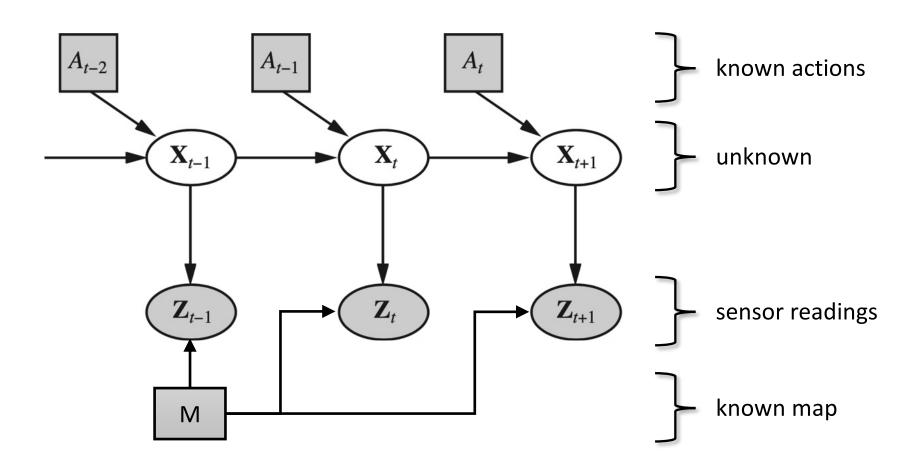
 $A_t = (v_t, w_t) - \text{known action executed at time t}$

 $P(X_t) = P(X_t | z_{1:t}, a_{1:t-1})$ – current believe state (captures past)

next belief state? → Bayesian inference problem

 $P(\mathbf{X}_{t+1} | \mathbf{z}_{1:t+1}, \mathbf{a}_{1:t}) = ?$ given $P(\mathbf{X}_t)$ and new observation \mathbf{z}_{t+1}

Graphical Model



Recursive filtering equation

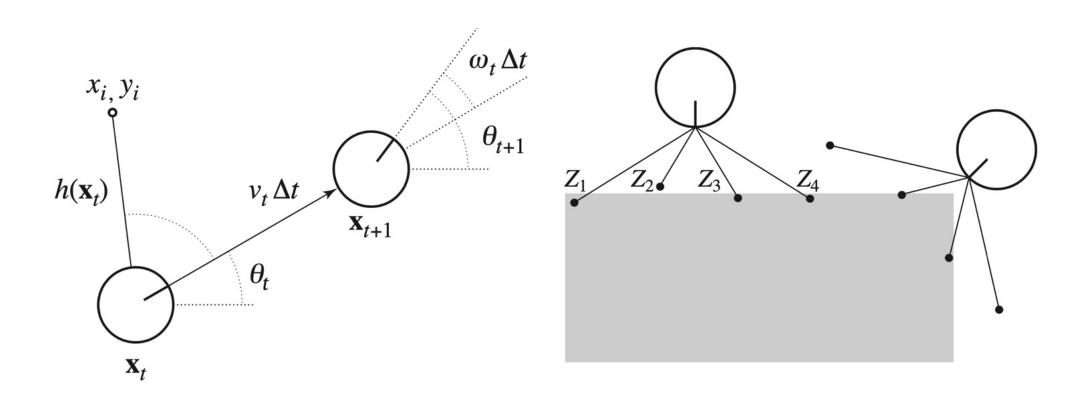
$$P(\mathbf{X}_{t+1} \,|\, \mathbf{z}_{1:t+1} \,,\, \mathbf{a}_{1:t}) = \alpha \quad P(\mathbf{z}_{t+1} \,|\, \mathbf{X}_{t+1}) \int P(\mathbf{X}_{t+1} \,|\, \mathbf{x}_{t},\, \mathbf{a}_{t}) \quad P(\mathbf{X}_{t} \,|\, \mathbf{z}_{1:t},\, \mathbf{a}_{1:t-1}) \quad d\mathbf{x}_{t}$$
 sensor model motion model previous believe state

using Bayes' rule, Markov assumption, theorem of total probability

Motion model: deterministic state prediction + noise

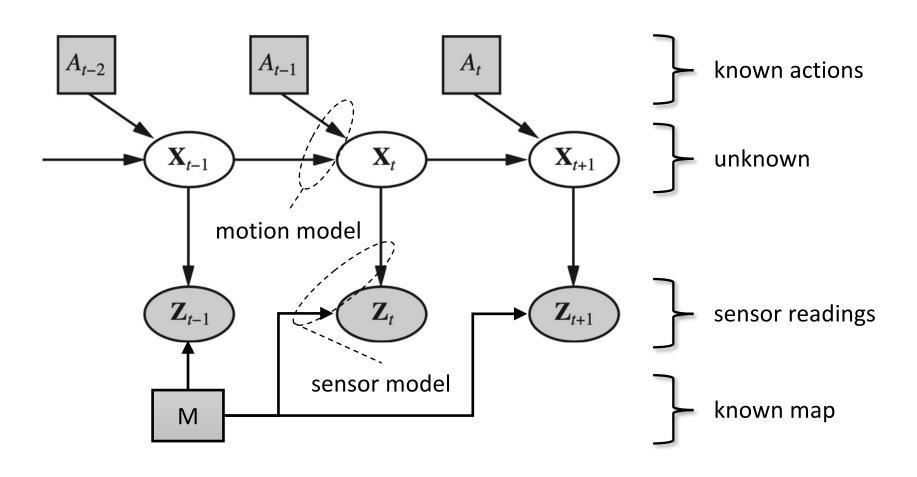
Sensor model: likelihood of making observation z_{t+1} when robot is in state X_{t+1}

Motion and sensor model



Assume Gaussian noise in motion prediction, sensor range measurements

Graphical Model



Localization algorithms

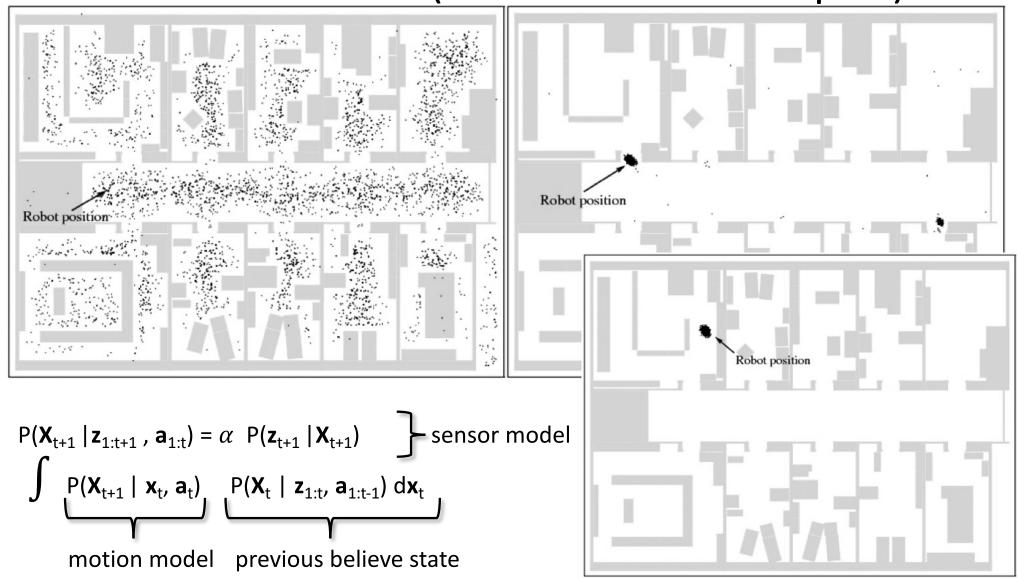
Particle filter (Monte Carlo localization):

- belief state a <u>collection of particles</u> that correspond to states
- belief state sampled, each sample weighted by likelihood it assigns to new evidence, population resampled using weights

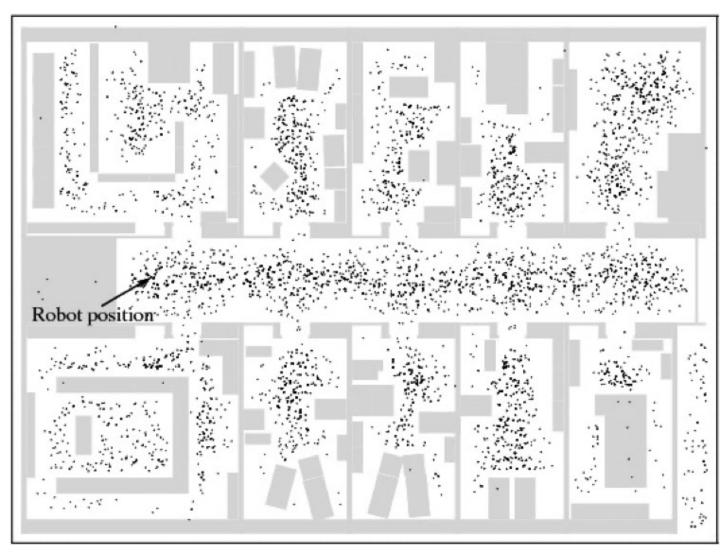
Kalman filter:

- belief state a <u>single multivariate Gaussian</u>
- each step maps a Gaussian into a new Gaussian, i.e. it computes a new mean and covariance matrix from the previous mean and covariance matrix
- assumes linear motion and measurement models (linearisation →extended KF)

Global Localization (Particle Filter Examples)



Global Localization (Particle Filter Examples)



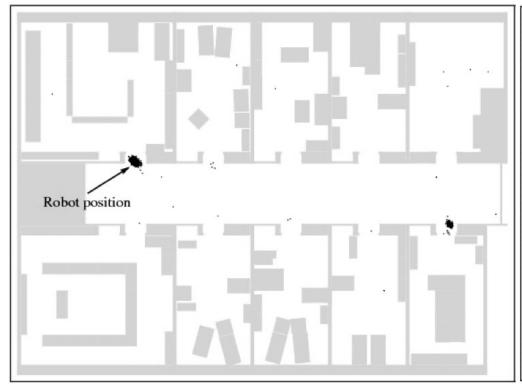
Intuitive explanation:

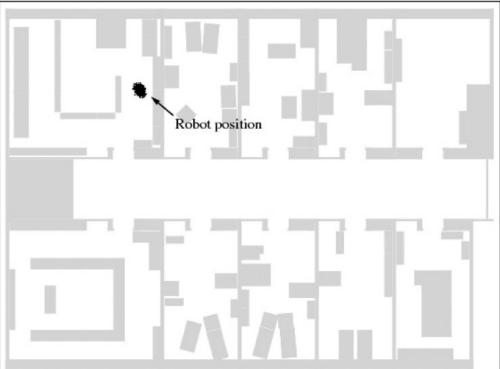
- initialize particles
- execute known action
- apply motion model
- update particle weights based on sensor model
- resample based on weights
- repeat

Global Localization (Particle Filter Examples)

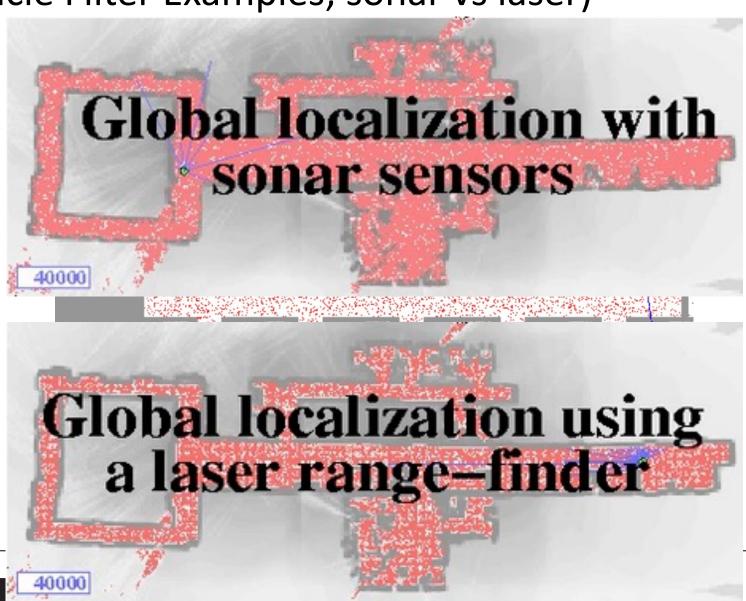
After several iterations – two likely robot position estimates:

After more iterations – converged to a single robot position estimation:





Global Localization (Particle Filter Examples; sonar vs laser)



SLAM

Localization: given map and observed landmarks, update pose distribution

Mapping: given pose and observed landmarks, update map distribution

SLAM: given observed landmarks, update pose and map distribution

Probabilistic formulation of SLAM:

add landmark locations L_1, \ldots, L_k to the state vector, proceed as for localization

Problems:

- dimensionality of map features has to be adjusted dynamically
- identification of already mapped features

SLAM Example

Embedded Mapping System RoboCup 2011 Rescue Arena Dataset 11th July 2011 Istanbul

Outline

- Sensors summary
- Computer systems
- Robotic architectures
- Navigation:
 - Mapping and Localization
 - Motion planning
 - Motion control

Motion Planning

Motion types:

- point-to-point
- compliant motion (screwing, pushing boxes)

Representations: configuration space vs workspace

Kinematic state: robot's configuration (location, orientation, joint angles), no

velocities, no forces

Path planning: find path from one configuration to another

<u>Problem</u>: continuous state space, can be high-dimensional

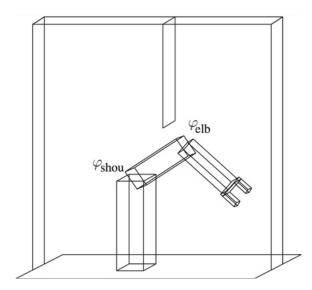
Motion Planning - representations

Workspace - physical 3D space (e.g. joint positions)

Robot has rigid body of finite size

Well-suited for collision checking

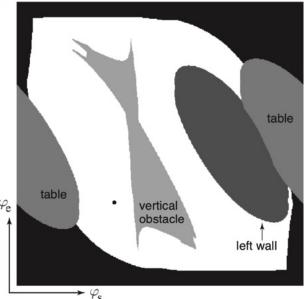
<u>Problem</u>: linkage constraints (not all workspace coordinates attainable) makes path planning difficult in workspace



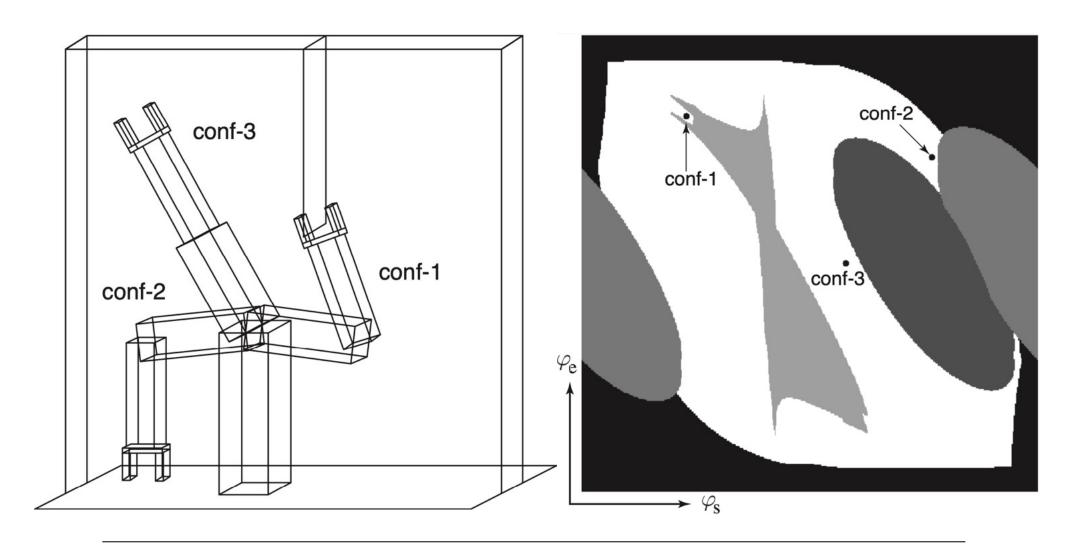
Configuration Space (C-space) - space of robot states (e.g. joint angles)

Robot is a point, obstacles have complex shapes

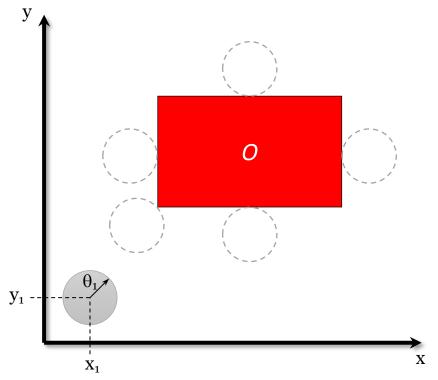
<u>Problem</u>: tasks are expressed in workspace coordinates, obstacle representation problematic

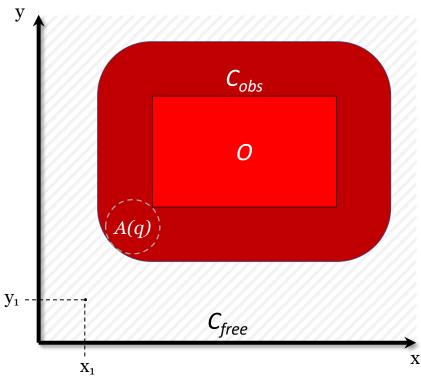


Workspace vs. Configuration Space



Workspace vs. Configuration Space





W – workspace world either \mathbb{R}^2 or \mathbb{R}^3 O – obstacle region, $O \subset W$

C – all possible robot configurations $C_{obs} = \{q : q \in C \text{ and } A(q) \cap O \neq \{\}\}$ $C_{free} = C - C_{obs}$

q – a robot configuration e.g. (x_1, y_1, q_1)

A(q) – set of points on the robot in configuration q

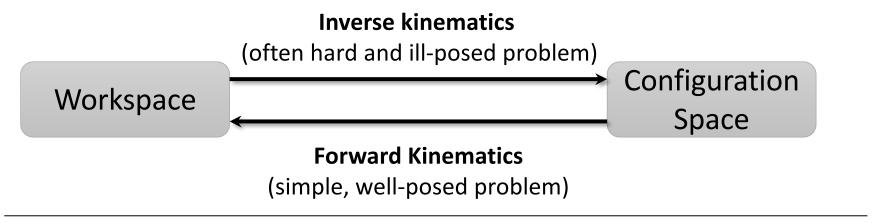
Motion Planning - representations

Free space (attainable configurations)

VS

occupied space (not attainable configurations, obstacles)

Planner may generate configurations in *configuration space* but check for collisions in *workspace*



Path Planning

Basic problem: convert infinite number of states into finite state space

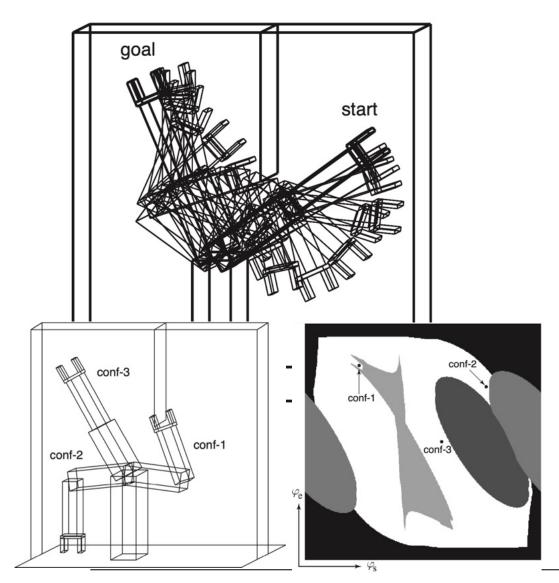
Cell decomposition:

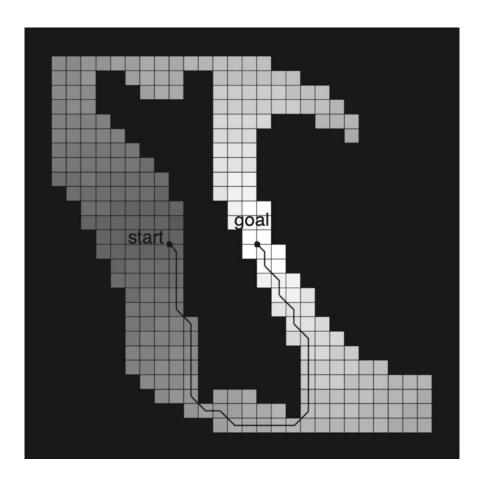
- divide up space into simple cells,
- each of which can be traversed "easily"

Skeletonization:

- identify a finite number of easily connected points/lines
- form a graph such that any two points are connected by a path

Cell Decomposition





Grayscale shading - cost from the grid cell do the goal

Cell Decomposition

<u>Problem</u>: may be no path in pure free space cells

Soundness

(wrong solution if cells are mixed)

VS.

Completeness

(no solution if only pure free cells considered)

<u>Solution</u>: recursive decomposition of mixed (free+obstacle) cells or exact decomposition. Does not scale well for higher dimensions.

Skeletonization

Visibility graphs

Find lines connecting obstacle vertices through free space, build and search graph; not for higher dimensions

Voronoi graphs

find all points in free space equidistant to two or more obstacles, build and search graph; not for higher dimensions

Sample-based approaches

Probabilistic roadmaps (PRM):

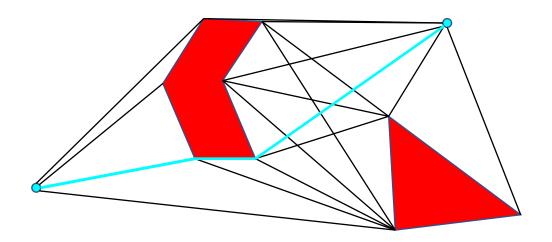
- Offline Phase: generate randomly large number of configurations in free space, build graph
- Online Phase: search graph

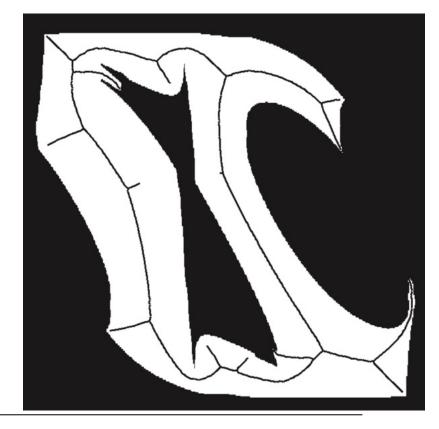
Rapidly exploring Random Trees (RRT):

 generate a tree rooted in start configuration by random sampling of free space until goal configuration is reached (query phase)

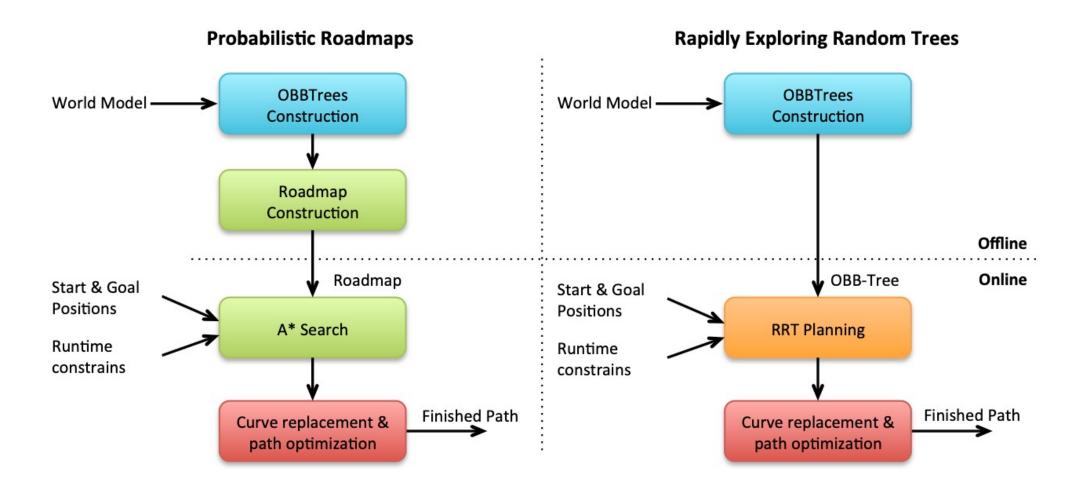
Scales to higher dimensions but incomplete

Visibility and Voronoi Graph

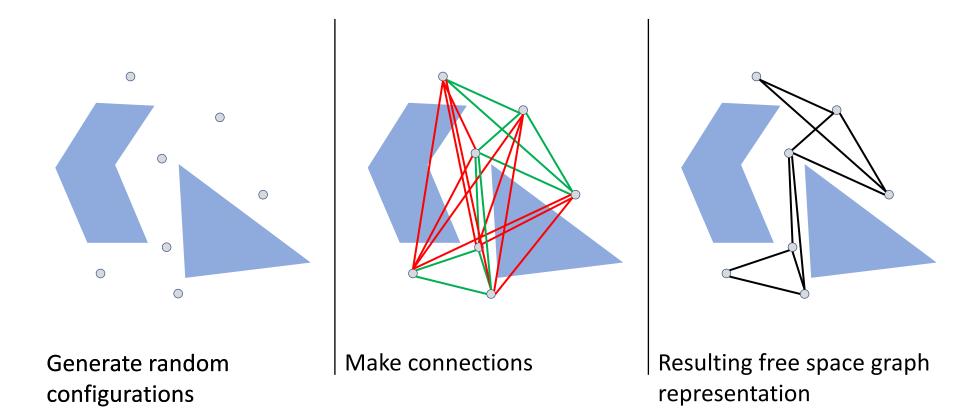




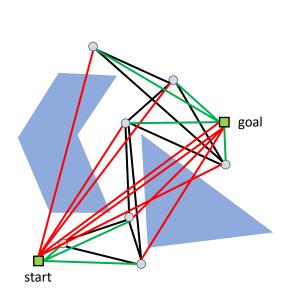
PRM and RRT planning procedure example



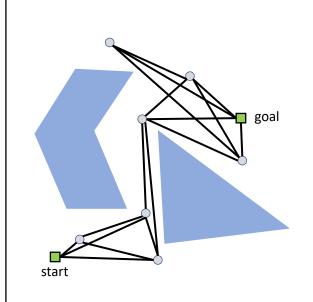
PRM Example (construction phase)

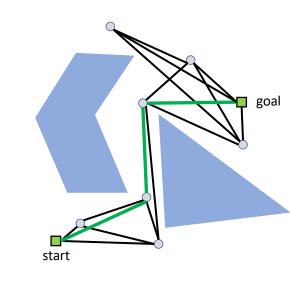


PRM Example (query phase)



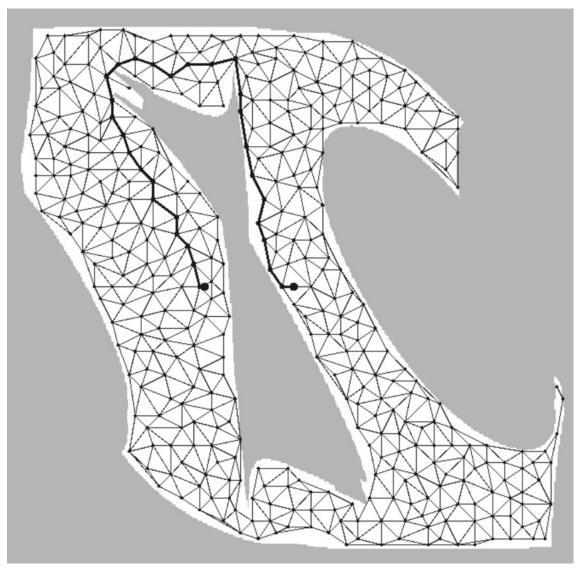
Add start and goal configurations to the roadmap





A* search (+optional postprocessing)

PRM Example



RRT

```
Algorithm BuildRRT Input: Initial configuration q_{init}, number of vertices in RRT K, incremental distance \Delta q)

Output: RRT graph G

G.init(q_{init})

for k = 1 to K do

q_{rand} \leftarrow RAND\_CONF()

q_{near} \leftarrow NEAREST\_VERTEX(q_{rand}, G)

q_{new} \leftarrow NEW\_CONF(q_{near}, q_{rand}, \Delta q)

G.add\_vertex(q_{new})

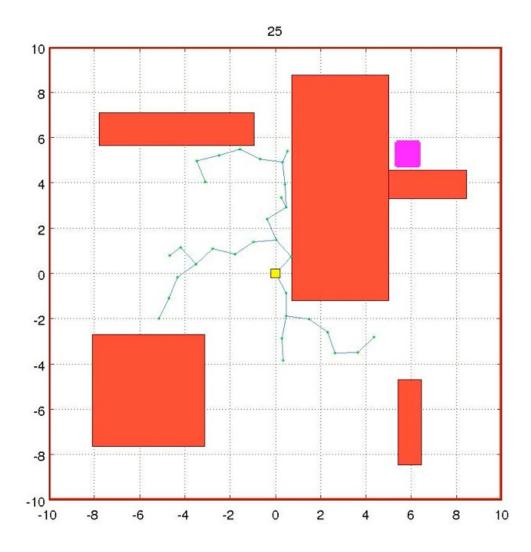
G.add\_edge(q_{near}, q_{new})

return G
```

- "←" denotes assignment. For instance, "largest ← item" means that the value of largest changes to the value of item.
- "return" terminates the algorithm and outputs the following value.

RAND_CONF – samples random configuration from free space q_{rand} . NEAREST_VERTEX – find q_{near} i.e. the closest vertex in existing graph G from q_{rand} . NEW_CONF – select new configuration q_{new} by moving at incremental distance Δq from q_{near} in the direction of q_{rand} .

RRT*

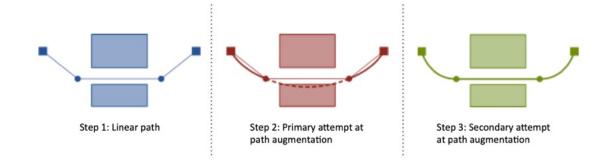


Asymptotically optimal: Converges to the optimal solution as more and more *milestones* are sampled.

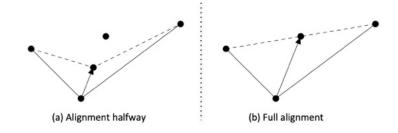
PRM/RRT - Post Processing Example

Example curve replacement and path optimization:

Transformation from linear to cubic (smooth) path segments:



Alignment of nodes for improved path quality:



Outline

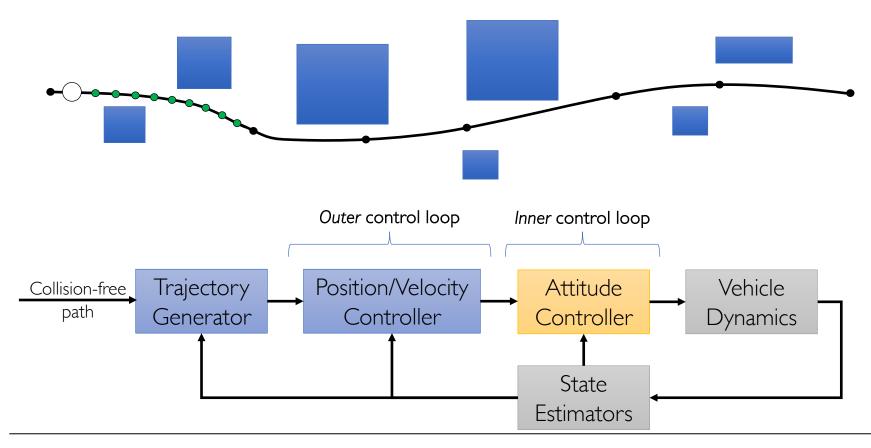
- Sensors summary
- Computer systems
- Robotic architectures
- Navigation:
 - Mapping and Localization
 - Motion planning
 - Motion control

Motion Control

- Path planner assumes robot can follow any path
- Path following involves forces: friction, gravity, inertia,
- Dynamic state: kinematic state + robot's velocities
- Transition models expressed as differential equations
- Robot's inertia limits manoeuvrability
- Problem: including dynamic state in planners makes motion planning intractable
- Solution: simple kinematic planners + low-level controller for force calculation
- Other solution: motion control without planning: potential field and reactive control

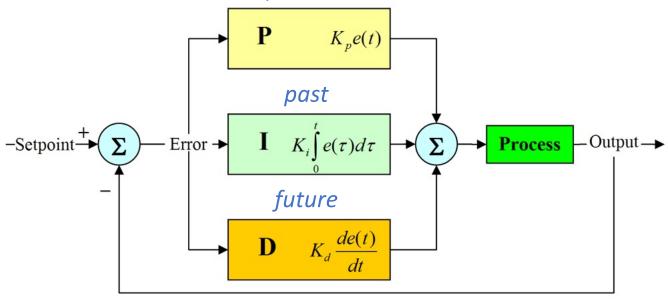
Path Execution Example

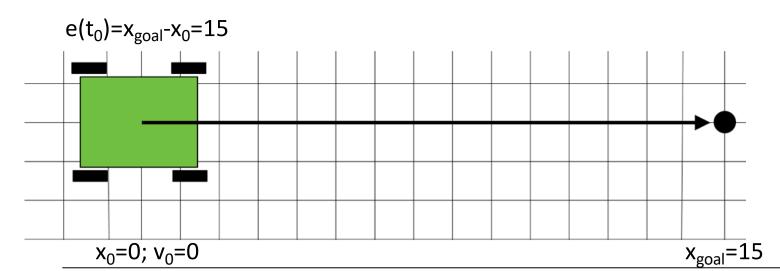
• Controllers: techniques for **generating robot controls in real time** using feedback from the environment to achieve a control objective



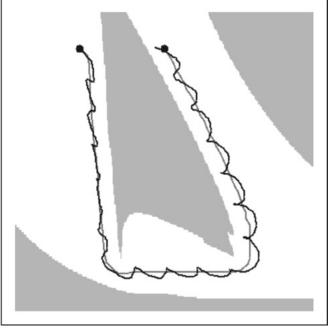
PID Example

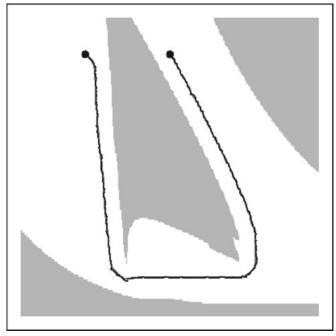
present





Closed-loop control





P control:

 $K_{P} = 1.0$

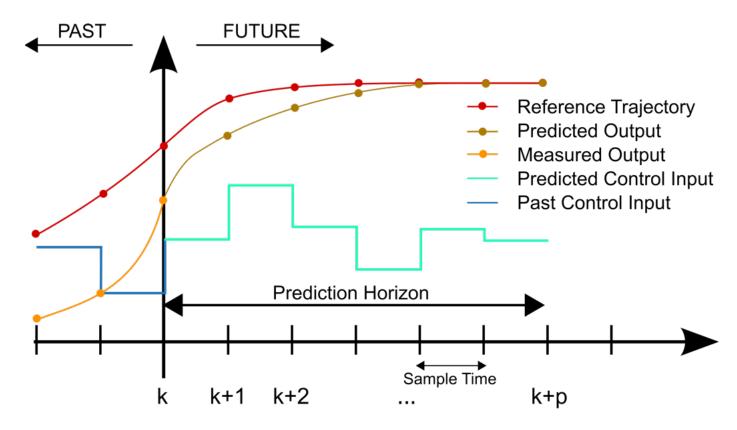
P control:

 $K_{P} = 0.1$

PD control:

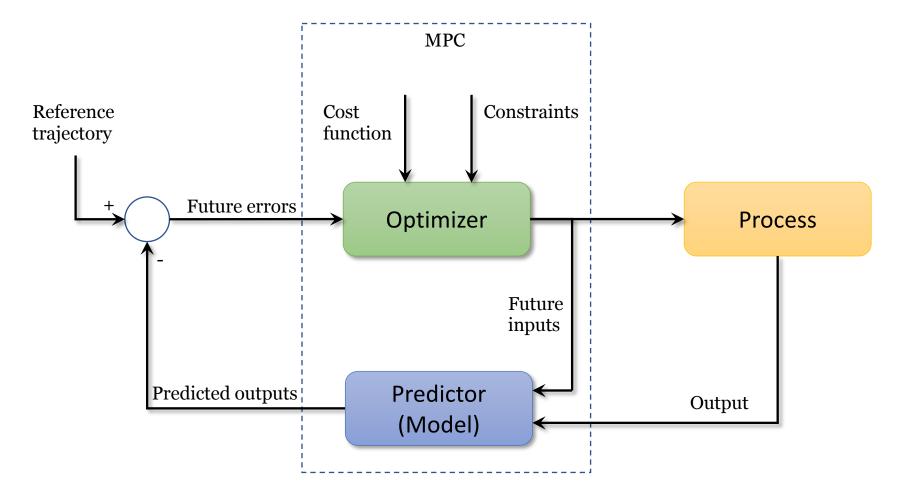
 $K_P = 0.3 K_D = 0.3$

Model Predictive Control



- 1. At time k, solve open loop optimal control problem over a specified finite time horizon
- 2. Apply first input
- 3. At time k+1, repeat from step 1.

Model Predictive Control



Predictor/Model: fundamental or empirical Constraints e.g. on inputs, outputs, state are respected

MPC – simple example

MPC and Learning

Model-Predictive Control with Stochastic Collision Avoidance Using Bayesian Policy Optimization

Olov Andersson, Mariusz Wzorek, Piotr Rudol and Patrick Doherty

Department of Computer and Information Science, Linköping University, Sweden

https://doi.org/10.3384/diss.diva-163419

LINKÖPING UNIVERSITY https://www.youtube.com/watch?v=QYYknZ20Zcw
https://www.youtube.com/watch?v=xa53w1tyZl0

MPC and Learning

Deep Learning Quadcopter Control via Risk-Aware Active Learning

Olov Andersson, Mariusz Wzorek and Patrick Doherty

Department of Computer and Information Science Linköping University, Sweden

https://doi.org/10.3384/diss.diva-163419

https://www.youtube.com/watch?v=QYYknZ20Zcw

MPC and Learning

