## Artificial Intelligence

Planning: Markov Decision Processes

Jendrik Seipp

Linköping University

based on slides by Thomas Keller and Malte Helmert (University of Basel)

Markov Decision Processes

ellman Equation Su 00000 0

# **Intended Learning Outcomes**

- explain the difference between deterministic and probabilistic planning tasks
- contrast SSPs and discounted reward infinite-horizon MDPs
- explain and use the methods for solving MDPs: Policy Iteration and Value Iteration

| Motivation |  |
|------------|--|
| 00         |  |

Markov Decision Processes

ellman Equation

Summary 00

# **Motivation**

ertainty Stochastic Shorte

Markov Decision Processes

Bellman Equation

## **MDP Examples**













Markov Decision Processes

ellman Equation

Summary

# **Decisions Under Uncertainty**

Markov Decision Processes

Bellman Equation 00000

# (Maximum) Expected Utility



Adam wants to invest in the stock market. He considers the options Bellman Inc. (B), Howard Ltd. (H) and Markov Tec. (M).

A (simplified) expert analysis makes the following predictions:

| Bellman Inc. | Howard Corp. | Markov Tec. |
|--------------|--------------|-------------|
| +2 with 30%  | +3 with 40%  | +4 with 20% |
| +1 with 60%  | ±0 with 10%  | +2 with 30% |
| ±0 with 10%  | -1 with 50%  | -1 with 50% |

What are the expected payoffs (or expected utility / reward)?

Markov Decision Processes

Bellman Equation 00000

# (Maximum) Expected Utility



Adam wants to invest in the stock market. He considers the options Bellman Inc. (B), Howard Ltd. (H) and Markov Tec. (M).

A (simplified) expert analysis makes the following predictions:

| Bellman Inc. | Howard Corp. | Markov Tec. |
|--------------|--------------|-------------|
| +2 with 30%  | +3 with 40%  | +4 with 20% |
| +1 with 60%  | ±0 with 10%  | +2 with 30% |
| ±0 with 10%  | -1 with 50%  | -1 with 50% |

What are the expected payoffs (or expected utility / reward)?

What is the rational decision (if Adam trusts the analysis)?

Markov Decision Processes

ellman Equation S

### **Tree Interpretation**



Markov Decision Processes

ellman Equation S

# Sequential Example



# Similarity?

#### Does this remind you of something?

# Expectimax

#### Does this remind you of something? → Minimax

Expectimax is analogous algorithm for sequential decision making under uncertainty

- depth-first search through tree
- apply utility function in terminal state
- compute utility value of inner nodes from below to above through the tree:
  - max node: utility is maximum of utility values of children
  - chance node: utility is probability-weighted sum of utility values of children
- move selection in root:

choose a move that maximizes the computed utility value

Markov Decision Processes

ellman Equation 5



Markov Decision Processes

ellman Equation 5

#### Summar



Markov Decision Processes

ellman Equation 5



# **Expectimax: Discussion**

- expectimax computes (correct) expected utilities and action that yields the maximum expected utility
- on execution, the agent obtains exactly the utility value computed for the root in expectation
- but it can obtain a much higher or lower utility

# **Expectimax: Discussion**

- expectimax computes (correct) expected utilities and action that yields the maximum expected utility
- on execution, the agent obtains exactly the utility value computed for the root in expectation
- but it can obtain a much higher or lower utility

now we consider a more challenging environment: Markov Decision Processes

- Markov decision processes (MDPs) studied since the 1950s
- work up to 1980s mostly on theory and basic algorithms for small to medium sized MDPs
- today, focus on large, factored MDPs
- fundamental datastructure for probabilistic planning
- and for reinforcement learning
- different variants exist:
  - finite-horizon MDPs
  - stochastic shortest path problems
  - discounted reward infinite-horizon MDPs

Markov Decision Processes

ellman Equation

Sumr

# Stochastic Shortest Path Problems

ellman Equation Sum

# **Reminder: Transition Systems**

#### Definition (transition system)

A transition system (or search problem) is a

6-tuple  $S = \langle S, A, cost, T, s_l, S_{\star} \rangle$  with

- set of states S
- finite set of actions A
- action costs cost :  $A \rightarrow \mathbb{R}_0^+$
- transition model  $T : S \times A \rightarrow S \cup \{\bot\}$
- initial state  $s_l \in S$
- set of goal states  $S_{\star} \subseteq S$

Markov Decision Processes

ellman Equation 500000

## Transition System Example



Logistics problem with one package, one truck, two locations:

- location of package: domain  $\{L, R, T\}$
- location of truck: domain {L, R}

## Stochastic Shortest Path Example



Logistics problem with one package, one truck, two locations:

- location of package: {L, R, T}
- location of truck: {*L*, *R*}
- if truck moves with package, 20% chance of losing package

ellman Equation Su

# Stochastic Shortest Path Problem

Definition (Stochastic Shortest Path Problem)

A stochastic shortest path problem (SSP) is a 6-tuple

- $\mathcal{T} = \langle S, A, c, T, s_l, S_{\star} \rangle$  with
  - finite set of states S
  - finite set of actions A
  - action costs cost :  $A \rightarrow \mathbb{R}^+_0$
  - **transition function**  $T : S \times A \times S \mapsto [0, 1]$
  - initial state  $s_I \in S$
  - set of goal states  $S_{\star} \subseteq S$

For all  $s \in S$  and  $a \in A$  with T(s, a, s') > 0 for some  $s' \in S$ , we require  $\sum_{s' \in S} T(s, a, s') = 1$ . We assume there is  $a \in A$  and  $s' \in S$  with T(s, a, s') > 0 for all  $s \in S$ .

Markov Decision Processes

ellman Equation S

### Solutions in Transition Systems



- in a deterministic transition system a solution is a plan, i.e., a sequence of operators that leads from s<sub>l</sub> to some s<sub>\*</sub> ∈ S<sub>\*</sub>
- an optimal solution is a cheapest possible plan
- a deterministic agent that executes a plan will reach the goal

Markov Decision Processes

ellman Equation S



- the same plan does not always work for the probabilistic agent (not reaching the goal or not being able to execute the plan)
- non-determinism can lead to a different outcome than anticipated in the plan
- need a policy

Markov Decision Processes

ellman Equation S



Markov Decision Processes

ellman Equation Si 0000 0



# Policies for SSPs

#### Definition (Policy for SSPs)

Let  $\mathcal{T} = \langle S, A, c, T, s_l, S_{\star} \rangle$  be an SSP. Let  $\pi$  be a mapping  $\pi : S \to A \cup \{\bot\}$  such that  $\pi(s) \in A(s) \cup \{\bot\}$  for all  $s \in S$ .

The set of reachable states  $S_{\pi}(s)$  from s under  $\pi$  is defined recursively as the smallest set satisfying the rules

```
• s \in S_{\pi}(s) and
```

succ $(s', \pi(s')) \subseteq S_{\pi}(s)$  for all  $s' \in S_{\pi}(s) \setminus S_{\star}$  where  $\pi(s') \neq \bot$ .

If  $\pi(s') \neq \bot$  for all  $s' \in S_{\pi}(s_l) \setminus S_{\star}$ , then  $\pi$  is a policy for  $\mathcal{T}$ . If the probability to eventually reach a goal is 1 for all  $s' \in S_{\pi}(s_l)$  then  $\pi$  is a proper policy for  $\mathcal{T}$ .

# Additional Requirements for SSPs

#### We make two requirements for SSPs:

- There is a proper policy.
- Every improper policy incurs infinite cost from every reachable state from which it does not reach a goal with probability 1.
- We only consider SSPs that satisfy these requirements.
- What does this mean in practice?
  - no unavoidable dead ends
  - no cost-free cyclic behavior possible
- With these requirements every cost-minimizing policy is a proper policy.

Markov Decision Processes

Bellman Equation

Summary

# Markov Decision Processes

# **Discounted Reward Infinite-horizon MDPs**

differences to initial example and SSPs:

- MDPs can be cyclic
- every action application yields a (positive or negative) reward (not only utilities in terminal states)
- aim is not to reach a goal state
- instead, agent acts forever (infinite horizon)
- aim: maximize expected overall reward
- earlier rewards count more than later rewards
  - rewards decay exponentially with discount factor γ: now full value r, in next step γr, in two steps only γ<sup>2</sup>r, ...
  - ensures that algorithms converge despite cycles and infinite horizon

#### Definition (Markov Decision Process)

A (discounted reward) infinite-horizon Markov decision process (MDP) is a 6-tuple  $\mathcal{T} = \langle S, A, R, T, s_i, \gamma \rangle$  with

- finite set of states S
- finite set of actions A
- **reward function**  $R : S \times A \times S \rightarrow \mathbb{R}$
- transition function  $T : S \times A \times S \mapsto [0, 1]$
- initial state  $s_l \in S$
- discount factor  $\gamma \in (0, 1)$

For all  $s \in S$  and  $a \in A$  with T(s, a, s') > 0 for some  $s' \in S$ , we require  $\sum_{s' \in S} T(s, a, s') = 1$ . We assume there is  $a \in A$  and  $s' \in S$  with T(s, a, s') > 0 for all  $s \in S$ .

### **Markov Property**

Markov decision processes are named after Russian mathematician Andrey Markov

Markov property: immediate reward and probability distribution over successor states only depend on current state and applied action → not on previously visited states or earlier actions



# Some Terminology

- if T(s, a, s') > 0 for some s', we say that a is applicable in s
- the set of applicable actions in s is A(s)
- the successor set of s and a is  $succ(s, a) = \{s' \in S \mid T(s, a, s') > 0\}$

Motivation Decisions Under Uncertainty

Stochastic Shortest Path Problems

Markov Decision Processes

Bellman Equation S

#### MDP Example



- reward to move from striped cell is -3 (-1 everywhere else)
- move in gray cells unsuccessful with probability 0.6
- only applicable action in red cell is noop for reward of 0

Markov Decision Processes

# Policy

#### Definition (Policy)

Let  $\mathcal{T} = \langle S, A, R, T, s_l, \gamma \rangle$  be an MDP. Let  $\pi$  be a mapping  $\pi : S \to A \cup \{\bot\}$  such that  $\pi(s) \in A(s) \cup \{\bot\}$  for all  $s \in S$ .

The set of reachable states  $S_{\pi}(s)$  from s under  $\pi$  is defined recursively as the smallest set satisfying the rules

■ 
$$s \in S_{\pi}(s)$$
 and  
■  $succ(s', \pi(s')) \subseteq S_{\pi}(s)$  for all  $s' \in S_{\pi}(s)$  where  $\pi(s') \neq \bot$ .

If  $\pi(s') \neq \bot$  for all  $s' \in S_{\pi}(s_l)$ , then  $\pi$  is a policy for  $\mathcal{T}$ .

Markov Decision Processes

Bellman Equation

# Policy Example



- reward to move from striped cell is -3 (-1 everywhere else)
- move in gray cells unsuccessful with probability 0.6
- only applicable action in red cell is noop for reward of 0

Markov Decision Processes

Bellman Equation

Summary 00

# **Bellman Equation**

Markov Decision Processes

Bellman Equation S O●OOO C











# **Bellman Equation**

Example not an MDP, but the idea also works in MDPs!

#### Definition (Bellman Equation)

Let  $\mathcal{T} = \langle S, A, R, T, s_l, \gamma \rangle$  be an MDP.

The Bellman equation for a state s of  $\mathcal{T}$  is the set of equations that describes  $V_{\star}(s)$ , where

$$V_{\star}(s) := \max_{a \in A(s)} Q_{\star}(s, a)$$
$$Q_{\star}(s, a) := \sum_{s' \in \text{succ}(s, a)} T(s, a, s') \cdot (R(s, a, s') + \gamma \cdot V_{\star}(s'))$$

 $V_{\star}(s)$  is the state-value of s and  $Q_{\star}(s, a)$  is the action- or Q-value of a in s.

# **Optimal Policy**

The solution  $V_{\star}(s)$  of the Bellman equation describes the maximal expected reward that can be achieved from state s in MDP  $\mathcal{T}$ .

What is the policy that achieves the maximal expected reward?

# **Optimal Policy**

The solution  $V_{\star}(s)$  of the Bellman equation describes the maximal expected reward that can be achieved from state s in MDP  $\mathcal{T}$ .

What is the policy that achieves the maximal expected reward?

#### Definition (Optimal Policy)

Let  $\mathcal{T} = \langle S, A, R, T, s_l, \gamma \rangle$  be an MDP. A policy  $\pi$  is an optimal policy if  $\pi(s) \in \arg \max_{a \in A(s)} Q_{\star}(s, a)$  for all  $s \in S_{\pi}(s_l)$  and the expected reward of  $\pi$  in  $\mathcal{T}$  is  $V_{\star}(s_l)$ .

# Value Functions

#### Definition (Value Functions)

Let  $\pi$  be a policy for MDP  $\mathcal{T} = \langle S, A, R, T, s_l, \gamma \rangle$ .

The state-value  $V_{\pi}(s)$  of  $s \in S_{\pi}(s_l)$  under  $\pi$  is defined as

 $V_{\pi}(s) := Q_{\pi}(s, \pi(s))$ 

and the action- or Q-value  $Q_{\pi}(s, a)$  of s and a under  $\pi$  is defined as

$$Q_{\pi}(s,a) := \sum_{s' \in \operatorname{succ}(s,a)} T(s,a,s') \cdot (R(s,a,s') + \gamma \cdot V_{\pi}(s'))$$

The state-value  $V_{\pi}(s)$  describes the expected reward of applying  $\pi$  in MDP  $\mathcal{T}$ , starting from s.

Markov Decision Processes

ellman Equation

Summary ••

# Summary

### Summary

- SSPs are transition systems with a probabilistic transition relation.
- (Discounted-reward) MDPs allow state-dependent rewards that are discounted over an infinite horizon.
- Solutions of SSPs and MDPs are policies.
- For SSPs: minimize expected cost
- For MDPs: maximize expected reward
- The state-values of a policy specify the expected reward (cost) of following that policy.
- The Bellman equation describes the state-values of an optimal policy.