Artificial Intelligence

Planning: Markov Decision Processes

Jendrik Seipp

Linköping University

based on slides by Thomas Keller and Malte Helmert (University of Basel)

Markov Decision Processes

ellman Equation Su 00000 0

Intended Learning Outcomes

- explain the difference between deterministic and probabilistic planning tasks
- contrast SSPs and discounted reward infinite-horizon MDPs
- explain and use the methods for solving MDPs: Policy Iteration and Value Iteration

Motivation	
00	

Markov Decision Processes

ellman Equation

Summary 00

Motivation

ertainty Stochastic Shorte

Markov Decision Processes

Bellman Equation

MDP Examples

Markov Decision Processes

ellman Equation

Summary

Decisions Under Uncertainty

Markov Decision Processes

Bellman Equation 00000

(Maximum) Expected Utility

Adam wants to invest in the stock market. He considers the options Bellman Inc. (B), Howard Ltd. (H) and Markov Tec. (M).

A (simplified) expert analysis makes the following predictions:

Bellman Inc.	Howard Corp.	Markov Tec.
+2 with 30%	+3 with 40%	+4 with 20%
+1 with 60%	±0 with 10%	+2 with 30%
±0 with 10%	-1 with 50%	-1 with 50%

What are the expected payoffs (or expected utility / reward)?

Markov Decision Processes

Bellman Equation 00000

(Maximum) Expected Utility

Adam wants to invest in the stock market. He considers the options Bellman Inc. (B), Howard Ltd. (H) and Markov Tec. (M).

A (simplified) expert analysis makes the following predictions:

Bellman Inc.	Howard Corp.	Markov Tec.
+2 with 30%	+3 with 40%	+4 with 20%
+1 with 60%	±0 with 10%	+2 with 30%
±0 with 10%	-1 with 50%	-1 with 50%

What are the expected payoffs (or expected utility / reward)?

What is the rational decision (if Adam trusts the analysis)?

Markov Decision Processes

ellman Equation S

Tree Interpretation

Markov Decision Processes

ellman Equation S

Sequential Example

Similarity?

Does this remind you of something?

Expectimax

Does this remind you of something? → Minimax

Expectimax is analogous algorithm for sequential decision making under uncertainty

- depth-first search through tree
- apply utility function in terminal state
- compute utility value of inner nodes from below to above through the tree:
 - max node: utility is maximum of utility values of children
 - chance node: utility is probability-weighted sum of utility values of children
- move selection in root:

choose a move that maximizes the computed utility value

Markov Decision Processes

ellman Equation 5

Markov Decision Processes

ellman Equation 5

Summar

Markov Decision Processes

ellman Equation 5

Expectimax: Discussion

- expectimax computes (correct) expected utilities and action that yields the maximum expected utility
- on execution, the agent obtains exactly the utility value computed for the root in expectation
- but it can obtain a much higher or lower utility

Expectimax: Discussion

- expectimax computes (correct) expected utilities and action that yields the maximum expected utility
- on execution, the agent obtains exactly the utility value computed for the root in expectation
- but it can obtain a much higher or lower utility

now we consider a more challenging environment: Markov Decision Processes

- Markov decision processes (MDPs) studied since the 1950s
- work up to 1980s mostly on theory and basic algorithms for small to medium sized MDPs
- today, focus on large, factored MDPs
- fundamental datastructure for probabilistic planning
- and for reinforcement learning
- different variants exist:
 - finite-horizon MDPs
 - stochastic shortest path problems
 - discounted reward infinite-horizon MDPs

Markov Decision Processes

ellman Equation

Sumr

Stochastic Shortest Path Problems

ellman Equation Sum

Reminder: Transition Systems

Definition (transition system)

A transition system (or search problem) is a

6-tuple $S = \langle S, A, cost, T, s_l, S_{\star} \rangle$ with

- set of states S
- finite set of actions A
- action costs cost : $A \rightarrow \mathbb{R}_0^+$
- transition model $T : S \times A \rightarrow S \cup \{\bot\}$
- initial state $s_l \in S$
- set of goal states $S_{\star} \subseteq S$

Markov Decision Processes

ellman Equation 500000

Transition System Example

Logistics problem with one package, one truck, two locations:

- location of package: domain $\{L, R, T\}$
- location of truck: domain {L, R}

Stochastic Shortest Path Example

Logistics problem with one package, one truck, two locations:

- location of package: {L, R, T}
- location of truck: {*L*, *R*}
- if truck moves with package, 20% chance of losing package

ellman Equation Su

Stochastic Shortest Path Problem

Definition (Stochastic Shortest Path Problem)

A stochastic shortest path problem (SSP) is a 6-tuple

- $\mathcal{T} = \langle S, A, c, T, s_l, S_{\star} \rangle$ with
 - finite set of states S
 - finite set of actions A
 - action costs cost : $A \rightarrow \mathbb{R}^+_0$
 - **transition function** $T : S \times A \times S \mapsto [0, 1]$
 - initial state $s_I \in S$
 - set of goal states $S_{\star} \subseteq S$

For all $s \in S$ and $a \in A$ with T(s, a, s') > 0 for some $s' \in S$, we require $\sum_{s' \in S} T(s, a, s') = 1$. We assume there is $a \in A$ and $s' \in S$ with T(s, a, s') > 0 for all $s \in S$.

Markov Decision Processes

ellman Equation S

Solutions in Transition Systems

- in a deterministic transition system a solution is a plan, i.e., a sequence of operators that leads from s_l to some s_{*} ∈ S_{*}
- an optimal solution is a cheapest possible plan
- a deterministic agent that executes a plan will reach the goal

Markov Decision Processes

ellman Equation S

- the same plan does not always work for the probabilistic agent (not reaching the goal or not being able to execute the plan)
- non-determinism can lead to a different outcome than anticipated in the plan
- need a policy

Markov Decision Processes

ellman Equation S

Markov Decision Processes

ellman Equation Si 0000 0

Markov Decision Processes

ellman Equation Si 0000 0

Markov Decision Processes

ellman Equation Si 0000 0

Markov Decision Processes

ellman Equation Si 0000 0

Policies for SSPs

Definition (Policy for SSPs)

Let $\mathcal{T} = \langle S, A, c, T, s_l, S_{\star} \rangle$ be an SSP. Let π be a mapping $\pi : S \to A \cup \{\bot\}$ such that $\pi(s) \in A(s) \cup \{\bot\}$ for all $s \in S$.

The set of reachable states $S_{\pi}(s)$ from s under π is defined recursively as the smallest set satisfying the rules

```
• s \in S_{\pi}(s) and
```

succ $(s', \pi(s')) \subseteq S_{\pi}(s)$ for all $s' \in S_{\pi}(s) \setminus S_{\star}$ where $\pi(s') \neq \bot$.

If $\pi(s') \neq \bot$ for all $s' \in S_{\pi}(s_l) \setminus S_{\star}$, then π is a policy for \mathcal{T} . If the probability to eventually reach a goal is 1 for all $s' \in S_{\pi}(s_l)$ then π is a proper policy for \mathcal{T} .

Additional Requirements for SSPs

We make two requirements for SSPs:

- There is a proper policy.
- Every improper policy incurs infinite cost from every reachable state from which it does not reach a goal with probability 1.
- We only consider SSPs that satisfy these requirements.
- What does this mean in practice?
 - no unavoidable dead ends
 - no cost-free cyclic behavior possible
- With these requirements every cost-minimizing policy is a proper policy.

Markov Decision Processes

Bellman Equation

Summary

Markov Decision Processes

Discounted Reward Infinite-horizon MDPs

differences to initial example and SSPs:

- MDPs can be cyclic
- every action application yields a (positive or negative) reward (not only utilities in terminal states)
- aim is not to reach a goal state
- instead, agent acts forever (infinite horizon)
- aim: maximize expected overall reward
- earlier rewards count more than later rewards
 - rewards decay exponentially with discount factor γ: now full value r, in next step γr, in two steps only γ²r, ...
 - ensures that algorithms converge despite cycles and infinite horizon

Definition (Markov Decision Process)

A (discounted reward) infinite-horizon Markov decision process (MDP) is a 6-tuple $\mathcal{T} = \langle S, A, R, T, s_i, \gamma \rangle$ with

- finite set of states S
- finite set of actions A
- **reward function** $R : S \times A \times S \rightarrow \mathbb{R}$
- transition function $T : S \times A \times S \mapsto [0, 1]$
- initial state $s_l \in S$
- discount factor $\gamma \in (0, 1)$

For all $s \in S$ and $a \in A$ with T(s, a, s') > 0 for some $s' \in S$, we require $\sum_{s' \in S} T(s, a, s') = 1$. We assume there is $a \in A$ and $s' \in S$ with T(s, a, s') > 0 for all $s \in S$.

Markov Property

Markov decision processes are named after Russian mathematician Andrey Markov

Markov property: immediate reward and probability distribution over successor states only depend on current state and applied action → not on previously visited states or earlier actions

Some Terminology

- if T(s, a, s') > 0 for some s', we say that a is applicable in s
- the set of applicable actions in s is A(s)
- the successor set of s and a is $succ(s, a) = \{s' \in S \mid T(s, a, s') > 0\}$

Motivation Decisions Under Uncertainty

Stochastic Shortest Path Problems

Markov Decision Processes

Bellman Equation S

MDP Example

- reward to move from striped cell is -3 (-1 everywhere else)
- move in gray cells unsuccessful with probability 0.6
- only applicable action in red cell is noop for reward of 0

Markov Decision Processes

Policy

Definition (Policy)

Let $\mathcal{T} = \langle S, A, R, T, s_l, \gamma \rangle$ be an MDP. Let π be a mapping $\pi : S \to A \cup \{\bot\}$ such that $\pi(s) \in A(s) \cup \{\bot\}$ for all $s \in S$.

The set of reachable states $S_{\pi}(s)$ from s under π is defined recursively as the smallest set satisfying the rules

■
$$s \in S_{\pi}(s)$$
 and
■ $succ(s', \pi(s')) \subseteq S_{\pi}(s)$ for all $s' \in S_{\pi}(s)$ where $\pi(s') \neq \bot$.

If $\pi(s') \neq \bot$ for all $s' \in S_{\pi}(s_l)$, then π is a policy for \mathcal{T} .

Markov Decision Processes

Bellman Equation

Policy Example

- reward to move from striped cell is -3 (-1 everywhere else)
- move in gray cells unsuccessful with probability 0.6
- only applicable action in red cell is noop for reward of 0

Markov Decision Processes

Bellman Equation

Summary 00

Bellman Equation

Markov Decision Processes

Bellman Equation S O●OOO C

Bellman Equation

Example not an MDP, but the idea also works in MDPs!

Definition (Bellman Equation)

Let $\mathcal{T} = \langle S, A, R, T, s_l, \gamma \rangle$ be an MDP.

The Bellman equation for a state s of \mathcal{T} is the set of equations that describes $V_{\star}(s)$, where

$$V_{\star}(s) := \max_{a \in A(s)} Q_{\star}(s, a)$$
$$Q_{\star}(s, a) := \sum_{s' \in \text{succ}(s, a)} T(s, a, s') \cdot (R(s, a, s') + \gamma \cdot V_{\star}(s'))$$

 $V_{\star}(s)$ is the state-value of s and $Q_{\star}(s, a)$ is the action- or Q-value of a in s.

Optimal Policy

The solution $V_{\star}(s)$ of the Bellman equation describes the maximal expected reward that can be achieved from state s in MDP \mathcal{T} .

What is the policy that achieves the maximal expected reward?

Optimal Policy

The solution $V_{\star}(s)$ of the Bellman equation describes the maximal expected reward that can be achieved from state s in MDP \mathcal{T} .

What is the policy that achieves the maximal expected reward?

Definition (Optimal Policy)

Let $\mathcal{T} = \langle S, A, R, T, s_l, \gamma \rangle$ be an MDP. A policy π is an optimal policy if $\pi(s) \in \arg \max_{a \in A(s)} Q_{\star}(s, a)$ for all $s \in S_{\pi}(s_l)$ and the expected reward of π in \mathcal{T} is $V_{\star}(s_l)$.

Value Functions

Definition (Value Functions)

Let π be a policy for MDP $\mathcal{T} = \langle S, A, R, T, s_l, \gamma \rangle$.

The state-value $V_{\pi}(s)$ of $s \in S_{\pi}(s_l)$ under π is defined as

 $V_{\pi}(s) := Q_{\pi}(s, \pi(s))$

and the action- or Q-value $Q_{\pi}(s, a)$ of s and a under π is defined as

$$Q_{\pi}(s,a) := \sum_{s' \in \operatorname{succ}(s,a)} T(s,a,s') \cdot (R(s,a,s') + \gamma \cdot V_{\pi}(s'))$$

The state-value $V_{\pi}(s)$ describes the expected reward of applying π in MDP \mathcal{T} , starting from s.

Markov Decision Processes

ellman Equation

Summary ••

Summary

Summary

- SSPs are transition systems with a probabilistic transition relation.
- (Discounted-reward) MDPs allow state-dependent rewards that are discounted over an infinite horizon.
- Solutions of SSPs and MDPs are policies.
- For SSPs: minimize expected cost
- For MDPs: maximize expected reward
- The state-values of a policy specify the expected reward (cost) of following that policy.
- The Bellman equation describes the state-values of an optimal policy.