Artificial Intelligence
Planning: Solving MDPs

Jendrik Seipp

Linkdping University

based on slides by Thomas Keller and Malte Helmert (University of Basel)

Introduction
©00

Introduction

2/26

Introduction
oceo

Computation of an Optimal Policy

there are various techniques to compute an optimal policy:
m (linear program)
m policy iteration

m value iteration

3/26

Introduction 20 valuation Policy Improvement Policy Iteration

[e]e] }

Computation of an Optimal Policy

there are various techniques to compute an optimal policy:
m (linear program)
m policy iteration

m value iteration

policy iteration consists of 2 components:
m policy evaluation: compute V, for a given

m policy improvement: use V, to determine better policy

426

Policy Evaluation

5/26

Introduction Policy Evaluation Policy Improvement

(o] Jelele]

Policy Evaluation: Implementations

computing the state value of all states for a given policy 7 (i.e.,
computing V,;) is called policy evaluation
there are several algorithms for policy evaluation:

@ linear program

@ backward induction

@ iterative policy evaluation

6/26

Introduction Policy Evaluation Policy Improvement olicy Iteration

[e]e] lele]

Iterative Policy Evaluation: Idea

m impossible to compute state-values
in one sweep over the state space in presence of cycles

m start with arbitrary state-value function ¥/

B treat state-value function as update rule

G = Y Ta()s) - (Rex(s).s) +y V()

s’ esucc(s,m(s))

m apply update rule iteratively

m until state-values have converged
(in practice: until maximal change is smaller than residual €)

7/26

Introduction Policy Evaluation Policy Improvement

[e]e]e] lo]

Iterative Policy Evaluation: Example

5 | =2 | = = y =0.9
0.00 | 0.00 | 0.00
€ = 0.001

s =0

0.00 | 0.00 | 0.00 | 0.00

3 = n = = {0
0.00 | 0.00 | 0.00 | 0.00 3
2 T |t 0|
0.00 | 0.00 | 0.00 | 0.00
S|

= n =
0.00 | 0.00 | 0.00 | 0.00

1 2 3 4

m reward to move from striped cell is —3 (—1 everywhere else)
m move in gray cells unsuccessful with probability 0.6

m only applicable action in red cell is noop for reward of 0
8/26

Introduction Policy Evaluation Policy Improvement

[e]e]e] lo]

Iterative Policy Evaluation: Example

5 = = y =0.9
—1.00 | —1.00 00
e = 0.001

z.=>ﬂﬂ7ﬂ

—1.00 | —1.00 | —3.00 | —1.00

3 = n = = V;[
—1.00 | —1.00 | —1.00 | —1.00

2 T |t 0|

—1.00 | —1.00 | —1.00 | —1.00
S|

max diff: 3.0
= n =
—1.00 | —1.00 | —1.00 | —1.00

1 2 3 4

m reward to move from striped cell is —3 (—1 everywhere else)
m move in gray cells unsuccessful with probability 0.6

m only applicable action in red cell is noop for reward of 0
8/26

Introduction Policy Evaluation Policy Improvement

[e]e]e] lo]

Iterative Policy Evaluation: Example

5 = = y =0.9
—1.90 | —1.90 00
e = 0.001

z.=>ﬂﬂ7ﬂ

—1.90 | —1.90 | —4.98 | —1.54

3 = n = = 02
—1.90 | —1.90 | —1.90 | —1.90 3
2 [|
—-1.90 | —1.90 | —1.90 | —1.90
S|

max diff: 1.98
= n =
—1.90 | —1.90 | —1.90 | —1.90

1 2 3 4

m reward to move from striped cell is —3 (—1 everywhere else)
m move in gray cells unsuccessful with probability 0.6

m only applicable action in red cell is noop for reward of 0
8/26

Introduction Policy Evaluation Policy Improvement

[e]e]e] lo]

Iterative Policy Evaluation: Example

5 = = = y =09
—3.38 | —1.90 | —1.00
— € = 0.001
P I N L O
—3.83 | —2.71 | —6.94 | —2.07
3 = n = = {5
—4.10 | —3.44 | —4.10 | —4.10 3

2 T |t 0|

—4.10 | —4.10 | —4.10 | —=4.10
S|

max diff: 0.6561
= n =
—4.10 | —4.10 | —4.10 | —4.10

1 2 3 4

m reward to move from striped cell is —3 (—1 everywhere else)
m move in gray cells unsuccessful with probability 0.6

m only applicable action in red cell is noop for reward of 0
8/26

Introduction Policy Evaluation Policy Improvement

[e]e]e] lo]

Iterative Policy Evaluation: Example

5 = = = y =09
—3.65 | —1.90 | —1.00
— € = 0.001
A I I O O A
—4.27 | =2.71 | =7.29 | —2.17
= e | & (10
3 m A

—4.83 | —3.44 | —4.10 | —=5.32

2)) T | &

—5.78 | —4.83 | —4.69 | —5.74

S max diff: 01395
" =) =

—6.13 | —=5.70 | —5.22 | —6.09

1 2 3 4

m reward to move from striped cell is —3 (—1 everywhere else)
m move in gray cells unsuccessful with probability 0.6
m only applicable action in red cell is noop for reward of 0
8/26

Introduction Policy Evaluation Policy Improvement

[e]e]e] lo]

Iterative Policy Evaluation: Example

5 = = = y =09
—3.66 | —1.90 | —1.00
— € = 0.001
P I U L B
—429 | —2.71 | =7.30 | —2.17
3 = n = = {20

—4.87 | —3.44 | —4.10 | —5.38 3

2 Tt 0|

—5.98 | —4.87 | —4.69 | —5.84

S max diff: 0.0007
" =) =

—6.13 | —=5.70 | —5.22 | —6.26

1 2 3 4

m reward to move from striped cell is —3 (—1 everywhere else)
m move in gray cells unsuccessful with probability 0.6

m only applicable action in red cell is noop for reward of 0
8/26

Introduction Policy Evaluation Policy Improvement olicy Iteration

[e]ee]e])

Iterative Policy Evaluation: Properties

Theorem (Convergence of Iterative Policy Evaluation)

Let 7 = (S,A,R,T,s;,y) be an MDP, &t be a policy for T
and V2(s) € R arbitrarily for all s € S.

Iterative policy evaluation converges to the true state-values, i.e.,

lim Vi (s) = V(s) foralls € S.
|—00

In practice, iterative policy evaluation converges to
true state-values if € is small enough.

9/26

Policy Improvement

10/26

Introduction

Policy Improvement Policy Iteration
ceo

Greedy Action: Example

= | = | = y =0.9
—3.66 | —1.90 | —1.00

=S| 1| n|n

—4.29 | =271 | =7.30 | —2.17

= m = =
—4.87 | —3.44 | —4.10 | —5.38

(L P L L

—5.98 | —4.87 | —4.69 | —5.84

S =1 | e

—6.13 | —=5.70 | —5.22 | —6.26

m Can we learn

1 2 3 4

more from this than the state-values of a policy?

11/26

Introduction ¢ atio Iteration

Greedy Action: Example

5 = | = | = y =0.9
—3.66 | —1.90 | —1.00

P I T L B

—4.29 | —2.71 | =7.30 | —2.17

3 =2 T <=1
487 | —3.44 | —4.10 | =5.38

7 | O I I

—5.98 | —4.87 | —4.69 | —5.84

13T e
—6.13 | =5.70 | —=5.22 | —6.26

1 2 3 4

m Can we learn more from this than the state-values of a policy?
m Yes! By evaluating all actions in each state,

we can derive a better policy
11/26

Introduction Policy Improvement
000 «) ocoe

Greedy Actions and Policies

Definition (Greedy Action)

Let s be a state of aMDP 7 = (S,A,R, T, s, y) and V be a state-value
function for 7.
The set of greedy actions in s with respect to V is

Ay(s) := arg max Z 7(s,a,s") - (R(s,a,s") +y - V(s)) .
aA(S) s’ esucc(s,a)

A policy my with my(s) € Ay(s) is a greedy policy.

Determining a greedy policy of a given state-value function
is called policy improvement.

12/26

Policy Iteration

13/26

[e] lele}

Introduction 0 va Policy Improvement Policy Iteration

Policy Iteration

m policy iteration (PI) was first proposed by Howard in 1960

m based on the observation that greedy actions
describe a better policy

m starts with arbitrary policy 7y
m alternates policy evaluation and policy improvement

m as long as policy changes

14/26

Introduction Polic atio >olicy Improvement Policy Iteration

[e]e] le}

—3.66 | —1.90 | —1.00

—429 | —2.71 | =7.30 | —2.17

3 | =2 1| s 7 and Vg,
487 | —3.44 | —4.10 | —5.38

—5.98 | —4.87 | —4.69 | —5.84

—6.13 | —5.70 | —5.22 | —6.26

15/26

Introduction Polic atio >olicy Improvement Policy Iteration

[e]e] le}

—3.66 | —1.90 | —1.00

—429 | —2.71 | =7.30 | —2.17

3 | =2 | T <=0 7y and Vy,
—4.87 | -3.44 | —4.10 | —3.88

—5.98 | —4.87 | —4.69 | —5.84

—5.84 | =5.38 | —5.22 | —6.26

15/26

Introduction Polic atio >olicy Improvement Policy Iteration

[e]e] le}

—3.66 | —1.90 | —1.00

—429 | —2.71 | =7.30 | —2.17

3 =2 | T <=1 7, = 13 and Vg,
—4.87 | -3.44 | —4.10 | —3.88

—5.98 | —4.87 | —4.69 | —5.21

—5.84 | =5.38 | —5.22 | —6.26

15/26

Introduction valuatio Policy Improvement Policy Iteration

[e]e]e]]

Computation of an Optimal Policy

there are various techniques to compute an optimal policy:
v (linear program)
v/ policy iteration

m value iteration

16/26

Value Iteration

17/26

Value Iteration
080000

From Policy Iteration to Value Iteration

m policy iteration:

m search over policies

m by evaluating their state-values
m value iteration:

m search directly over state-values
m optimal policy induced by final state-values

18/26

Introduction

Policy Improvement Iteration Value Iteration

[e]e] lelele]

Value Iteration: Idea

value iteration (VI) was first proposed by Bellman in 1957
computes estimates V°, V', ... of V, in an iterative process
starts with arbitrary V°

bases estimate /™" on values of estimate ¥/ by treating Bellman
equation as update rule on all states:

i) = max > T(s.0,5) - (R(s,a.8) +y¥(S)
acA(s)
s’ esucc(s,a)

converges to state-values of optimal policy

terminates when maximal change is smaller than residual €

19/26

Introduction > atio olicy Iteration Value Iteration

[e]ele] Jele]

5 y =09
0.00 | 0.00 | 0.00
- € = 0.001
4 00
0.00 | 0.00 | 0.00 | 0.00
3 {70
0.00 | 0.00 | 0.00 | 0.00
2
0.00 | 0.00 | 0.00 | 0.00
S|
1
0.00 | 0.00 | 0.00 | 0.00

1 2 3 4

m reward to move from striped cell is —3 (—1 everywhere else)
m move in gray cells unsuccessful with probability 0.6
m only applicable action in red cell is noop for reward of 0
20/26

Introduction > atio >olicy Improvement Iteration Value Iteration

[e]ele] Jele]

Value Iteration: Example

5 Yy =0.9
—1.00 | —1.00 | —1.00
— € = 0.001
4 i
—1.00 | —1.00 | —3.00 | —1.00
3 v
—1.00 | —1.00 | —1.00 | —1.00
2
—1.00 | —1.00 | —1.00 | —1.00 .
max diff: 3.0
S|
1
—-1.00 | —1.00 | —1.00 | —1.00

1 2 3 4

m reward to move from striped cell is —3 (—1 everywhere else)
m move in gray cells unsuccessful with probability 0.6

m only applicable action in red cell is noop for reward of 0
20/26

[e]ele] Jele]

Introduction > atio >olicy Improvement Iteration Value Iteration

Value Iteration: Example

5 y=0.9
—1.90 | —1.90 | —1.00
— € = 0.001
4 L
—1.90 | —1.90 | —4.98 | —1.54
3 vz
—-1.90 | —1.90 | —1.90 | —1.90
2
—-1.90 | —1.90 | —1.90 | —1.90 .
max diff: 1.98
S|
1
-1.90 | —=1.90 | —1.90 | —1.90

1 2 3 4

m reward to move from striped cell is —3 (—1 everywhere else)
m move in gray cells unsuccessful with probability 0.6

m only applicable action in red cell is noop for reward of 0
20/26

Introduction > atio >olicy Improvement Iteration Value Iteration

[e]ele] Jele]

Value Iteration: Example

5 Yy =09
—3.38 | —1.90 | —1.00
— € = 0.001
4 y
—-3.83 | —2.711 | —6.94 | —2.07
3 °
—4.10 | —3.44 | —3.75 | —3.36
2
—4.10 | —4.10 | —3.99 | —3.93 .
S max diff: 0.6561
I
1
—4.10 | —4.10 | —4.10 | —4.08

1 2 3 4

m reward to move from striped cell is —3 (—1 everywhere else)
m move in gray cells unsuccessful with probability 0.6

m only applicable action in red cell is noop for reward of 0
20/26

Introduction > atio >olicy Improvement Iteration Value Iteration

[e]ele] Jele]

Value Iteration: Example

5 Yy =09
—3.65 | —1.90 | —1.00
— € = 0.001
4 5000
=427 | =2.71 | =7.29 | =2.17
3 \710
—4.83 | —3.44 | —4.10 | —3.84
2
—5.78 | —4.83 | —4.69 | —5.05 .
S max diff: 0.187
I
1
—=5.74 | —=5.32 | —=5.22 | —5.84

1 2 3 4

m reward to move from striped cell is —3 (—1 everywhere else)
m move in gray cells unsuccessful with probability 0.6
m only applicable action in red cell is noop for reward of 0
20/26

Introduction > atio >olicy Improvement Iteration Value Iteration

[e]ele] Jele]

Value Iteration: Example

5 Yy =0.9
—3.66 | —1.90 | —1.00
— € = 0.001
4 e
—429 | =2.711 | =7.30 | =2.17
3 \723
—4.87 | —3.44 | —4.10 | —3.88
2
—5.98 | —4.87 | —4.69 | —5.21 .
S max diff: 0.0007
I
1
—5.84 | =5.38 | —=5.22 | —6.25

1 2 3 4

m reward to move from striped cell is —3 (—1 everywhere else)
m move in gray cells unsuccessful with probability 0.6

m only applicable action in red cell is noop for reward of 0
20/26

[e]ele] Jele]

Introduction 0 atio olicy Iteration Value Iteration

Value Iteration: Example

€ =0.001

A R

1 2 3 4

m reward to move from striped cell is —3 (—1 everywhere else)
m move in gray cells unsuccessful with probability 0.6

m only applicable action in red cell is noop for reward of 0
20/26

Introduction] Policy Improvement olicy Iteration Value Iteration

[e]ele]e] Je}

Exercise

Using y = 0.9 and the initial V° values V°(sy) = 10, V°(s;) = 0,

°(s,) = 0, V°(s3) = 0, perform five iterations of value iteration.
21/26

Value Iteration
00000e

Exercise: Solution

i V'(s0) V'(s1) V'(s2) V'(s3)
0 10 0 0 0

1 0 7 14 19

2 6.3 8.4 5.7 10

3 7.56 6.49 10.67 15.67
4 5.84 8.74 1.8 16.8

5 7.87 8.83 10.26 15.26

22/26

Summary
[Yolole)

Summary

23/26

Introduction va Policy Improvement Policy Iteration Va ation Summary

[e] lele]

Policy Iteration or Value Iteration?

m Policy evaluation is slightly cheaper than a VI iteration
m Pl faster than VI if few iterations required

m Asynchronous VI is basis of more sophisticated algorithm
that can be applied in large MDPs and SSPs

24/26

Summary
feTeT Te)

Summary

m Policy iteration alternates policy evaluation and policy
improvement.

m Value Iteration searches in the space of state-values and
applies Bellman equation as update rule iteratively.

25/26

Introduction atio Policy Improvement Policy Iteration ation Summary

[e]ele])

More about Al Planning

@ TDDD48 Automated Planning (Spring semester)

@ MSc and PhD theses in my group:
https://mrlab.ai/positions

26/26

https://mrlab.ai/positions

	Introduction
	

	Policy Evaluation
	

	Policy Improvement
	

	Policy Iteration
	

	Value Iteration
	

	Summary
	

