Artificial Intelligence

Planning 5: Markov Decision Processes

Jendrik Seipp

Linköping University

Intended Learning Outcomes

- explain the difference between deterministic and probabilistic planning tasks
- contrast SSPs and discounted reward infinite-horizon MDPs
- explain and use the methods for solving MDPs: LP, PI, VI

Motivation ●○

MDP Examples

Motivation O

Decisions Under Uncertainty

(Maximum) Expected Utility

Adam wants to invest in the stock market. He considers the options Bellman Inc. (B), Howard Ltd. (H) and Markov Tec. (M).

A (simplified) expert analysis makes the following predictions:

Bellman Inc.	Howard Corp.	Markov Tec.
+2 with 30%	+3 with 40%	+4 with 20%
+1 with 60%	±0 with 10%	+2 with 30%
±0 with 10%	-1 with 50%	-1 with 50%

What are the expected payoffs (or expected utility / reward)?

(Maximum) Expected Utility

Adam wants to invest in the stock market. He considers the options Bellman Inc. (B), Howard Ltd. (H) and Markov Tec. (M).

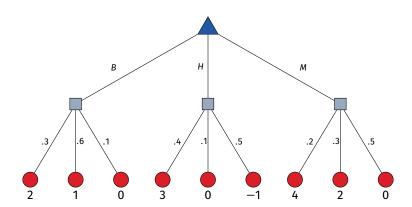
A (simplified) expert analysis makes the following predictions:

Bellman Inc.	Howard Corp.	Markov Tec.
+2 with 30%	+3 with 40%	+4 with 20%
+1 with 60%	±0 with 10%	+2 with 30%
±0 with 10%	-1 with 50%	-1 with 50%

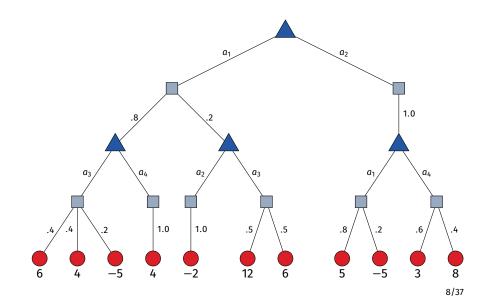
What are the expected payoffs (or expected utility / reward)?

What is the rational decision (if Adam trusts the analysis)?

Tree Interpretation



Sequential Example



Similarity?

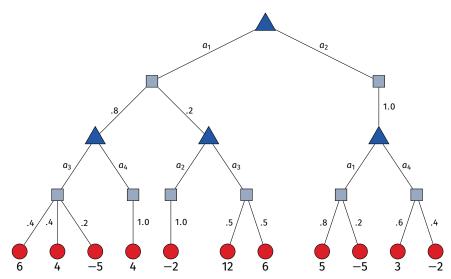
Does this remind you of something?

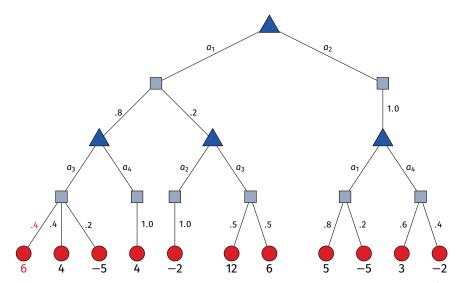
Expectimax

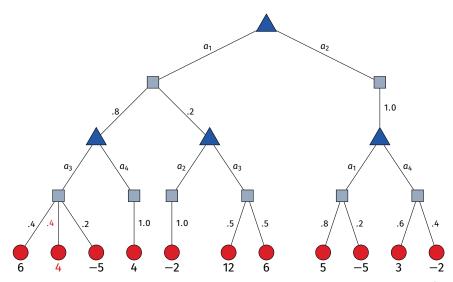
Does this remind you of something? → Minimax

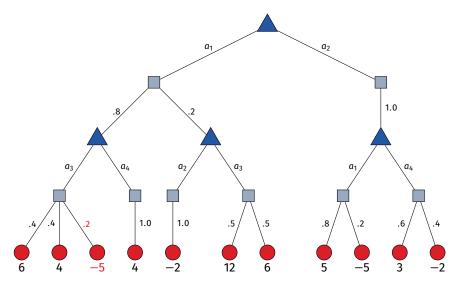
Expectimax is analogous algorithm for sequential decision making under uncertainty

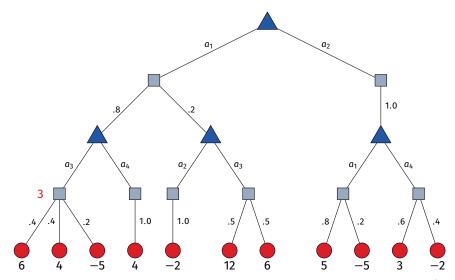
- depth-first search through tree
- apply utility function in terminal state
- compute utility value of inner nodes from below to above through the tree:
 - max node: utility is maximum of utility values of children
 - chance node: utility is probability-weighted sum of utility values of children
- move selection in root: choose a move that maximizes the computed utility value

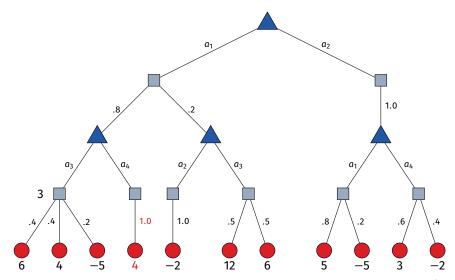


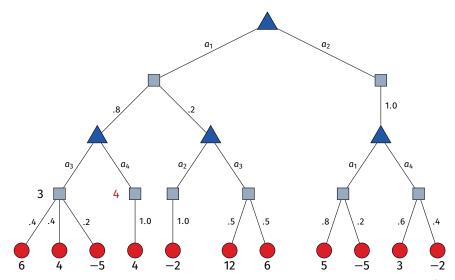


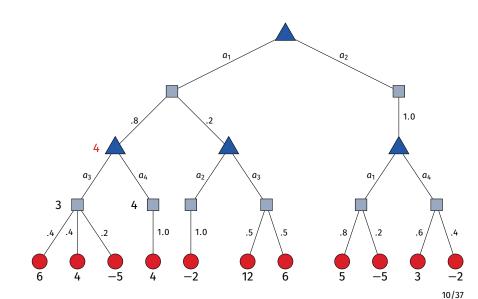


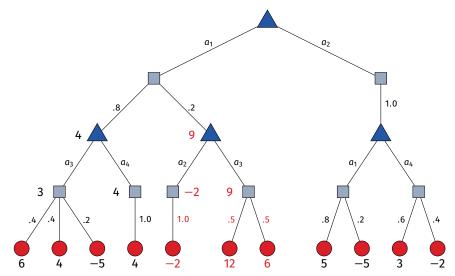


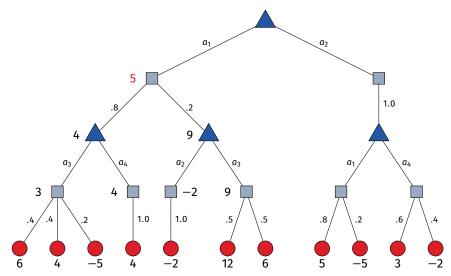


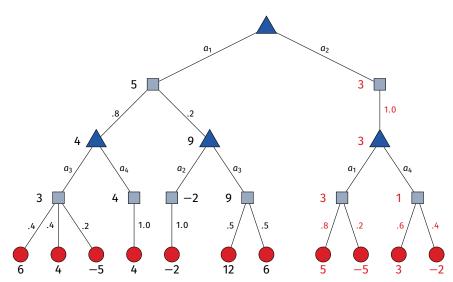


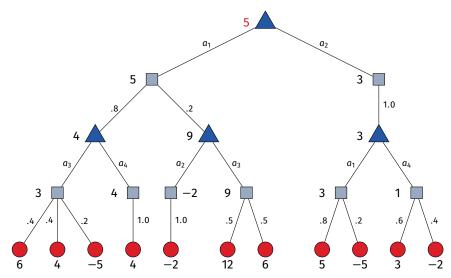












Expectimax: Discussion

- expectimax computes (correct) expected utilities and action that yields the maximum expected utility
- on execution, the agent obtains exactly the utility value computed for the root in expectation
- but it can obtain a much higher or lower utility

Expectimax: Discussion

- expectimax computes (correct) expected utilities and action that yields the maximum expected utility
- on execution, the agent obtains exactly the utility value computed for the root in expectation
- but it can obtain a much higher or lower utility

now we consider a more challenging environment: Markov Decision Processes
 Decisions Under Uncertainty
 Stochastic Shortest Path Problems
 Markov Decision Processes
 Bellman

 00000000
 00000000
 00000000
 00000000

Markov Decision Processes

- Markov decision processes (MDPs) studied since the 1950s
- work up to 1980s mostly on theory and basic algorithms for small to medium sized MDPs
- today, focus on large, factored MDPs
- fundamental datastructure for probabilistic planning
- and for reinforcement learning
- different variants exist:
 - finite-horizon MDPs
 - stochastic shortest path problems
 - discounted reward infinite-horizon MDPs

Stochastic Shortest Path Problems

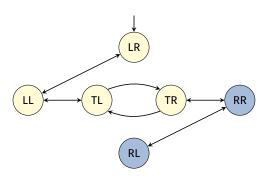
Reminder: Transition Systems

Definition (transition system)

A transition system (or search problem) is a

6-tuple
$$S = \langle S, A, cost, T, s_l, S_{\star} \rangle$$
 with

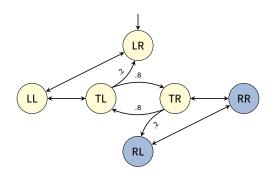
- set of states S
- finite set of actions A
- **action costs cost** : $A \rightarrow \mathbb{R}_0^+$
- transition model $T: S \times A \rightarrow S \cup \{\bot\}$
- initial state $s_i \in S$
- set of goal states $S_* \subseteq S$



Logistics problem with one package, one truck, two locations:

- location of package: domain $\{L, R, T\}$
- location of truck: domain $\{L, R\}$

Stochastic Shortest Path Example



Logistics problem with one package, one truck, two locations:

- location of package: {L, R, T}
- location of truck: {*L*, *R*}
- if truck moves with package, 20% chance of losing package

Stochastic Shortest Path Problem

Definition (Stochastic Shortest Path Problem)

A stochastic shortest path problem (SSP) is a 6-tuple

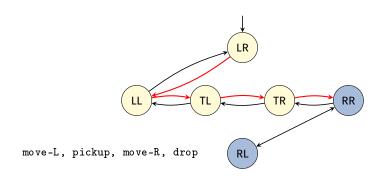
$$\mathcal{T} = \langle S, A, c, T, s_l, S_{\star} \rangle$$
 with

- finite set of states S
- finite set of actions A
- **action costs cost** : $A \to \mathbb{R}_0^+$
- transition function $T: S \times A \times S \mapsto [0,1]$
- initial state $s_i \in S$
- set of goal states $S_* \subseteq S$

For all $s \in S$ and $a \in A$ with T(s, a, s') > 0 for some $s' \in S$, we require $\sum_{s' \in S} T(s, a, s') = 1$.

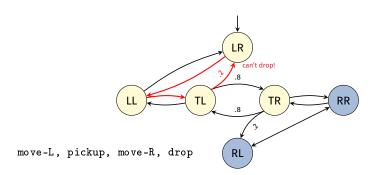
We assume there is $a \in A$ and $s' \in S$ with T(s, a, s') > 0 for all $s \in S$.

Solutions in Transition Systems



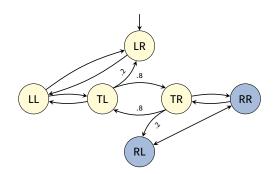
- in a deterministic transition system a solution is a plan, i.e., a sequence of operators that leads from s_i to some $s_{\star} \in S_{\star}$
- an optimal solution is a cheapest possible plan
- a deterministic agent that executes a plan will reach the goal

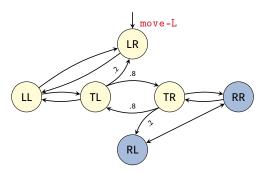
Solutions in SSPs

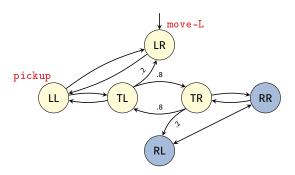


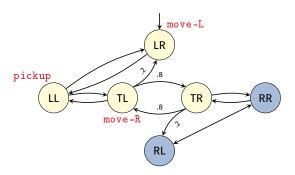
- the same plan does not always work for the probabilistic agent (not reaching the goal or not being able to execute the plan)
- non-determinism can lead to a different outcome than anticipated in the plan
- need a policy

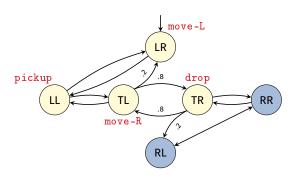
Solutions in SSPs











Policies for SSPs

Definition (Policy for SSPs)

Let $\mathcal{T} = \langle S, A, c, T, s_i, S_{\star} \rangle$ be an SSP.

Let π be a mapping $\pi: S \to A \cup \{\bot\}$ such that $\pi(s) \in A(s) \cup \{\bot\}$ for all $s \in S$.

The set of reachable states $S_{\pi}(s)$ from s under π is defined recursively as the smallest set satisfying the rules

- \blacksquare $s \in S_{\pi}(s)$ and
- $\operatorname{succ}(s', \pi(s')) \subseteq S_{\pi}(s)$ for all $s' \in S_{\pi}(s) \setminus S_{\star}$ where $\pi(s') \neq \bot$.

If $\pi(s') \neq \bot$ for all $s' \in S_{\pi}(s_l) \setminus S_{\star}$, then π is a policy for \mathcal{T} .

If the probability to eventually reach a goal is 1 for all $s' \in S_{\pi}(s_l)$ then π is a proper policy for \mathcal{T} .

- We make two requirements for SSPs:
 - There is a proper policy.
 - Every improper policy incurs infinite cost from every reachable state from which it does not reach a goal with probability 1.
- We only consider SSPs that satisfy these requirements.
- What does this mean in practice?
 - no unavoidable dead ends
 - no cost-free cyclic behavior possible
- With these requirements every cost-minimizing policy is a proper policy.

Markov Decision Processes

differences to initial example and SSPs:

- MDPs can be cyclic
- every action application yields a (positive or negative) reward (not only utilities in terminal states)
- aim is not to reach a goal state
- instead, agent acts forever (infinite horizon)
- aim: maximize expected overall reward
- earlier rewards count more than later rewards
 - rewards decay exponentially with discount factor γ : now full value r, in next step γr , in two steps only $\gamma^2 r$, ...
 - ensures that algorithms converge despite cycles and infinite horizon

Definition (Markov Decision Process)

A (discounted reward) infinite-horizon Markov decision process (MDP) is a 6-tuple $\mathcal{T} = \langle S, A, R, T, s_l, \gamma \rangle$ with

- finite set of states S
- finite set of actions A
- reward function $R: S \times A \times S \rightarrow \mathbb{R}$
- transition function $T: S \times A \times S \mapsto [0,1]$
- initial state $s_1 \in S$
- **discount factor** $\gamma \in (0,1)$

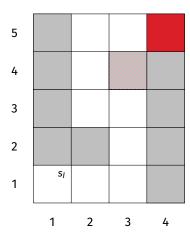
For all $s \in S$ and $a \in A$ with T(s, a, s') > 0 for some $s' \in S$, we require $\sum_{s' \in S} T(s, a, s') = 1$.

We assume there is $a \in A$ and $s' \in S$ with T(s, a, s') > 0 for all $s \in S$.

Markov decision processes are named after Russian mathematician Andrey Markov

Markov property: immediate reward and probability distribution over successor states only depend on current state and applied action
→ not on previously visited states or earlier actions

- \blacksquare if T(s, a, s') > 0 for some s', we say that a is applicable in s
- \blacksquare the set of applicable actions in s is A(s)
- the successor set of s and a is $succ(s, a) = \{s' \in S \mid T(s, a, s') > 0\}$



- reward to move from striped cell is -3 (-1 everywhere else)
- move in gray cells unsuccessful with probability 0.6
- only applicable action in red cell is noop for reward of 0

Policy

Definition (Policy)

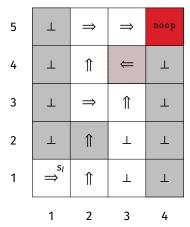
Let $\mathcal{T} = \langle S, A, R, T, s_l, \gamma \rangle$ be an MDP.

Let π be a mapping $\pi: S \to A \cup \{\bot\}$ such that $\pi(s) \in A(s) \cup \{\bot\}$ for all $s \in S$.

The set of reachable states $S_{\pi}(s)$ from s under π is defined recursively as the smallest set satisfying the rules

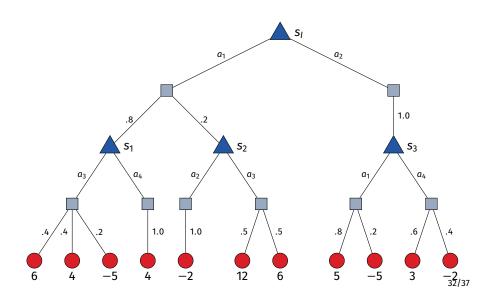
- $s \in S_{\pi}(s)$ and
- $\operatorname{succ}(s', \pi(s')) \subseteq S_{\pi}(s)$ for all $s' \in S_{\pi}(s)$ where $\pi(s') \neq \bot$.

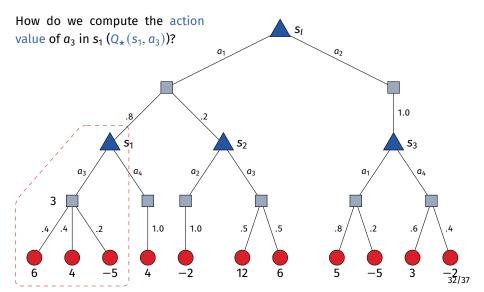
If $\pi(s') \neq \bot$ for all $s' \in S_{\pi}(s_l)$, then π is a policy for \mathcal{T} .

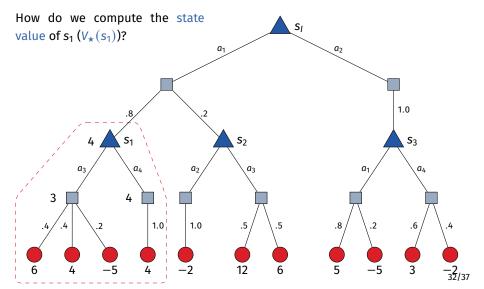


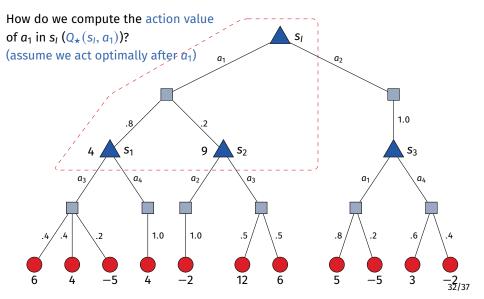
- \blacksquare reward to move from striped cell is -3 (-1 everywhere else)
- move in gray cells unsuccessful with probability 0.6
- only applicable action in red cell is noop for reward of 0

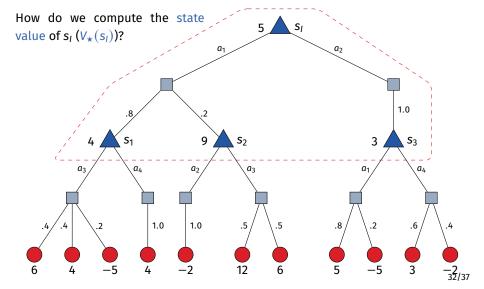
Bellman Equation











Bellman Equation

Example not an MDP, but the idea also works in MDPs!

Definition (Bellman Equation)

Let $\mathcal{T} = \langle S, A, R, T, s_i, \gamma \rangle$ be an MDP.

The Bellman equation for a state s of $\mathcal T$ is the set of equations that describes $V_\star(s)$, where

$$\begin{aligned} V_{\star}(s) &:= \max_{a \in A(s)} Q_{\star}(s, a) \\ Q_{\star}(s, a) &:= \sum_{s' \in \text{succ}(s, a)} T(s, a, s') \cdot (R(s, a, s') + \gamma \cdot V_{\star}(s')) \,. \end{aligned}$$

 $V_{\star}(s)$ is the state-value of s and

 $Q_{\star}(s, a)$ is the action- or Q-value of a in s.

The solution $V_{\star}(s)$ of the Bellman equation describes the maximal expected reward that can be achieved from state s in MDP \mathcal{T} .

What is the policy that achieves the maximal expected reward?

The solution $V_{\star}(s)$ of the Bellman equation describes the maximal expected reward that can be achieved from state s in MDP \mathcal{T} .

What is the policy that achieves the maximal expected reward?

Definition (Optimal Policy)

Let $\mathcal{T} = \langle S, A, R, T, s_I, \gamma \rangle$ be an MDP.

A policy π is an optimal policy if $\pi(s) \in \arg\max_{a \in A(s)} Q_{\star}(s, a)$ for all $s \in S_{\pi}(s_l)$ and the expected reward of π in \mathcal{T} is $V_{\star}(s_l)$.

Value Functions

Definition (Value Functions)

Let π be a policy for MDP $\mathcal{T} = \langle S, A, R, T, s_l, \gamma \rangle$.

The state-value $V_{\pi}(s)$ of $s \in S_{\pi}(s_l)$ under π is defined as

$$V_{\pi}(s) := Q_{\pi}(s, \pi(s))$$

and the action- or Q-value $Q_{\pi}(s, a)$ of s and a under π is defined as

$$Q_{\pi}(s,a) := \sum_{s' \in \mathsf{succ}(s,a)} \mathsf{T}(s,a,s') \cdot (\mathsf{R}(s,a,s') + \gamma \cdot \mathsf{V}_{\pi}(s')) \,.$$

The state-value $V_{\pi}(s)$ describes the expected reward of applying π in MDP \mathcal{T} , starting from s.

Summary

Summary

- SSPs are transition systems with a probabilistic transition relation.
- (Discounted-reward) MDPs allow state-dependent rewards that are discounted over an infinite horizon.
- Solutions of SSPs and MDPs are policies.
- For SSPs: minimize expected cost
- For MDPs: maximize expected reward
- The state-values of a policy specify the expected reward (cost) of following that policy.
- The Bellman equation describes the state-values of an optimal policy.