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Computation of an Optimal Policy

there are various techniques to compute an optimal policy:

(linear program)

policy iteration

value iteration
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Computation of an Optimal Policy

there are various techniques to compute an optimal policy:

(linear program)

policy iteration

value iteration

policy iteration consists of 2 components:

policy evaluation: compute Vπ for a given π

policy improvement: use Vπ to determine better policy
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Policy Evaluation
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Policy Evaluation: Implementations

computing the state value of all states for a given policy π (i.e.,
computing Vπ ) is called policy evaluation

there are several algorithms for policy evaluation:
1 linear program
2 backward induction
3 iterative policy evaluation
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Iterative Policy Evaluation: Idea

impossible to compute state-values
in one sweep over the state space in presence of cycles

start with arbitrary state-value function V̂0
π

treat state-value function as update rule

V̂iπ (s) =
∑

s′∈succ(s,π (s) )
T(s, π (s), s′) ·

(
R(s, π (s), s′) + γ · Vi−1

π (s′)
)

apply update rule iteratively

until state-values have converged
(in practice: until maximal change is smaller than residual ϵ)
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Iterative Policy Evaluation: Example

1 2 3 4

1

2

3

4

5 noop

sI

γ = 0.9

ϵ = 0.001

max diff:

V̂0
π

xxxxx

sI⇒
0.00

⇒
0.00

⇑
0.00

⇐
0.00

⇑
0.00

⇑
0.00

⇑
0.00

⇐
0.00

⇒
0.00

⇑
0.00

⇐
0.00

⇐
0.00

⇒
0.00

⇑
0.00

⇑
0.00

⇑
0.00

⇒
0.00

⇒
0.00

⇒
0.00 0.00

reward to move from striped cell is −3 (−1 everywhere else)
move in gray cells unsuccessful with probability 0.6
only applicable action in red cell is noop for reward of 0
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Iterative Policy Evaluation: Example

1 2 3 4

1

2

3

4

5 noop

sI

γ = 0.9

ϵ = 0.001

max diff: 3.0

V̂1
π

xxxxx

sI⇒
−1.00

⇒
−1.00

⇑
−1.00

⇐
−1.00

⇑
−1.00

⇑
−1.00

⇑
−1.00

⇐
−1.00

⇒
−1.00

⇑
−1.00

⇐
−1.00

⇐
−1.00

⇒
−1.00

⇑
−1.00

⇑
−3.00

⇑
−1.00

⇒
−1.00

⇒
−1.00

⇒
−1.00 0.00

reward to move from striped cell is −3 (−1 everywhere else)
move in gray cells unsuccessful with probability 0.6
only applicable action in red cell is noop for reward of 0
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Iterative Policy Evaluation: Example

1 2 3 4

1

2

3

4

5 noop

sI

γ = 0.9

ϵ = 0.001

max diff: 1.98

V̂2
π

xxxxx

sI⇒
−1.90

⇒
−1.90

⇑
−1.90

⇐
−1.90

⇑
−1.90

⇑
−1.90

⇑
−1.90

⇐
−1.90

⇒
−1.90

⇑
−1.90

⇐
−1.90

⇐
−1.90

⇒
−1.90

⇑
−1.90

⇑
−4.98

⇑
−1.54

⇒
−1.90

⇒
−1.90

⇒
−1.00 0.00

reward to move from striped cell is −3 (−1 everywhere else)
move in gray cells unsuccessful with probability 0.6
only applicable action in red cell is noop for reward of 0
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Iterative Policy Evaluation: Example

1 2 3 4

1

2

3

4

5 noop

sI

γ = 0.9

ϵ = 0.001

max diff: 0.6561

V̂5
π

xxxxx

sI⇒
−4.10

⇒
−4.10

⇑
−4.10

⇐
−4.10

⇑
−4.10

⇑
−4.10

⇑
−4.10

⇐
−4.10

⇒
−4.10

⇑
−3.44

⇐
−4.10

⇐
−4.10

⇒
−3.83

⇑
−2.71

⇑
−6.94

⇑
−2.07

⇒
−3.38

⇒
−1.90

⇒
−1.00 0.00

reward to move from striped cell is −3 (−1 everywhere else)
move in gray cells unsuccessful with probability 0.6
only applicable action in red cell is noop for reward of 0
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Iterative Policy Evaluation: Example

1 2 3 4

1

2

3

4

5 noop

sI

γ = 0.9

ϵ = 0.001

max diff: 0.1395

V̂10
π

xxxxx

sI⇒
−6.13

⇒
−5.70

⇑
−5.22

⇐
−6.09

⇑
−5.78

⇑
−4.83

⇑
−4.69

⇐
−5.74

⇒
−4.83

⇑
−3.44

⇐
−4.10

⇐
−5.32

⇒
−4.27

⇑
−2.71

⇑
−7.29

⇑
−2.17

⇒
−3.65

⇒
−1.90

⇒
−1.00 0.00

reward to move from striped cell is −3 (−1 everywhere else)
move in gray cells unsuccessful with probability 0.6
only applicable action in red cell is noop for reward of 0
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Iterative Policy Evaluation: Example

1 2 3 4

1

2

3

4

5 noop

sI

γ = 0.9

ϵ = 0.001

max diff: 0.0007

V̂20
π

xxxxx

sI⇒
−6.13

⇒
−5.70

⇑
−5.22

⇐
−6.26

⇑
−5.98

⇑
−4.87

⇑
−4.69

⇐
−5.84

⇒
−4.87

⇑
−3.44

⇐
−4.10

⇐
−5.38

⇒
−4.29

⇑
−2.71

⇑
−7.30

⇑
−2.17

⇒
−3.66

⇒
−1.90

⇒
−1.00 0.00

reward to move from striped cell is −3 (−1 everywhere else)
move in gray cells unsuccessful with probability 0.6
only applicable action in red cell is noop for reward of 0
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Iterative Policy Evaluation: Properties

Theorem (Convergence of Iterative Policy Evaluation)
Let T = ⟨S, A, R, T, sI, γ⟩ be an MDP, π be a policy for T
and V̂0

π (s) ∈ Ò arbitrarily for all s ∈ S.

Iterative policy evaluation converges to the true state-values, i.e.,

lim
i→∞

V̂iπ (s) = Vπ (s) for all s ∈ S.

In practice, iterative policy evaluation converges to
true state-values if ϵ is small enough.
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Policy Improvement
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Greedy Action: Example

1 2 3 4

1

2

3

4

5 noop

sI

γ = 0.9

sI⇒
−6.13

⇒
−5.70

⇑
−5.22

⇐
−6.26

⇑
−5.98

⇑
−4.87

⇑
−4.69

⇐
−5.84

⇒
−4.87

⇑
−3.44

⇐
−4.10

⇐
−5.38

⇒
−4.29

⇑
−2.71

⇑
−7.30

⇑
−2.17

⇒
−3.66

⇒
−1.90

⇒
−1.00 0.00

Can we learn more from this than the state-values of a policy?

Yes! By evaluating all actions in each state,
we can derive a better policy
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Greedy Action: Example

1 2 3 4

1

2

3

4

5 noop

sI

γ = 0.9

sI⇒
−6.13

⇑
−5.70

⇑
−5.22

⇐
−6.26

⇑
−5.98

⇑
−4.87

⇑
−4.69

⇐
−5.84

⇒
−4.87

⇑
−3.44

⇐
−4.10

⇑
−5.38

⇒
−4.29

⇑
−2.71

⇑
−7.30

⇑
−2.17

⇒
−3.66

⇒
−1.90

⇒
−1.00 0.00

Can we learn more from this than the state-values of a policy?
Yes! By evaluating all actions in each state,
we can derive a better policy
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Greedy Actions and Policies

Definition (Greedy Action)
Let s be a state of a MDP T = ⟨S, A, R, T, sI, γ⟩ and V be a state-value
function for T .
The set of greedy actions in s with respect to V is

AV (s) := arg max
a∈A(s)

∑
s′∈succ(s,a)

T(s, a, s′) · (R(s, a, s′) + γ · V(s′)) .

A policy πV with πV (s) ∈ AV (s) is a greedy policy.

Determining a greedy policy of a given state-value function
is called policy improvement.
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Policy Iteration
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Policy Iteration

policy iteration (PI) was first proposed by Howard in 1960

based on the observation that greedy actions
describe a better policy

starts with arbitrary policy π0

alternates policy evaluation and policy improvement

as long as policy changes

14/26



Introduction Policy Evaluation Policy Improvement Policy Iteration Value Iteration Summary

Example: Policy Iteration

1 2 3 4

1

2

3

4

5 noop

sI

γ = 0.9

xxxxxxxxxx

π0 and Vπ0

sI⇒
−6.13

⇒
−5.70

⇑
−5.22

⇐
−6.26

⇑
−5.98

⇑
−4.87

⇑
−4.69

⇐
−5.84

⇒
−4.87

⇑
−3.44

⇐
−4.10

⇐
−5.38

⇒
−4.29

⇑
−2.71

⇑
−7.30

⇑
−2.17

⇒
−3.66

⇒
−1.90

⇒
−1.00 0.00
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Example: Policy Iteration

1 2 3 4

1

2

3

4

5 noop

sI

γ = 0.9

xxxxxxxxxx

π1 and Vπ1

sI⇒
−5.84

⇑
−5.38

⇑
−5.22

⇐
−6.26

⇑
−5.98

⇑
−4.87

⇑
−4.69

⇐
−5.84

⇒
−4.87

⇑
−3.44

⇐
−4.10

⇑
−3.88

⇒
−4.29

⇑
−2.71

⇑
−7.30

⇑
−2.17

⇒
−3.66

⇒
−1.90

⇒
−1.00 0.00

15/26



Introduction Policy Evaluation Policy Improvement Policy Iteration Value Iteration Summary

Example: Policy Iteration

1 2 3 4

1

2

3

4

5 noop

sI

γ = 0.9

xxxxxxxxxx

π2 = π3 and Vπ2

sI⇒
−5.84

⇑
−5.38

⇑
−5.22

⇐
−6.26

⇑
−5.98

⇑
−4.87

⇑
−4.69

⇑
−5.21

⇒
−4.87

⇑
−3.44

⇐
−4.10

⇑
−3.88

⇒
−4.29

⇑
−2.71

⇑
−7.30

⇑
−2.17

⇒
−3.66

⇒
−1.90

⇒
−1.00 0.00
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Computation of an Optimal Policy

there are various techniques to compute an optimal policy:

✓ (linear program)

✓ policy iteration

value iteration
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Value Iteration
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From Policy Iteration to Value Iteration

policy iteration:
search over policies
by evaluating their state-values

value iteration:
search directly over state-values
optimal policy induced by final state-values
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Value Iteration: Idea

value iteration (VI) was first proposed by Bellman in 1957

computes estimates V̂0, V̂1, . . . of V⋆ in an iterative process

starts with arbitrary V̂0

bases estimate V̂i+1 on values of estimate V̂i by treating Bellman
equation as update rule on all states:

V̂i+1(s) := max
a∈A(s)

∑
s′∈succ(s,a)

T(s, a, s′) ·
(
R(s, a, s′) + γV̂i(s′)

)
converges to state-values of optimal policy

terminates when maximal change is smaller than residual ϵ
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Value Iteration: Example

1 2 3 4

1

2

3

4

5 noop

sI

γ = 0.9

ϵ = 0.001

max diff:

V̂0

xxxxx

sI

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

reward to move from striped cell is −3 (−1 everywhere else)
move in gray cells unsuccessful with probability 0.6
only applicable action in red cell is noop for reward of 0
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Value Iteration: Example

1 2 3 4

1

2

3

4

5 noop

sI

γ = 0.9

ϵ = 0.001

max diff: 3.0

V̂1

xxxxx

sI

−1.00 −1.00 −1.00 −1.00

−1.00 −1.00 −1.00 −1.00

−1.00 −1.00 −1.00 −1.00

−1.00 −1.00 −3.00 −1.00

−1.00 −1.00 −1.00 0.00

reward to move from striped cell is −3 (−1 everywhere else)
move in gray cells unsuccessful with probability 0.6
only applicable action in red cell is noop for reward of 0
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Value Iteration: Example

1 2 3 4

1

2

3

4

5 noop

sI

γ = 0.9

ϵ = 0.001

max diff: 1.98

V̂2

xxxxx

sI

−1.90 −1.90 −1.90 −1.90

−1.90 −1.90 −1.90 −1.90

−1.90 −1.90 −1.90 −1.90

−1.90 −1.90 −4.98 −1.54

−1.90 −1.90 −1.00 0.00

reward to move from striped cell is −3 (−1 everywhere else)
move in gray cells unsuccessful with probability 0.6
only applicable action in red cell is noop for reward of 0
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Value Iteration: Example

1 2 3 4

1

2

3

4

5 noop

sI

γ = 0.9

ϵ = 0.001

max diff: 0.6561

V̂5

xxxxx

sI

−4.10 −4.10 −4.10 −4.08

−4.10 −4.10 −3.99 −3.93

−4.10 −3.44 −3.75 −3.36

−3.83 −2.71 −6.94 −2.07

−3.38 −1.90 −1.00 0.00

reward to move from striped cell is −3 (−1 everywhere else)
move in gray cells unsuccessful with probability 0.6
only applicable action in red cell is noop for reward of 0
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Value Iteration: Example

1 2 3 4

1

2

3

4

5 noop

sI

γ = 0.9

ϵ = 0.001

max diff: 0.187

V̂10

xxxxx

sI

−5.74 −5.32 −5.22 −5.84

−5.78 −4.83 −4.69 −5.05

−4.83 −3.44 −4.10 −3.84

−4.27 −2.71 −7.29 −2.17

−3.65 −1.90 −1.00 0.00

reward to move from striped cell is −3 (−1 everywhere else)
move in gray cells unsuccessful with probability 0.6
only applicable action in red cell is noop for reward of 0
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Value Iteration: Example

1 2 3 4

1

2

3

4

5 noop

sI

γ = 0.9

ϵ = 0.001

max diff: 0.0007

V̂23

xxxxx

sI

−5.84 −5.38 −5.22 −6.25

−5.98 −4.87 −4.69 −5.21

−4.87 −3.44 −4.10 −3.88

−4.29 −2.71 −7.30 −2.17

−3.66 −1.90 −1.00 0.00

reward to move from striped cell is −3 (−1 everywhere else)
move in gray cells unsuccessful with probability 0.6
only applicable action in red cell is noop for reward of 0
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Value Iteration: Example

1 2 3 4

1

2

3

4

5 noop

sI

γ = 0.9

ϵ = 0.001

max diff:

xxxxx

sI⇒ ⇑ ⇑ ⇐

⇑
⇒

⇑ ⇑ ⇑

⇒ ⇑ ⇐ ⇑

⇒ ⇑ ⇑ ⇑

⇒ ⇒ ⇒

reward to move from striped cell is −3 (−1 everywhere else)
move in gray cells unsuccessful with probability 0.6
only applicable action in red cell is noop for reward of 0
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Exercise

s3

s2

s1

s0

a0

a0

a0

a1

a2

a3

1

5

10

0

0

0

p = 2
3

p = 1
3

p = 1

p = 1

p = 1

p = 2
3

p = 1
3

p = 1
3

p = 2
3

Using γ = 0.9 and the initial V̂0 values V̂0(s0) = 10, V̂0(s1) = 0,
V̂0(s2) = 0, V̂0(s3) = 0, perform five iterations of value iteration.
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Exercise: Solution

i V̂i(s0) V̂i(s1) V̂i(s2) V̂i(s3)
0 10 0 0 0
1 0 7 14 19
2 6.3 8.4 5.7 10
3 7.56 6.49 10.67 15.67
4 5.84 8.74 11.8 16.8
5 7.87 8.83 10.26 15.26
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Summary
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Policy Iteration or Value Iteration?

Policy evaluation is slightly cheaper than a VI iteration
PI faster than VI if few iterations required

Asynchronous VI is basis of more sophisticated algorithm
that can be applied in large MDPs and SSPs
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Summary

Policy iteration alternates policy evaluation and policy
improvement.

Value Iteration searches in the space of state-values and
applies Bellman equation as update rule iteratively.
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More about AI Planning

1 TDDD48 Automated Planning (Spring semester)
2 MSc and PhD theses in my group:

https://mrlab.ai/positions

26/26

https://mrlab.ai/positions

	Introduction
	

	Policy Evaluation
	

	Policy Improvement
	

	Policy Iteration
	

	Value Iteration
	

	Summary
	


