TDDC17/
Robotics/Perception I

Mariusz Wzorek
IDA/AIICS

LINKOPING
IIQ" UNIVERSITY




Outline

* Sensors - summary

* Computer systems

* Robotic architectures

* Navigation:
* Mapping and Localization
* Motion planning
* Motion control

LINKOPING
II." UNIVERSITY




TDDC17 Robotics/Perception II 3

Robotics — application perspective

Purpose/Task
[ Application Environment
- Budget
Accuracy
Range
Reliability
Redundancy B
- Base Platform — Mobility:
*  Wheels, belts,
legs, propellers,
— Sensors rotors?
Computer systems Manlpulato.rs: ,
Software architecture Autonomy, | ° arms, grippers:
Communication: Treen of
*  WiFi, 4G/5G, operation
dedicated comm
links —
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Sensors

Summary of most commonly used sensors for mobile robots.

Any Any | Detectionin Fast .
weather | light 15m response Weight | Affordable
CCD Camera/stereo/
Omnidirectional/o. flow & & & &
Ultrasonic oy & & &
Scanning laser
(LIiDAR, LRF) & & &
3D Scanning laser & ¥
Millimeter Wave Radar & & &

* scanning laser on a tilting unit
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Sensors cont’d

Radar Radar

-~

\

Vision System + Radar

II LINKOPING waymo.com
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Sensors cont’d

Rearward Looking Side Cameras

Max distance 100m

Rear View Camera
Max distance 50m

Wide Forward Camera
Max distance 60m

Ultrasonics
Max distance 8m

Main Forward Camera
Max distance 150m

Forward Looking Side Cameras
Max distance 80m

Narrow Forward Camera
Max distance 250m

Radar
Max distance 160m

LINKOPING
UNIVERSITY
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Sensors - common interfaces

T Y O

-\ —<— White paper (Reflectance ratio : 90 %)

== =€~ - Gray paper (reflectance ratio : 18 %)

* analog - voltage level

e digital: TN
s i . > S Sy

* pulse width modulation - PWM :

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Distance to reflectrve object L [em]

* serial connections e.g.:

If the Baud Rate = 9600 bps,

° 5 then the Time/Bit = 1/9600 s 5
RS232 e =
I 1 1 8
o0t 1 1 1 1 1 1 1 o0t
1 1 1 1 1 1 ] 1 1 1 1
. IZC +5V 1 ! 1 : 1 1 ) 1 : 1 1
- : . :
1 1 1
* SPI  f1ioloininiolnial
+5V 1 : 1 1 : 1 1 : : : 1
[ ) 1 1 1 1 1
USB U el i Tl U o i
i+ 1041404041 404040 .
1 1 1 1 1 1 1 1 1 1 1
* Ethernet
* .. Width of the high level (ON)
4
Voltage
NG e ) EE— P
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Computer systems

Many challenges and trade-offs!
* power consumption
* size & weight

computational power

robustness

different operational conditions: moisture, temperature, dirt,
vibrations, etc.

cloud computing?

II LINKOPING
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Computer systems cont’d

PC104 - standardised form factor
* industrial grade

relatively small size

highly configurable

variety of components

build your own stack!

~10x10cm

10
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Computer systems cont’d

NUC - Next Unit of Computing
* small form-factor
* single board computer

* limited 10 capability

~10x10cm

II. blm\(/%gg% https://www.intel.com/content/www/us/en/products/details/nuc/mini-pcs/products.html



https://www.intel.com/content/www/us/en/products/details/nuc/mini-pcs/products.html
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Computer systems cont’d

Custom made embedded systems
e with integrated sensor suite
* micro scale, light weight
* fitted for platform design

] 0000008 386 Rasbabrk

II LINKOPING
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Computer systems cont’d

Example system design:

N\ \ -
DRC PFC Yamaha RMAX (YAS, YACS)
* 1.4 GHz Pentium-M * 700 MHz Pentium Il
* 1 GBRAM * 256 MB RAM Power Management Unit
* 1 GB flash drive * 512 MB flash drive
S N y : GPS Receiver
Ethernet CLLLLLLLELEEREE ==| Barometric Pressure Altimeter
Switch
PFC Sensor Suite
—, . FrLtoensorouite .
_________ L - -,
[
IPC . [ === Ethernet Video Server
* 700 MHz Pentium Il I
* 256 MB RAM
512 MB flash drive  bressesessssesessssssesssnssesssssessenes . ==+ 802.11b Wireless Bridge
1
(I H GSM Modems
(I :
A :
ot : Communication Module
I | Stereo-Vision CCD Color
1 H
| Module Pan Camera :
| Tilt :
; : = = = Ethernet
Laser Range Finder Unit | Thermal kil MiniDV RS232
Module Camera Recorders | ... Analog
----- Firewire
Perception Sensor Suite

LINKOPING
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Telesystems/Telemanipulators

Remote

Local

Display Communication

Operator

Robot

Ilo" NN RSy https://www.youtube.com/watch?v=YUxiilyV-2c



TDDC17 Robotics/Perception Il 16

Reactive systems

Sense Act

Robot responses directly to sensor stimuli.
Intelligence emerges from combination of simple behaviours.
For example - subsumption architecture (Rodney Brooks, MIT):

e concurrent behaviours
* higher levels subsume behaviours of lower layers
* no internal representation

* finite state machines
manipulate world
build maps
SENSORS explore ACTUATORS
avoid collisions
locomotion

LINKOPING . _
II. ONIVERSITY https://www.youtube.com/watch?v=9u0CIQ8P gk


https://www.youtube.com/watch?v=9u0CIQ8P_qk
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Limitations of Reactive Systems

Agents without environment models must have sufficient
information available from local environment

* Decisions are based on /ocal environment - how does it take into
account non-local information

* Difficult to make reactive agents that learn

* Behaviour emerges from component interactions within the
environment - hard to engineer specific agents (no principled
methodology exists)

* Dynamics of interactions between behaviours become too
complex to understand

II LINKOPING
[ UNIVERSITY
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Hierarchical Systems

Sense Plan Act
Sensors
Extract comblne features Plan task Execute Control
features into model task motors

Actuators

II LINKOPING
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Hierarchical Systems (Shakey Example)

Shakey (1966 - 1972)
* Developed at the Stanford Research Institute

» Used STRIPS planner (operators, pre and post conditions)

* Navigated in an office environment, trying to satisfy a goal given to it
on a teletype. It would, depending on the goal and circumstances,
navigate around obstacles consisting of large painted blocks and
wedges, push them out of the way, or push them to some desired
location.

* Primary sensor: black-and-white television camera

 Sting symbolic logic model of the world in the form of first order
predicate calculus

* Very careful engineering of the environment

II LINKOPING https://www.youtube.com/watch?v=GmU7SimFkpU
oY UNIVERSITY


https://www.youtube.com/watch?v=GmU7SimFkpU
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Hybrid systems (three-layer architecture)

Plan

Sense Act

Deliberative layer (planning)

Executive layer (sequencing)

Reactive layer (skills, control)

II LINKOPING
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Hybrid systems (Minerva Example)

Tour guide at the Smithsonian's National
Museum of American History (1998)

high-level control and learning
(mission planning, scheduling)
human interaction modules
(“emotional” FSA, Web interface)
navigation modules
(localization, map learning, path planning)

hardware interface modules
(motors, sensors, Internet)

Table 1: Minerva’s layered software architecture

II. LINKOPING http://www.cs.cmu.edu/~thrun/movies/minerva.mpg

UNIVERSITY


http://www.cs.cmu.edu/~thrun/movies/minerva.mpg
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Hybrid systems (HDR3 — AlICS/IDA @ LiU Example)

Deliberative

High-level

Task Specification Trees

Low-level

Transition
—

Deliberative

: Reactlve @

RS — Reactive Services
DS - Deliberative Services

PlatformServer — |-~

. . . High-level
Hierarchical Concurrent State Machines
Low-level

T
|
|
|

Time requirements / Knowledge
Reactive
Stream-based Processing

Transition
e

Control Kernel

Control

Visual Landing Signals

(a) The concentric view (b) The layered view

II LINKOPING
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Navigation
Mapping — Localization — SLAM — State Estimation — Control

Where am I? -

Application of state
estimation

to calculate robot location
(e.g. x, y, orientation -

pose). —

Create a model of the
environment.

Assumes that we know
where the robot and
its sensors are.

pu—

One of the basic
functionalities required
for any real world
deployment:

* need to know where

we are

¢ what the
environment looks
- __ like

and Mapping

Simultaneous Localization
[ || | 1

Estimate position (pose) of How do | safely get from How do | execute planned

a robot in the environment, point A to B? motion?

or poses of landmarks in the E.g. generate control signals
environment — sensor data to follow planned trajectory
can be noisy (velocity, position

commands, etc.)

LINKOPING
II.“ UNIVERSITY
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LIDAR —recap

Active sensor based on time of flight principle
* emits light waves from a laser

* measures the time it took for the signal to return to calculate the
distance

View from top

25

LINKOPING
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LiDAR — recap cont’d

SICK LMS (single line sensor): Velodyne Puck (multi-line sensor):
* Range (d): 100m

* Field of View - horizontal (a): 360°

* Range (d): 80m
* Field of View - horizontal (a): 0°-180°

* Angular resolution - horizontal (b): Siic. 4 P\ * Angular resolution - horizontal (b):
0.25¢-1° 0.1°-0.4¢°

* Field of View - vertical (g): £15°

* Angular resolution - vertical (f): 2°

View from top View from side

LINKOPING
II.“ UNIVERSITY
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LiDAR — recap cont’d

SICK LMS stationary SICK LMS with tilt Velodyne stationary
range data at certain height mechanism

- & E- NG - &

) Velodyne:
II. HNK/%%@"% https://www.youtube.com/watch?v=WPtHRVdWXSI
https://www.youtube.com/watch?v=KxWrWPpSES|I



https://www.youtube.com/watch?v=WPtHRVdWXSI
https://www.youtube.com/watch?v=KxWrWPpSE8I
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Mapping
Assume we use a mobile robot platform equipped with a LiDAR sensor

Simple idea: combine measurement of robot motion with LiDAR sensor readings

Measurement of robot motion - state estimation, e.g. odometry, dead reckoning

* Simple odometry - wheel encoders that calculate how many times wheels turned

* Visual odometry etc. — e.g. optical flow sensor, or use sensor fusion to produce more
accurate estimation of motion

There will always be a measurement error when calculating the state - depending on the
technique/sensor used it can be smaller or larger

Scan at Xy Yy Scan at x Scans added

II LINKOPING
[ UNIVERSITY
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Mapping cont’d

Based only on odometry + LiDAR range data

II LINKOPING
[ UNIVERSITY
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Scan matching

Calculate rotation and translation between two consecutive LiDAR scans, which will correct for odometry
error.

Iterative Closest Point (ICP) — iteratively minimize the sum of square differences between two pairs of
points which are selected from reference and a source scan.

Input: reference scan (blue), source scan (red).

Output: rotation and translation between reference and source scans.

¥

¥

LINKOPING . Qe . . ,
II. UNNVERIRY https://en.wikipedia.org/wiki/lterative closest point



https://en.wikipedia.org/wiki/Iterative_closest_point
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Mapping cont’d

Based only on odometry + LiDAR range data + scan matching (ICP)

II LINKOPING
[ UNIVERSITY
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Mapping cont’d

Based only on odometry + LiDAR range data + scan matching (ICP)

LINKOPING
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Localization

34

Temporal inference from sequences of actions and measurements - dynamic Bayes
network of first order Markov process

Example: holonomic robot with range sensor,

range;

range,
estimate pose while moving — map is known!

) range;

X: = (x4, Yt, q) — state of the robot at time t -> not observable

Z. = (range,, range,, ranges, ...) — sensor reading at time t -> observable

A: = (v;, w;) — known action executed at time t

P(X;) = P(X; | 2.t , @1..1) — current believe state (captures past)

next belief state? - Bayesian inference problem

P(Xts1 |Z1t41, @1.1) = ? given P(X;) and new observation z.,;

II LINKOPING
[ UNIVERSITY
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Graphical Model

A A, A, . known actions

/
/
/

(z) —(C2z) —(Za) [ sensorreadings

MV — known map

II LINKOPING
[ UNIVERSITY
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Recursive filtering equation

P(Xess [Zyess A1) = & Py X)) | PKe | X080 PX, | 2y Ay X,

\ )] |\ ] \ J
| | |

sensor model motion model previous
believe state

using Bayes’ rule, Markov assumption, theorem of total probability

Motion model: deterministic state prediction + noise

Sensor model: likelihood of making observation z,,; when robot is in state X,,;

LINKOPING
II.“ UNIVERSITY
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Motion and sensor model

a)t At

Assume Gaussian noise in motion prediction, sensor range measurements

37
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Graphical Model

> known actions

J |

> unknown

=— sensor readings

sensor model
MV — known map

II LINKOPING
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Localization algorithms

Particle filter (Monte Carlo localization):
* belief state - a collection of particles that correspond to states

* belief state sampled, each sample weighted by likelihood it assigns to new
evidence, population resampled using weights

Kalman filter:
e belief state - a single multivariate Gaussian

e each step maps a Gaussian into a new Gaussian, i.e. it computes a new mean
and covariance matrix from the previous mean and covariance matrix

e assumes linear motion and measurement models (linearisation > extended KF)

LINKOPING
II.“ UNIVERSITY
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40

Global Localization (Particle Filter Examples)

s a1
. E o de
o botes S
‘N , L s .
- A . e s B }‘-.‘ s
) R T £ XN
\ e N o] L
ar o oo -~
gl e o
i - e
i e "o
wis $ S .
Z e
s e 3
.l'! 3 *

Robot position

Robot position

P(Xts1 120041 5 @1:0) = @ P(2esq [Xei) }sensor model

f \P(Xt+1 | X, at)’ \P(Xt | 234, @1.14) X, |
| |

motion model previous believe state

II LINKOPING
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Global Localization (Particle Filter Examples)

Intuitive explanation:

o [P o * initialize particles
gl -y - * execute known action
, B o ‘_‘ .  apply motion model
o Eall Y &ia el 2 B * update particle
it i Fe N FRE | AT weights based on
' e R o e T sensor model
e g e e resample based on
LR N L M weights

""._.' ..'-:-'-l , s ‘.'.--;-.. 5 .,.. .- :" “"--l 2 S ° repeat

> e . . “EoR .
. 3 LWL as
. 1775 - : e boagt o
g X r 5’1‘ ] . v ke P ! s e o
o -t N ae? 2 3 Lo ‘o‘{‘_‘
= TN o n A Zedane-
v ot Ko oLy TP : .
ne L T 0 T 48 ' s
" N . . 4 - uee
; " S ' 7. . - -,
' . X - .5‘_.’. S e 4L 'ﬁ'."'
. " R - . .
. s e oy 1Y /5 g ¥
$5 0, . e - . L ) ’
o oy e Y 3* ¥ i
- - rre F B : Hal
- ; . F
» e T ST
" Py ' J Far
C IR " 5
. -
. '
- 5
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Global Localization (Particle Filter Examples)

After several iterations — two likely robot After more iterations — converged to a single
position estimates: robot position estimation:
L
| N [
Robot position
el *
Robot position

II LINKOPING
[ UNIVERSITY
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Global Localization

(Particle Filter Examples; sonar vs laser)

NS IS T
-3 N ).‘l

Fanie px < '."lr;{:'-"'\x i' EMET,

b -.‘Q’,—_'.-’;;.- . . :-...‘4‘.“ :
Y LY 4 i'\.", . A :—\ﬁ__-.,: U
5 .

12
5
o

= :
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SLAM

Localization: given map and observed landmarks, update pose distribution
Mapping: given pose and observed landmarks, update map distribution

SLAM: given observed landmarks, update pose and map distribution

Probabilistic formulation of SLAM:
add landmark locations L, . . ., L, to the state vector, proceed as for localization

Problems:

* dimensionality of map features has to be adjusted dynamically

* identification of already mapped features

LINKOPING
II.“ UNIVERSITY
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SLAM Example

Embedded Mapping System
RoboCup 2011 Rescue Arena Dataset
11th July 2011 Istanbul

TECHNISCHE
UNIVERSITAT
DARMSTADT

http://wiki.ros.org/hector slam

R P
https://youtu.be/F8pdObV df4d
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Motion Planning

Motion types:
* point-to-point

e compliant motion (screwing, pushing boxes)

Representations: configuration space vs workspace

Kinematic state: robot’s configuration (location, orientation, joint angles), no
velocities, no forces

Path planning: find path from one configuration to another

Problem: continuous state space, can be high-dimensional

47
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Motion Planning - representations

Workspace - physical 3D space (e.g. joint positions)

Robot has rigid body of finite size

 %b

Well-suited for collision checking o
Problem: linkage constraints (not all workspace coordinates attainable) ¥

makes path planning difficult in workspace

Configuration Space (C-space) - space of robot states (e.g. joint angles)
Robot is a point, obstacles have complex shapes

Problem: tasks are expressed in workspace coordinates, obstacle
representation problematic

left wall

LINKOPING
II." UNIVERSITY
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Workspace vs. Configuration Space

conf-3

conf-1
conf-2

II LINKOPING
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Workspace vs. Configuration Space

Y A Y A

0
Vi -4+ }/ Yi-f-----1
: i C
E > free “
>I(1 X Xy X
W — workspace world either R? or R3 C — all possible robot configurations
O — obstacle region, OcW Cohs={g:q€C and A(g) N O+ {}}

) ) Cfree=C — Cobs
q — a robot configuration e.g. (x;,y1,94)
A(q) — set of points on the robot in configuration g

LINKOPING
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Motion Planning - representations

Free space (attainable configurations)
VS

occupied space (not attainable configurations, obstacles)

Planner may generate configurations in configuration space but check for collisions
in workspace

Inverse kinematics
(often hard and ill-posed problem)
> Configuration

< } Space
Forward Kinematics
(simple, well-posed problem)

Workspace

LINKOPING
II.“ UNIVERSITY
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Path Planning

Basic problem: convert infinite number of states into finite state space

Cell decomposition:
 divide up space into simple cells,

* each of which can be traversed “easily”

Skeletonization:
* identify a finite number of easily connected points/lines

e form a graph such that any two points are connected by a path

52
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Cell Decomposition

conf-2

Grayscale shading - cost from the grid
cell do the goal

II LINKOPING
[ UNIVERSITY
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Cell Decomposition

Problem: may be no path in pure free space cells
Soundness
(wrong solution if cells are mixed)
VS.
Completeness
(no solution if only pure free cells considered)

Solution: recursive decomposition of mixed (free+obstacle) cells or exact decomposition.
Does not scale well for higher dimensions.

LINKOPING
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Skeletonization

Visibility graphs

Find lines connecting obstacle vertices through free space, build and search graph; not for higher
dimensions

Voronoi graphs

find all points in free space equidistant to two or more obstacles, build and search graph; not for higher
dimensions

Sample-based approaches

Probabilistic roadmaps (PRM):
* Offline Phase: generate randomly large number of configurations in free space, build graph
* Online Phase: search graph

Rapidly exploring Random Trees (RRT):

* generate a tree rooted in start configuration by random sampling of free space until goal
configuration is reached (query phase)

Scales to higher dimensions but incomplete

II LINKOPING
[ UNIVERSITY
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Visibility and Voronoi Graph

LINKOPING
II." UNIVERSITY
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PRM and RRT planning procedure example

Probabilistic Roadmaps

World Model —)‘ Cc?nBsg:-t'l'te:;:n
Roadmap
Construction
Start & Goal Roadmap
Positions \
A* Search
Runtime /

constrains l

Curve replacement &

. Ry
pDatn optiMmizaton

Finished Path

- constrains l

Rapidly Exploring Random Trees

© World Mode| ———> OBBTrees
: Construction

Offline
. Start & Goal y OBB-Tree Online
. Positions \
: RRT Planning
- Runtime _—7

Finished Path

Curve replacement &

1Zation

LINKOPING
UNIVERSITY
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PRM Example
(construction phase)

O
(@)
(@)
@]
O
@]
O
Generate random Make connections Resulting free space graph
configurations representation

LINKOPING
II.“ UNIVERSITY
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PRM Example
(query phase)

goal goal

start start
Add start and goal A* search
configurations to the (+optional postprocessing)

roadmap

LINKOPING
II.“ UNIVERSITY



TDDC17 Robotics/Perception Il

PRM Examp

60
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RRT

Algorithm BuildRRT
Input: Initial configuration q;,;., number of vertices in RRT K, incremental distance

4q)

Output: RRT graph G

Qrand2

G.init(q;,;:)
for k = 1 to K do
Qrang ~ RAND CONF()
Qnear + NEAREST VERTEX(Q,,nq4¢r G)

Qnew * NEW_CONF(qnear' Qrandr Aq)
G.add_vertex(q,.,)

G.add_edge (g earr Dnew)
return G

Orand1

e "+«" denotes assignment. For instance, "largest «+ item" means that the value of largest changes to the value of item.

e "return” terminates the algorithm and outputs the following value.

RAND_CONF — samples random configuration from free space q,.,q-

NEAREST_VERTEX —find q,,o,, i-€. the closest vertex in existing graph G from q,,.q

NEW_CONF - select new configuration q,,,, by moving at incremental distance Aq from g, iN
the direction of q,,,4-

https://en.wikipedia.org/wiki/Rapidly-exploring random tree

I LINKOPING
I. NVERSITY bemo: https://demonstrations.wolfram.com/RapidlyExploringRandomTreeRRTANARRT/



https://en.wikipedia.org/wiki/Rapidly-exploring_random_tree
https://demonstrations.wolfram.com/RapidlyExploringRandomTreeRRTAndRRT/

TDDC17 Robotics/Perception Il 62

RRT*

-10 1 L " L 1 L L
-10 -8 -6 -4 2 0 2 4 6 8 10

Asymptotically optimal: Converges to the optimal solution as more and more milestones are sampled.

) . 2v=YKi
Ilo“ bl“li\(/OEEIé\ll% https://www.youtube.com/watch?v=YKiQTJpPFkA


https://www.youtube.com/watch?v=YKiQTJpPFkA
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PRM/RRT - Post Processing Example

Example curve replacement and path optimization:

Transformation from linear to cubic (smooth) path segments:

Step 1: Linear path Step 2: Primary attempt at Step 3: Secondary attempt
: path augmentation : at path augmentation

Alignment of nodes for improved path quality:

A2 1 W
L ] i3z _./;',/ e f - /,/
N/ P N/
o Az : N ot
(a) Alignment halfway : (b) Full alignment

II LINKOPING
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Motion Control

Path planner assumes robot can follow any path

Path following involves forces: friction, gravity, inertia,

Dynamic state: kinematic state + robot’s velocities

Transition models expressed as differential equations

Robot’s inertia limits manoeuvrability

* Problem: including dynamic state in planners makes motion planning intractable

e Solution: simple kinematic planners + low-level controller for force calculation

e Other solution: motion control without planning: potential field and reactive
control

LINKOPING
II.“ UNIVERSITY
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Path Execution Example

* Controllers: techniques for generating robot controls in real time using feedback
from the environment to achieve a control objective

*Oﬂ-““!\\-_ /.-/'/-+ o

Outer control loop Inner control loop
| |
( ) \
Collision-free | Trajectory | | Position/Velocity Attitude Vehicle
path Generator Controller Controller Dynamics
State
Estimators

II LINKOPING
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PID Example

Output—p

present
—> P K e(1)
past
—Setpointi@f Error» I K,.j e(r)dr
0
- future
EERE ) K, de(t)
dt

e(to)zxgoal'xo= 15

X0=O; V0=O

Xgoal=15
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Closed-loop control

| Ol .

P control: P control: PD control:
K= 1.0 Kp=0.1 Kp= 0.3 K;=0.3

LINKOPING
II.“ UNIVERSITY




TDDC17 Robotics/Perception Il 69

Model Predictive Control

PAST FUTURE
T A
& W
—e— Reference Trajectory
—e— Predicted Output
Measured Output
Predicted Control Input
—— Past Control Input
—_< Prediction Horizon >
| | | | I | | |
| | | | ! | | | )
+“—>
Sample Time
K k+1 k+2 k+p

1. At time k, solve open loop optimal control problem over a specified finite time horizon
2. Apply first input

3. Attime k+1, repeat from step 1.

https://en.wikipedia.org/wiki/Model predictive control
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Model Predictive Control

| MPC |
Reference " Cost Constraints |
trajectory ' function i
+ Future errors ' . i

—>  Optimizer ; > Process
i Future |
| inputs | !

Predicted outputs! ( Predictor i Output

~ (Model) ;

Predictor/Model: fundamental or empirical
Constraints e.g. on inputs, outputs, state are respected

70
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MPC - simple example

II “LINKOPING https://medium.com/@david010/vehicle-mpc-controller-33ae813cf3be
O UNVERSITY  https://github.com/cipher982/MPC-vehicle-controller
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MPC and Learning

Model-Predictive Control with Stochastic Collision Avoidance
Using Bayesian Policy Optimization

Olov Andersson, Mariusz Wzorek, Piotr Rudol and Patrick Doherty

Department of Computer and Information Science,
Linkoping University, Sweden

10.3384/diss.diva-163419

I LINKOPING https://www.youtube.com/watch?v=QYYknZ20Zcw
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MPC and Learning

Deep Learning Quadcopter Control
via Risk-Aware Active Learning

Olov Andersson, Mariusz Wzorek and Patrick Doherty

Department of Computer and Information Science
Linkdping University, Sweden
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MPC and Learning

Standard

II. LNKOPING https://www.youtube.com/watch?v=dL ZFSvLXIU
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