Artificial Intelligence Planning 6: Solving MDPs

Jendrik Seipp

Linköping University

•00

Introduction

Computation of an Optimal Policy

there are various techniques to compute an optimal policy:

- (linear program)
- policy iteration
- value iteration

Computation of an Optimal Policy

there are various techniques to compute an optimal policy:

- (linear program)
- policy iteration
- value iteration

policy iteration consists of 2 components:

- **policy evaluation:** compute V_{π} for a given π
- \blacksquare policy improvement: use V_{π} to determine better policy

Policy Evaluation

Policy Evaluation: Implementations

computing the state value of all states for a given policy π (i.e., computing V_{π}) is called policy evaluation

there are several algorithms for policy evaluation:

- linear program
- backward induction
- iterative policy evaluation

Iterative Policy Evaluation: Idea

- impossible to compute state-valuesin one sweep over the state space in presence of cycles
- lacksquare start with arbitrary state-value function \hat{V}_{π}^0
- treat state-value function as update rule

$$\hat{V}_{\pi}^{i}(s) = \sum_{s' \in \text{succ}(s,\pi(s))} T(s,\pi(s),s') \cdot \left(R(s,\pi(s),s') + \gamma \cdot V_{\pi}^{i-1}(s') \right)$$

- apply update rule iteratively
- until state-values have converged (in practice: until maximal change is smaller than residual ϵ)

5	⇒ 0.00	⇒ 0.00	⇒ 0.00	noop 0.00
4	⇒ 0.00	↑ 0.00	↑ 0.00	↑ 0.00
3	⇒ 0.00	↑ 0.00	⇐ 0.00	€ 0.00
2	↑ 0.00	↑ 0.00	↑ 0.00	€ 0.00
1	⇒ ^{s₁} 0.00	⇒ 0.00	↑ 0.00	⇒ 0.00
	1	2	3	4

$$\gamma = 0.9$$
 $\epsilon = 0.001$

$$\hat{V}_{\pi}^{0}$$

- \blacksquare reward to move from striped cell is -3 (-1 everywhere else)
- move in gray cells unsuccessful with probability 0.6
- only applicable action in red cell is noop for reward of 0

5	⇒	⇒	⇒	noop
	-1.00	-1.00	-1.00	0.00
4	⇒	↑	↑	↑
	−1.00	-1.00	-3.00	-1.00
3	⇒	↑	⇐	⇐
	-1.00	-1.00	−1.00	-1.00
2	↑	↑	↑	⇐
	-1.00	-1.00	-1.00	−1.00
1	⇒ ^{s_I} −1.00	⇒ -1.00	↑ -1.00	⇐ −1.00
	1	2	3	4

$$\gamma = 0.9$$
 $\epsilon = 0.001$

 \hat{V}_{π}^{1}

- \blacksquare reward to move from striped cell is -3 (-1 everywhere else)
- move in gray cells unsuccessful with probability 0.6
- only applicable action in red cell is noop for reward of 0

5	⇒	⇒	⇒	noop
	−1.90	−1.90	-1.00	0.00
4	⇒	↑	↑	↑
	−1.90	-1.90	-4.98	-1.54
3	⇒	↑	←	⇐
	−1.90	-1.90	−1.90	−1.90
2	↑ -1.90	↑ -1.90	↑ -1.90	⇐ −1.90
1	⇒ ^S <i>I</i> −1.90	⇒ −1.90	↑ -1.90	⇐ −1.90
	1	2	3	4

$$\gamma = 0.9$$
 $\epsilon = 0.001$

$$\hat{V}_{\pi}^{2}$$

- \blacksquare reward to move from striped cell is -3 (-1 everywhere else)
- move in gray cells unsuccessful with probability 0.6
- only applicable action in red cell is noop for reward of 0

5	⇒	⇒	⇒	noop
	-3.38	−1.90	-1.00	0.00
4	⇒	↑	↑	↑
	-3.83	-2.71	-6.94	-2.07
3	⇒	↑	⇐	⇐
	-4.10	-3.44	-4.10	-4.10
2	↑	↑	↑	⇐
	-4.10	-4.10	-4.10	-4.10
1	⇒ ^S <i>I</i> −4.10	⇒ -4.10	↑ -4.10	⇐ −4.10
	1	2	3	4

$$\gamma = 0.9$$
 $\epsilon = 0.001$

$$\hat{V}_{\pi}^{5}$$

- \blacksquare reward to move from striped cell is -3 (-1 everywhere else)
- move in gray cells unsuccessful with probability 0.6
- only applicable action in red cell is noop for reward of 0

5	⇒	⇒	⇒	noop
	-3.65	−1.90	-1.00	0.00
4	⇒	↑	↑	↑
	-4.27	-2.71	-7.29	-2.17
3	⇒ -4.83	↑ -3.44	⇐ -4.10	⇐ -5.32
2	↑	↑	↑	←
	-5.78	-4.83	-4.69	−5.74
1	⇒ ^{s₁} -6.13	⇒ -5.70	↑ -5.22	← −6.09
	1	2	3	4

$$\gamma = 0.9$$
 $\epsilon = 0.001$

$$\hat{V}_{\pi}^{10}$$

- \blacksquare reward to move from striped cell is -3 (-1 everywhere else)
- move in gray cells unsuccessful with probability 0.6
- only applicable action in red cell is noop for reward of 0

5	⇒	⇒	⇒	noop
	-3.66	−1.90	-1.00	0.00
4	⇒	↑	↑	↑
	-4.29	-2.71	-7.30	-2.17
3	⇒ -4.87	↑ -3.44	⇐ -4.10	⇐ -5.38
2	↑	↑	↑	⇐
	-5.98	-4.87	-4.69	-5.84
1	⇒ ^S <i>I</i> −6.13	⇒ -5.70	↑ -5.22	← −6.26

$$\gamma = 0.9$$
 $\epsilon = 0.001$

$$\hat{V}_{\pi}^{20}$$

- \blacksquare reward to move from striped cell is -3 (-1 everywhere else)
- move in gray cells unsuccessful with probability 0.6
- only applicable action in red cell is noop for reward of 0

Iterative Policy Evaluation: Properties

Theorem (Convergence of Iterative Policy Evaluation)

Let $\mathcal{T} = \langle S, A, R, T, s_l, \gamma \rangle$ be an MDP, π be a policy for \mathcal{T} and $\hat{V}_{\pi}^0(s) \in \mathbb{R}$ arbitrarily for all $s \in S$.

Iterative policy evaluation converges to the true state-values, i.e.,

$$\lim_{i\to\infty}\hat{V}_{\pi}^{i}(s)=V_{\pi}(s) \text{ for all } s\in S.$$

In practice, iterative policy evaluation converges to true state-values if ε is small enough.

Policy Improvement

Greedy Action: Example

$$\gamma = 0.9$$

Can we learn more from this than the state-values of a policy?

Greedy Action: Example

$$\gamma = 0.9$$

- Can we learn more from this than the state-values of a policy?
- Yes! By evaluating all actions in each state, we can derive a better policy

Greedy Actions and Policies

Definition (Greedy Action)

Let s be a state of a MDP $\mathcal{T} = \langle S, A, R, T, s_i, \gamma \rangle$ and V be a state-value function for \mathcal{T} .

The set of greedy actions in s with respect to V is

$$A_V(s) := \arg\max_{a \in A(s)} \sum_{s' \in \text{succ}(s,a)} \mathsf{T}(s,a,s') \cdot \left(\mathsf{R}(s,a,s') + \gamma \cdot \mathsf{V}(s') \right).$$

A policy π_V with $\pi_V(s) \in A_V(s)$ is a greedy policy.

Determining a greedy policy of a given state-value function is called policy improvement.

Policy Iteration

Policy Iteration

- policy iteration (PI) was first proposed by Howard in 1960
- based on the observation that greedy actions describe a better policy
- **starts** with arbitrary policy π_0
- alternates policy evaluation and policy improvement
- as long as policy changes

Example: Policy Iteration

5	⇒	⇒	⇒	noop
	-3.66	−1.90	-1.00	0.00
4	⇒	↑	↑	↑
	-4.29	-2.71	-7.30	-2.17
3	⇒	↑	⇐	⇐
	-4.87	-3.44	-4.10	-5.38
2	↑	↑	↑	⇐
	-5.98	-4.87	-4.69	−5.84
1	⇒ ^{s_I} −6.13	⇒ -5.70	↑ -5.22	⇐ −6.26
	1	2	3	4

$$\gamma = 0.9$$

 π_0 and V_{π_0}

Example: Policy Iteration

5	⇒	⇒	⇒	noop
	-3.66	−1.90	-1.00	0.00
4	⇒	↑	↑	↑
	-4.29	-2.71	-7.30	-2.17
3	⇒	↑	⇐	↑
	-4.87	-3.44	-4.10	-3.88
2	↑	↑	↑	⇐
	-5.98	-4.87	-4.69	−5.84
1	⇒ ^S I −5.84	↑ -5.38	↑ -5.22	⇐ −6.26
	1	2	3	4

$$\gamma = 0.9$$

 π_1 and V_{π_1}

Example: Policy Iteration

5	⇒	⇒	⇒	noop
	-3.66	−1.90	-1.00	0.00
4	⇒	↑	↑	↑
	-4.29	-2.71	-7.30	-2.17
3	⇒	↑	⇐	↑
	-4.87	-3.44	-4.10	-3.88
2	↑	↑	↑	↑
	-5.98	-4.87	-4.69	-5.21
1	⇒ ^S I −5.84	↑ -5.38	↑ -5.22	⇐ −6.26
	1	2	3	4

$$\gamma = 0.9$$

$$\pi_2 = \pi_3$$
 and V_{π_2}

Computation of an Optimal Policy

there are various techniques to compute an optimal policy:

- √ (linear program)
- ✓ policy iteration
- value iteration

Value Iteration

From Policy Iteration to Value Iteration

- policy iteration:
 - search over policies
 - by evaluating their state-values
- value iteration:
 - search directly over state-values
 - optimal policy induced by final state-values

Value Iteration: Idea

- value iteration (VI) was first proposed by Bellman in 1957
- computes estimates $\hat{V}^0, \hat{V}^1, \ldots$ of V_{\star} in an iterative process
- starts with arbitrary \hat{V}^0
- bases estimate \hat{V}^{i+1} on values of estimate \hat{V}^i by treating Bellman equation as update rule on all states:

$$\hat{V}^{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in \text{succ}(s,a)} T(s,a,s') \cdot \left(R(s,a,s') + \gamma \hat{V}^i(s') \right)$$

- converges to state-values of optimal policy
- terminates when maximal change is smaller than residual ϵ

5	0.00	0.00	0.00	noop 0.00
4	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00
1	Sį			
1	0.00	0.00	0.00	0.00
	1	2	3	4

$$\gamma = 0.9$$
 $\epsilon = 0.001$

 \hat{V}^0

- \blacksquare reward to move from striped cell is -3 (-1 everywhere else)
- move in gray cells unsuccessful with probability 0.6
- only applicable action in red cell is noop for reward of 0

5	-1.00	-1.00	-1.00	noop 0.00
4	-1.00	-1.00	-3.00	-1.00
3	-1.00	-1.00	-1.00	-1.00
2	-1.00	-1.00	-1.00	-1.00
1	Sį			
•	-1.00	-1.00	-1.00	-1.00
	1	2	3	4

$$\gamma = 0.9$$
 $\epsilon = 0.001$

- \blacksquare reward to move from striped cell is -3 (-1 everywhere else)
- move in gray cells unsuccessful with probability 0.6
- only applicable action in red cell is noop for reward of 0

5	-1.90	-1.90	-1.00	noop 0.00
4	-1.90	-1.90	-4.98	-1.54
3	-1.90	-1.90	-1.90	-1.90
2	-1.90	-1.90	-1.90	-1.90
1	Sį			
1	-1.90	-1.90	-1.90	-1.90
	1	2	3	4

$$\gamma = 0.9$$
 $\epsilon = 0.001$

 \hat{V}^2

- reward to move from striped cell is -3 (-1 everywhere else)
- move in gray cells unsuccessful with probability 0.6
- only applicable action in red cell is noop for reward of 0

5	-3.38	-1.90	-1.00	noop 0.00
4	-3.83	-2.71	-6.94	-2.07
3	-4.10	-3.44	-3.75	-3.36
2	-4.10	-4.10	-3.99	-3.93
1	Sį			
•	-4.10	-4.10	-4.10	-4.08
	1	2	3	4

$$\gamma = 0.9$$
 $\epsilon = 0.001$

ŷ⁵

- \blacksquare reward to move from striped cell is -3 (-1 everywhere else)
- move in gray cells unsuccessful with probability 0.6
- only applicable action in red cell is noop for reward of 0

5	-3.65	-1.90	-1.00	noop 0.00
4	-4.27	-2.71	-7.29	-2.17
3	-4.83	-3.44	-4.10	-3.84
2	-5.78	-4.83	-4.69	-5.05
1	Sį			
	-5.74	-5.32	-5.22	-5.84
	1	2	3	4

$$\gamma = 0.9$$
 $\epsilon = 0.001$

 \hat{V}^{10}

- \blacksquare reward to move from striped cell is -3 (-1 everywhere else)
- move in gray cells unsuccessful with probability 0.6
- only applicable action in red cell is noop for reward of 0

5	-3.66	-1.90	-1.00	noop 0.00
4	-4.29	-2.71	-7.30	-2.17
3	-4.87	-3.44	-4.10	-3.88
2	-5.98	-4.87	-4.69	-5.21
1	Sį			
ļ	-5.84	-5.38	-5.22	-6.25
	1	2	3	4

$$\gamma = 0.9$$
 $\epsilon = 0.001$

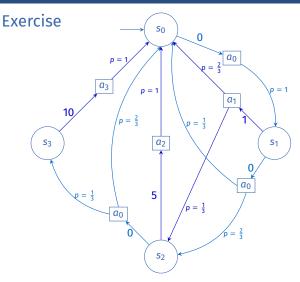
 \hat{V}^{23}

- \blacksquare reward to move from striped cell is -3 (-1 everywhere else)
- move in gray cells unsuccessful with probability 0.6
- only applicable action in red cell is noop for reward of 0

5	\Rightarrow	\Rightarrow	\Rightarrow	noop
4	\Rightarrow	\uparrow	1	Î
3	\Rightarrow	\uparrow	(Î
2	$\stackrel{\longleftarrow}{\Longrightarrow}$	\uparrow	1	Î
1	⇒ ^{s₁}	1	1	#
	1	2	3	4

$$\gamma = 0.9$$
 $\epsilon = 0.001$

- reward to move from striped cell is -3 (-1 everywhere else)
- move in gray cells unsuccessful with probability 0.6
- only applicable action in red cell is noop for reward of 0



Using $\gamma = 0.9$ and the initial \hat{V}^0 values $\hat{V}^0(s_0) = 10$, $\hat{V}^0(s_1) = 0$, $\hat{V}^0(s_2) = 0$, $\hat{V}^0(s_3) = 0$, perform five iterations of value iteration.

Exercise: Solution

i	$\hat{V}^i(s_0)$	$\hat{V}^i(s_1)$	$\hat{V}^i(s_2)$	$\hat{V}^i(s_3)$
0	10	0	0	0
1	0	7	14	19
2	6.3	8.4	5.7	10
3	7.56	6.49	10.67	15.67
4	5.84	8.74	11.8	16.8
5	7.87	8.83	10.26	15.26

More about Planning

- TDDD48 Automated Planning
- MSc and PhD theses available in my group

Summary

Policy Iteration or Value Iteration?

- Policy evaluation is slightly cheaper than a VI iteration
 - PI faster than VI if few iterations required
- Asynchronous VI is basis of more sophisticated algorithm that can be applied in large MDPs and SSPs

Summary

- Policy iteration alternates policy evaluation and policy improvement.
- Value Iteration searches in the space of state-values and applies Bellman equation as update rule iteratively.

Quiz

