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Intended Learning Outcomes

explain the difference between deterministic and probabilistic
planning tasks

contrast SSPs and discounted reward infinite-horizon MDPs

explain and use the methods for solving MDPs:
Policy Iteration and Value Iteration
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Motivation
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MDP Examples
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Decisions Under Uncertainty
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(Maximum) Expected Utility

Adam wants to invest in the stock market. He considers the options
Bellman Inc. (B), Howard Ltd. (H) and Markov Tec. (M).

A (simplified) expert analysis makes the following predictions:

Bellman Inc. Howard Corp. Markov Tec.

xxx

+2 with 30%

xxx xxx

+3 with 40%

xxx xxx

+4 with 20%

xxx
xxx

+1 with 60%

xxx xxx

±0 with 10%

xxx xxx

+2 with 30%

xxx
xxx

±0 with 10%

xxx xxx

−1 with 50%

xxx xxx

−1 with 50%

xxx

What are the expected payoffs (or expected utility / reward)?

What is the rational decision (if Adam trusts the analysis)?
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Tree Interpretation

.3 .6 .1

B

.4 .1 .5

H

.2 .3 .5

M

2 1 0 3 0 −1 4 2 0
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Sequential Example

6 4 −5 4 −2 12 6 5 −5 3 8

a1 a2

.8 .2 1.0

a3 a4 a2 a3 a1 a4

.4 .4 .2 1.0 1.0 .5 .5 .8 .2 .6 .4
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Similarity?

Does this remind you of something?

{ Minimax

Expectimax is analogous algorithm for
sequential decision making under uncertainty

1. depth-first search through tree
2. apply utility function in terminal state
3. compute utility value of inner nodes

from below to above through the tree:
max node: utility is maximum of utility values of children
chance node: utility is probability-weighted sum of utility values of
children

4. move selection in root:
choose a move that maximizes the computed utility value

9/37
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Expectimax: Example

3 4

4

−2 9

9

5

3 1

3

3

5

6 4 −5 4 −2 12 6 5 −5 3 −2

a1 a2
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a3 a4 a2 a3 a1 a4
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Expectimax: Discussion

expectimax computes (correct) expected utilities
and action that yields the maximum expected utility

on execution, the agent obtains exactly the utility value computed
for the root in expectation

but it can obtain a much higher or lower utility

now we consider a more challenging environment:
Markov Decision Processes
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Markov Decision Processes

Markov decision processes (MDPs) studied since the 1950s

work up to 1980s mostly on theory and basic algorithms for small to
medium sized MDPs

today, focus on large, factored MDPs

fundamental datastructure for probabilistic planning

and for reinforcement learning
different variants exist:

finite-horizon MDPs
stochastic shortest path problems
discounted reward infinite-horizon MDPs

12/37
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Stochastic Shortest Path Problems
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Reminder: Transition Systems

Definition (transition system)

A transition system (or search problem) is a
6-tuple S = ⟨S, A, cost, T, sI, S⋆⟩ with

set of states S

finite set of actions A

action costs cost : A → Ò+
0

transition model T : S × A → S ∪ {⊥}
initial state sI ∈ S

set of goal states S⋆ ⊆ S

14/37
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Transition System Example

LR

LL TL

RL

TR RR

Logistics problem with one package, one truck, two locations:

location of package: domain {L, R, T}
location of truck: domain {L, R}

15/37
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Stochastic Shortest Path Example

LR

LL TL

RL

TR RR

.8.2

.8

.2
Logistics problem with one package, one truck, two locations:

location of package: {L, R, T}
location of truck: {L, R}
if truck moves with package, 20% chance of losing package

16/37
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Stochastic Shortest Path Problem

Definition (Stochastic Shortest Path Problem)
A stochastic shortest path problem (SSP) is a 6-tuple
T = ⟨S, A, c, T, sI, S⋆⟩ with

finite set of states S

finite set of actions A

action costs cost : A → Ò+
0

transition function T : S × A × S ↦→ [0, 1]
initial state sI ∈ S

set of goal states S⋆ ⊆ S

For all s ∈ S and a ∈ A with T(s, a, s′) > 0 for some s′ ∈ S,
we require

∑
s′∈S T(s, a, s′) = 1.

We assume there is a ∈ A and s′ ∈ S with T(s, a, s′) > 0 for all s ∈ S.

17/37



Motivation Decisions Under Uncertainty Stochastic Shortest Path Problems Markov Decision Processes Bellman Equation Summary

Solutions in Transition Systems

LR

LL TL

RL

TR RR

move-L, pickup, move-R, drop

in a deterministic transition system a solution is a plan, i.e.,
a sequence of operators that leads from sI to some s⋆ ∈ S⋆
an optimal solution is a cheapest possible plan

a deterministic agent that executes a plan will reach the goal

18/37
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Solutions in SSPs

LR

LL TL

RL

TR RR

move-L, pickup, move-R, drop

.8.2

can’t drop!

.8

.2

the same plan does not always work for the probabilistic agent (not
reaching the goal or not being able to execute the plan)

non-determinism can lead to a different outcome than anticipated
in the plan

need a policy
19/37
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.2
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TL
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Solutions in SSPs

LR

move-L

LL

pickup

TL

move-R

RL

TR

drop

RR

move-L, pickup, move-R, drop

.8.2

.8

.2
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Policies for SSPs

Definition (Policy for SSPs)
Let T = ⟨S, A, c, T, sI, S⋆⟩ be an SSP.
Let π be a mapping π : S → A∪ {⊥} such that π (s) ∈ A(s) ∪ {⊥} for all
s ∈ S.

The set of reachable states Sπ (s) from s under π is defined recursively as
the smallest set satisfying the rules

s ∈ Sπ (s) and

succ(s′, π (s′)) ⊆ Sπ (s) for all s′ ∈ Sπ (s) \ S⋆ where π (s′) , ⊥.

If π (s′) , ⊥ for all s′ ∈ Sπ (sI) \ S⋆, then π is a policy for T .
If the probability to eventually reach a goal is 1 for all s′ ∈ Sπ (sI) then π

is a proper policy for T .
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Additional Requirements for SSPs

We make two requirements for SSPs:
There is a proper policy.
Every improper policy incurs infinite cost from every reachable state
from which it does not reach a goal with probability 1.

We only consider SSPs that satisfy these requirements.
What does this mean in practice?

no unavoidable dead ends
no cost-free cyclic behavior possible

With these requirements every cost-minimizing policy is a proper
policy.

22/37
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Markov Decision Processes
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Discounted Reward Infinite-horizon MDPs

differences to initial example and SSPs:

MDPs can be cyclic

every action application yields a (positive or negative) reward (not
only utilities in terminal states)

aim is not to reach a goal state

instead, agent acts forever (infinite horizon)

aim: maximize expected overall reward
earlier rewards count more than later rewards

rewards decay exponentially with discount factor γ:
now full value r, in next step γr, in two steps only γ2r, . . .
ensures that algorithms converge
despite cycles and infinite horizon

24/37



Motivation Decisions Under Uncertainty Stochastic Shortest Path Problems Markov Decision Processes Bellman Equation Summary

Markov Decision Process

Definition (Markov Decision Process)
A (discounted reward) infinite-horizon Markov decision process (MDP) is
a 6-tuple T = ⟨S, A, R, T, sI, γ⟩ with

finite set of states S

finite set of actions A

reward function R : S × A × S → Ò

transition function T : S × A × S ↦→ [0, 1]
initial state sI ∈ S

discount factor γ ∈ (0, 1)

For all s ∈ S and a ∈ A with T(s, a, s′) > 0 for some s′ ∈ S,
we require

∑
s′∈S T(s, a, s′) = 1.

We assume there is a ∈ A and s′ ∈ S with T(s, a, s′) > 0 for all s ∈ S.
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Markov Property

Markov decision processes are named after
Russian mathematician Andrey Markov

Markov property: immediate reward and
probability distribution over successor states
only depend on current state and applied action
{ not on previously visited states or earlier actions

26/37
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Some Terminology

if T(s, a, s′) > 0 for some s′, we say that a is applicable in s

the set of applicable actions in s is A(s)
the successor set of s and a is succ(s, a) = {s′ ∈ S | T(s, a, s′) > 0}

27/37



Motivation Decisions Under Uncertainty Stochastic Shortest Path Problems Markov Decision Processes Bellman Equation Summary

MDP Example

1 2 3 4

1

2

3

4

5

sI

reward to move from striped cell is −3 (−1 everywhere else)
move in gray cells unsuccessful with probability 0.6
only applicable action in red cell is noop for reward of 0
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Policy

Definition (Policy)
Let T = ⟨S, A, R, T, sI, γ⟩ be an MDP.
Let π be a mapping π : S → A∪ {⊥} such that π (s) ∈ A(s) ∪ {⊥} for all
s ∈ S.

The set of reachable states Sπ (s) from s under π is defined recursively as
the smallest set satisfying the rules

s ∈ Sπ (s) and

succ(s′, π (s′)) ⊆ Sπ (s) for all s′ ∈ Sπ (s) where π (s′) , ⊥.

If π (s′) , ⊥ for all s′ ∈ Sπ (sI), then π is a policy for T .
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Policy Example

1 2 3 4

1

2

3

4

5

⇒

⊥

⊥

⊥

⊥

⇑

⇑

⇒

⇑

⇒

⊥

⊥

⇑

⇒

⊥

⊥

⊥

⊥

noop

⇐

sI

reward to move from striped cell is −3 (−1 everywhere else)
move in gray cells unsuccessful with probability 0.6
only applicable action in red cell is noop for reward of 0
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Bellman Equation
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State and Action Value

sI

s1 s2 s3

6 4 −5 4 −2 12 6 5 −5 3 −2

3 4

4 9 3

5
How do we compute the action
value of a3 in s1 (Q⋆(s1, a3))?
How do we compute the state
value of s1 (V⋆(s1))?

How do we compute the action value
of a1 in sI (Q⋆(sI, a1))?
(assume we act optimally after a1)

How do we compute the state
value of sI (V⋆(sI))?

a1 a2

.8 .2 1.0

a3 a4 a2 a3 a1 a4

.4 .4 .2 1.0 1.0 .5 .5 .8 .2 .6 .4
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Bellman Equation

Example not an MDP, but the idea also works in MDPs!

Definition (Bellman Equation)
Let T = ⟨S, A, R, T, sI, γ⟩ be an MDP.

The Bellman equation for a state s of T is the set of equations that
describes V⋆(s), where

V⋆(s) := max
a∈A(s)

Q⋆(s, a)

Q⋆(s, a) :=
∑

s′∈succ(s,a)
T(s, a, s′) · (R(s, a, s′) + γ · V⋆(s′)) .

V⋆(s) is the state-value of s and
Q⋆(s, a) is the action- or Q-value of a in s.
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Optimal Policy

The solution V⋆(s) of the Bellman equation describes the maximal
expected reward that can be achieved from state s in MDP T .

What is the policy that achieves the maximal expected reward?

Definition (Optimal Policy)
Let T = ⟨S, A, R, T, sI, γ⟩ be an MDP.
A policy π is an optimal policy if π (s) ∈ argmaxa∈A(s) Q⋆(s, a) for all
s ∈ Sπ (sI) and the expected reward of π in T is V⋆(sI).
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Value Functions

Definition (Value Functions)
Let π be a policy for MDP T = ⟨S, A, R, T, sI, γ⟩.
The state-value Vπ (s) of s ∈ Sπ (sI) under π is defined as

Vπ (s) := Qπ (s, π (s))

and the action- or Q-value Qπ (s, a) of s and a under π is defined as

Qπ (s, a) :=
∑

s′∈succ(s,a)
T(s, a, s′) · (R(s, a, s′) + γ · Vπ (s′)) .

The state-value Vπ (s) describes the expected reward
of applying π in MDP T , starting from s.
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Summary
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Summary

SSPs are transition systems with a probabilistic transition relation.

(Discounted-reward) MDPs allow state-dependent rewards that are
discounted over an infinite horizon.

Solutions of SSPs and MDPs are policies.

For SSPs: minimize expected cost

For MDPs: maximize expected reward

The state-values of a policy specify the expected reward (cost) of
following that policy.

The Bellman equation describes the state-values of an optimal
policy.
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