Artificial Intelligence

Planning 4: Delete Relaxation Heuristics

Jendrik Seipp

Linköping University

Relaxed Planning Graphs

Relaxed Planning Graphs

- relaxed planning graphs: represent which variables in Π^+ can be reached and how
- \blacksquare graphs with variable layers V^i and action layers A^i
 - variable layer V^0 contains the variable vertex v^0 for all $v \in I$
 - action layer A^{i+1} contains the action vertex a^{i+1} for action a if V^i contains the vertex v^i for all $v \in pre(a)$
 - variable layer V^{i+1} contains the variable vertex v^{i+1} if previous variable layer contains v^i , or previous action layer contains a^{i+1} with $v \in add(a)$

Relaxed Planning Graphs (Continued)

- **goal vertices** G^i if $v^i \in V^i$ for all $v \in G$
- graph can be constructed for arbitrary many layers but stabilizes after a bounded number of layers $V^{i+1} = V^i$ and $A^{i+1} = A^i$
- directed edges:
 - from v^i to a^{i+1} if $v \in pre(a)$ (precondition edges)
 - from a^i to v^i if $v \in add(a)$ (effect edges)
 - from v^i to G^i if $v \in G$ (goal edges)
 - from v^i to v^{i+1} (no-op edges)

Illustrative Example

we write actions a with $pre(a) = \{p_1, \dots, p_k\}, add(a) = \{a_1, \dots, a_l\}.$ $del(a) = \emptyset$ and cost(a) = cas $\{p_1, \ldots, p_h\} \xrightarrow{c} \{a_1, \ldots, a_l\}$ $V = \{a, b, c, d, e, f, q, h\}$ $1 = \{a\}$ $G = \{c, d, e, f, q\}$ $A = \{a_1, a_2, a_3, a_4, a_5, a_6\}$ $a_1 = \{a\} \xrightarrow{3} \{b, c\}$ $a_2 = \{a, c\} \xrightarrow{1} \{d\}$ $a_3 = \{b, c\} \xrightarrow{1} \{e\}$ $a_4 = \{b\} \xrightarrow{1} \{f\}$ $a_5 = \{d\} \xrightarrow{1} \{e, f\}$ $a_6 = \{d\} \xrightarrow{1} \{q\}$

$$d^0$$

$$e^0$$

$$f^0$$

$$g^0$$

$$h^0$$

$$a_1 = \{a\} \xrightarrow{3} \{b, c\}$$

$$a_4 = \{b\} \xrightarrow{1} \{f\}$$

$$a_2 = \{a, c\} \xrightarrow{1} \{d\}$$

 $a_5 = \{d\} \xrightarrow{1} \{e, f\}$

$$a_3 = \{b, c\} \xrightarrow{1} \{e\}$$
$$a_6 = \{d\} \xrightarrow{1} \{g\}$$

$$d^0$$

$$e^0$$

$$f^0$$

$$g^0$$

$$h^0$$

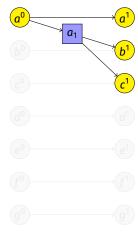
$$a_1 = \{a\} \xrightarrow{3} \{b, c\}$$

$$a_4 = \{b\} \xrightarrow{1} \{f\}$$

$$a_2 = \{a, c\} \xrightarrow{1} \{d\}$$

 $a_5 = \{d\} \xrightarrow{1} \{e, f\}$

$$a_3 = \{b, c\} \xrightarrow{1} \{e\}$$
$$a_6 = \{d\} \xrightarrow{1} \{g\}$$



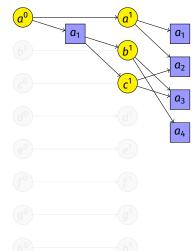
$$a_1 = \{a\} \xrightarrow{3} \{b, c\}$$

$$a_4 = \{b\} \xrightarrow{1} \{f\}$$

$$a_2 = \{a, c\} \xrightarrow{1} \{d\}$$

$$a_5 = \{d\} \xrightarrow{1} \{e, f\}$$

$$a_3 = \{b, c\} \xrightarrow{1} \{e\}$$
$$a_6 = \{d\} \xrightarrow{1} \{g\}$$



$$a_1 = \{a\} \xrightarrow{3} \{b, c\}$$

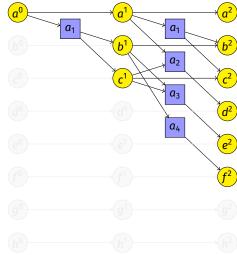
$$a_4 = \{b\} \xrightarrow{1} \{f\}$$

$$a_2 = \{a, c\} \xrightarrow{1} \{d\}$$

 $a_5 = \{d\} \xrightarrow{1} \{e, f\}$

$$a_3 = \{b, c\} \xrightarrow{1} \{e\}$$

 $a_6 = \{d\} \xrightarrow{1} \{g\}$



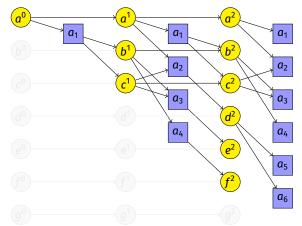
$$a_1 = \{a\} \xrightarrow{3} \{b, c\}$$

$$a_4 = \{b\} \xrightarrow{1} \{f\}$$

$$a_2 = \{a, c\} \xrightarrow{1} \{d\}$$

$$a_5 = \{d\} \xrightarrow{1} \{e, f\}$$

$$a_3 = \{b, c\} \xrightarrow{1} \{e\}$$
$$a_6 = \{d\} \xrightarrow{1} \{g\}$$



$$a_1 = \{a\} \xrightarrow{3} \{b, c\}$$

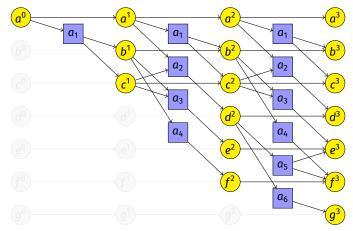
$$a_4 = \{b\} \xrightarrow{1} \{f\}$$

$$a_2 = \{a, c\} \xrightarrow{1} \{d\}$$

$$a_5 = \{d\} \xrightarrow{1} \{e, f\}$$

$$a_3 = \{b, c\} \xrightarrow{1} \{e\}$$

 $a_6 = \{d\} \xrightarrow{1} \{g\}$



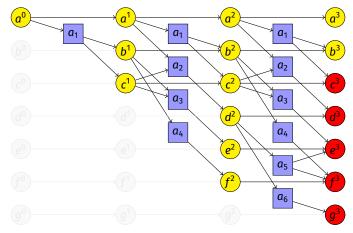
$$a_1 = \{a\} \xrightarrow{3} \{b, c\}$$

$$a_4 = \{b\} \xrightarrow{1} \{f\}$$

$$a_2 = \{a, c\} \xrightarrow{1} \{d\}$$

$$a_5 = \{d\} \xrightarrow{1} \{e, f\}$$

$$a_3 = \{b, c\} \xrightarrow{1} \{e\}$$
$$a_6 = \{d\} \xrightarrow{1} \{g\}$$



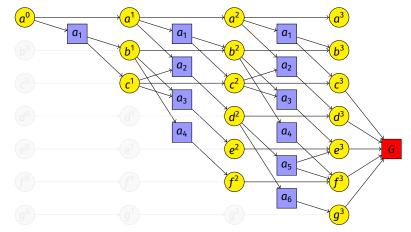
$$a_1 = \{a\} \xrightarrow{3} \{b, c\}$$

$$a_4 = \{b\} \xrightarrow{1} \{f\}$$

$$a_2 = \{a, c\} \xrightarrow{1} \{d\}$$

$$a_5 = \{d\} \xrightarrow{1} \{e, f\}$$

$$a_3 = \{b, c\} \xrightarrow{1} \{e\}$$
$$a_6 = \{d\} \xrightarrow{1} \{g\}$$



$$a_1 = \{a\} \xrightarrow{3} \{b, c\}$$

$$a_4 = \{b\} \xrightarrow{1} \{f\}$$

$$a_2 = \{a, c\} \xrightarrow{1} \{d\}$$

$$a_5 = \{d\} \xrightarrow{1} \{e, f\}$$

$$a_3 = \{b, c\} \xrightarrow{1} \{e\}$$
$$a_6 = \{d\} \xrightarrow{1} \{g\}$$

Concrete Examples for Generic RPG Heuristic

many planning heuristics are derived from the RPG

in this course:

- maximum heuristic h^{max} (Bonet & Geffner, 1999)
- additive heuristic hadd (Bonet, Loerincs & Geffner, 1997)
- Keyder & Geffner's (2008) variant of the FF heuristic h^{FF} (Hoffmann & Nebel, 2001)

remark:

 the most efficient implementations of these heuristics do not use explicit planning graphs, but rather alternative (equivalent) definitions

Maximum and Additive Heuristics

Maximum and Additive Heuristics

- \blacksquare h^{max} and h^{add} are the simplest RPG heuristics
- annotate vertices with numerical values
- the vertex values estimate the costs
 - to make a given variable true
 - to reach and apply a given action
 - to reach the goal

Maximum and Additive Heuristics: Heuristic Computation

computation of annotations:

- costs of variable vertices:0 in layer 0;otherwise minimum of the costs of predecessor vertices
- costs of action and goal vertices:
 maximum (h^{max}) or sum (h^{add}) of predecessor vertex costs;
 for action vertices aⁱ, also add cost(a)

termination criterion:

stability: terminate if $V^i = V^{i-1}$ and costs of all vertices in V^i equal corresponding vertex costs in V^{i-1}

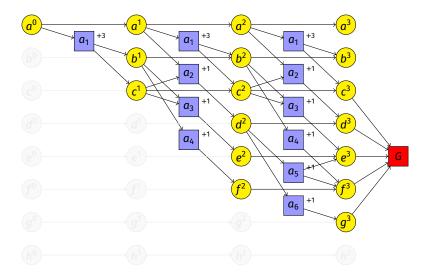
heuristic value:

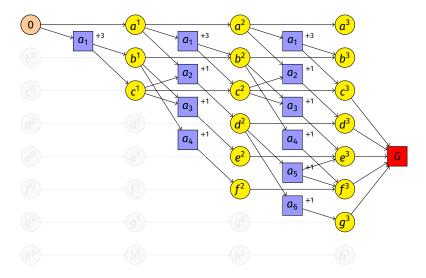
value of goal vertex in the last layer

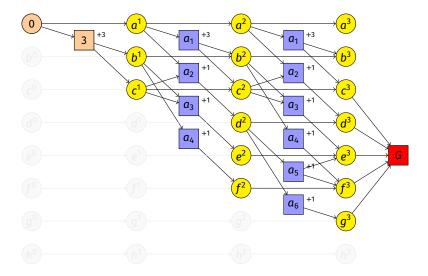
Maximum and Additive Heuristics: Intuition

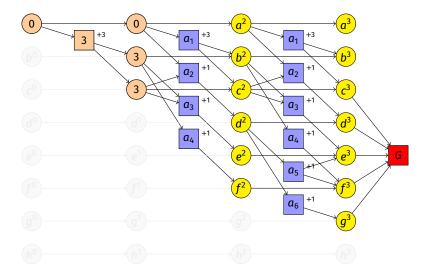
intuition:

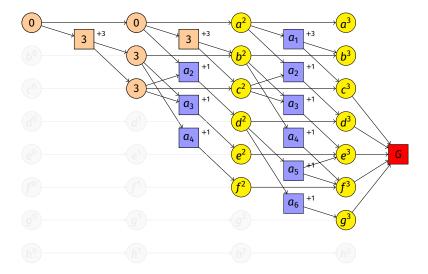
- variable vertices:
 - choose cheapest way of reaching the variable
- action/goal vertices:
 - h^{max} makes optimistic assumptions:
 when reaching the most expensive precondition variable,
 we can reach the other precondition variables in parallel
 (hence maximization of costs)
 - h^{add} makes pessimistic assumptions:
 all precondition variables must be reached completely independently of each other (hence summation of costs)

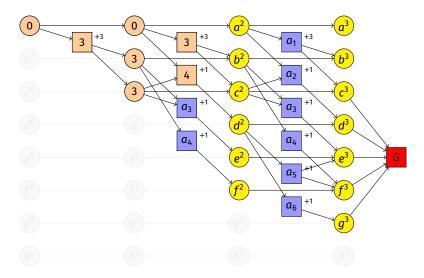


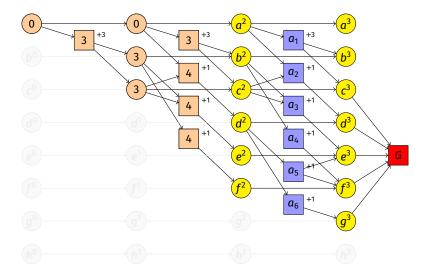


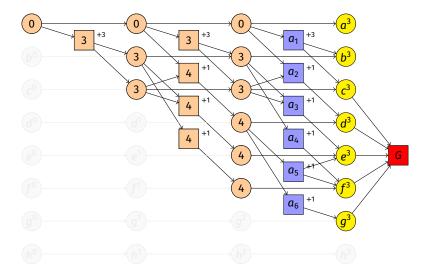




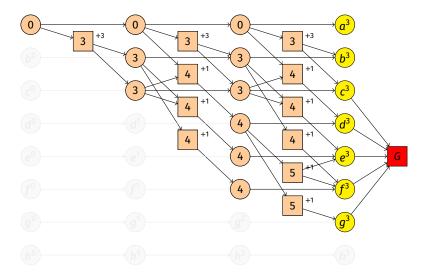




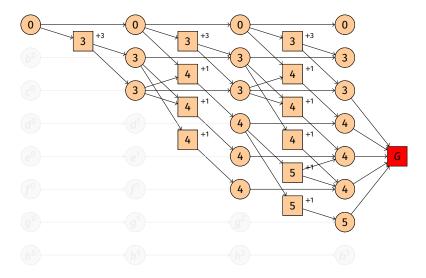


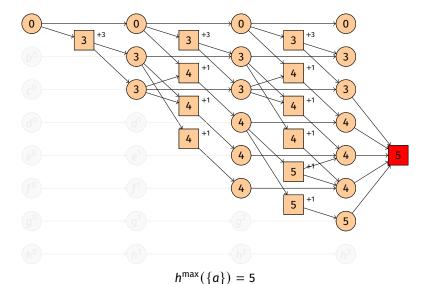


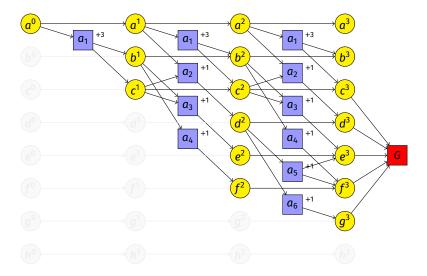
Illustrative Example: h^{max}

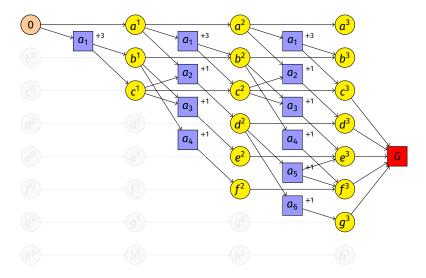


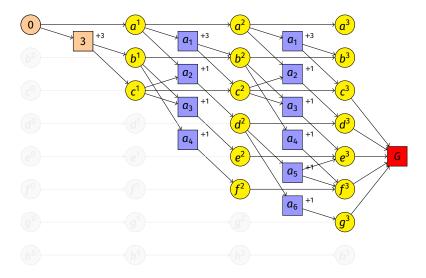
Illustrative Example: h^{max}

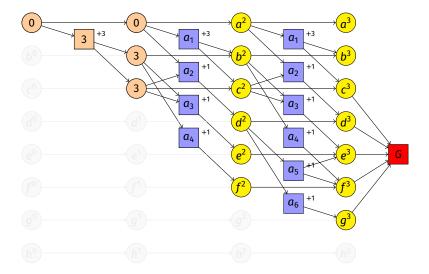


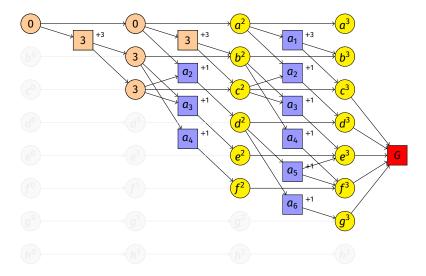


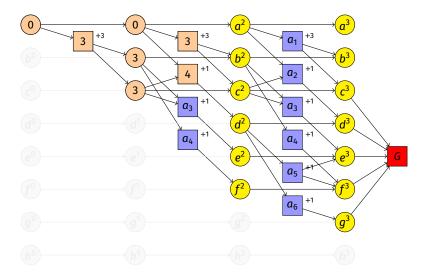


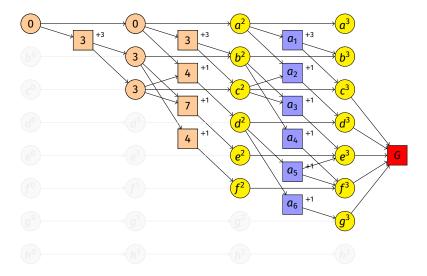


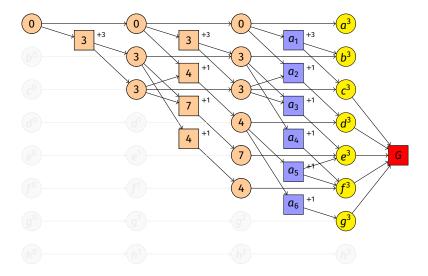


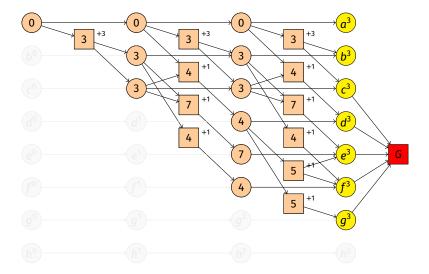


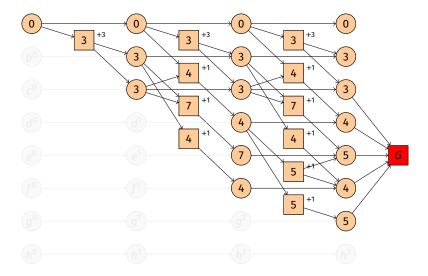


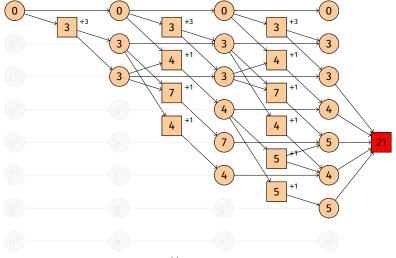












$$h^{\text{add}}(\{a\}) = 21$$

- both are safe and goal-aware
- \blacksquare h^{max} is admissible and consistent; h^{add} is neither.
- \rightarrow h^{add} not suited for optimal planning

- both are safe and goal-aware
- \blacksquare h^{max} is admissible and consistent; h^{add} is neither.
- → h^{add} not suited for optimal planning
 - however, h^{add} is usually much more informative than h^{max} greedy best-first search with h^{add} is a decent algorithm

- both are safe and goal-aware
- \blacksquare h^{max} is admissible and consistent; h^{add} is neither.
- → h^{add} not suited for optimal planning
 - however, h^{add} is usually much more informative than h^{max} greedy best-first search with h^{add} is a decent algorithm
 - apart from not being admissible, h^{add} often vastly overestimates the actual costs because positive synergies between subgoals are not recognized

- both are safe and goal-aware
- \blacksquare h^{max} is admissible and consistent; h^{add} is neither.
- → h^{add} not suited for optimal planning
 - however, h^{add} is usually much more informative than h^{max} greedy best-first search with h^{add} is a decent algorithm
 - apart from not being admissible, h^{add} often vastly overestimates the actual costs because positive synergies between subgoals are not recognized
- → FF heuristic

FF Heuristic

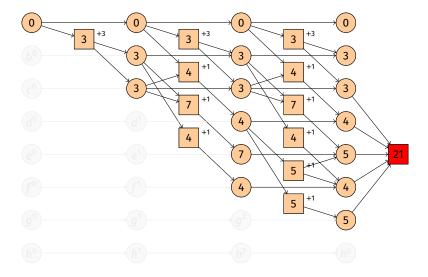
FF Heuristic

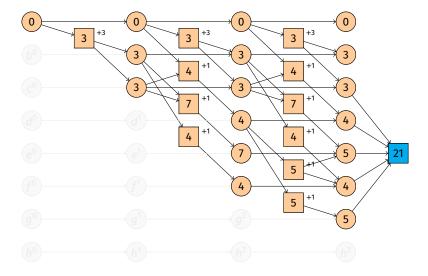
identical to h^{add} , but additional steps at the end:

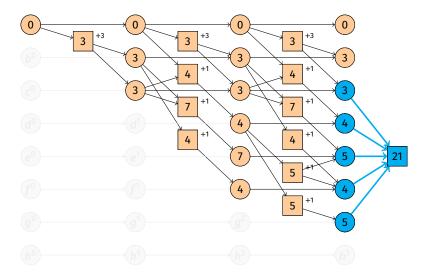
- mark goal vertex in the last graph layer
- apply the following marking rules until nothing more to do:
 - marked action or goal vertex?
 - → mark all predecessors
 - marked variable vertex v^i in layer $i \ge 1$?
 - → mark one predecessor with minimal h^{add} value (tie-breaking: prefer variable vertices; otherwise arbitrary)

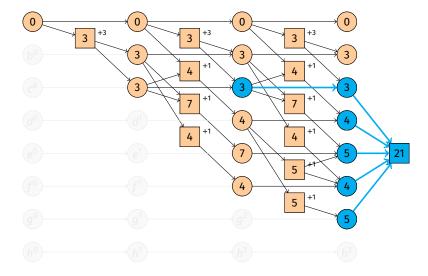
heuristic value:

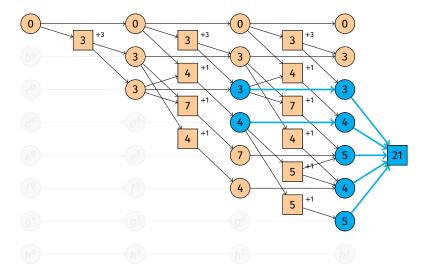
- the actions corresponding to the marked action vertices build a relaxed plan
- the cost of this plan is the heuristic value

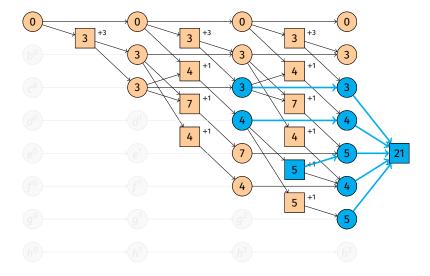


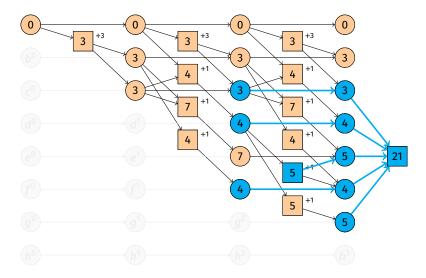


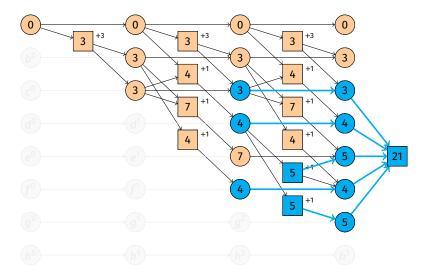


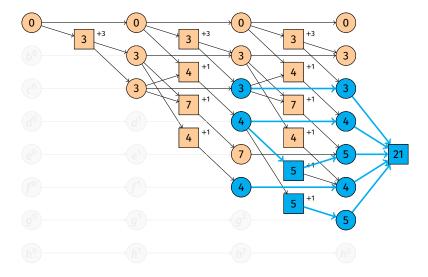


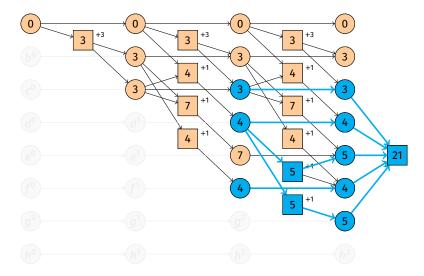


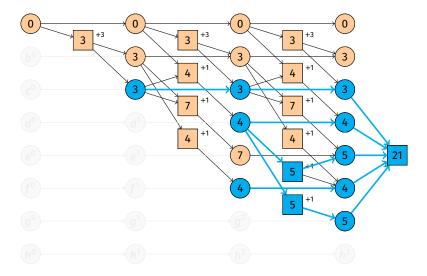


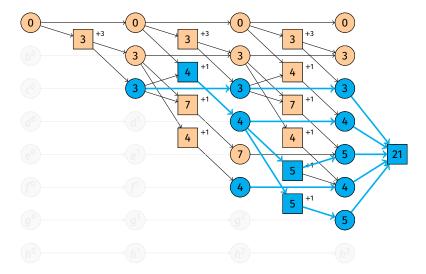


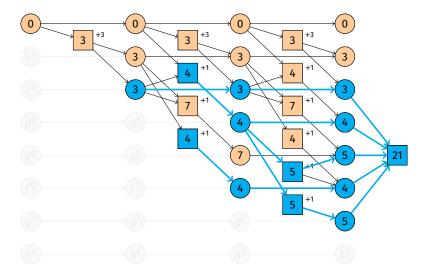


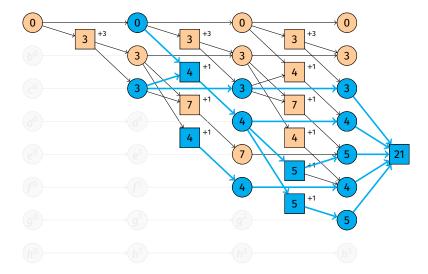


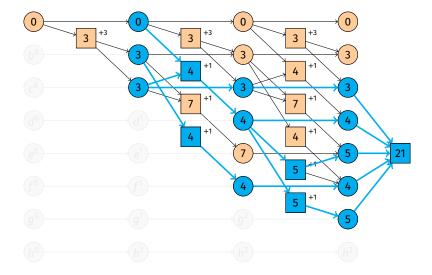


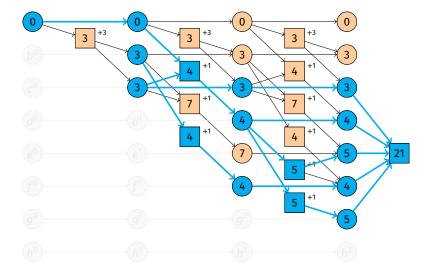


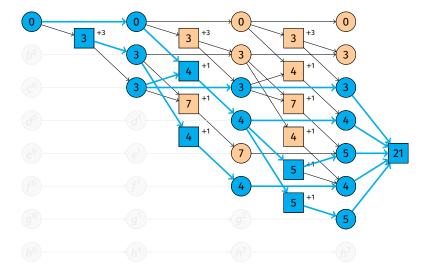


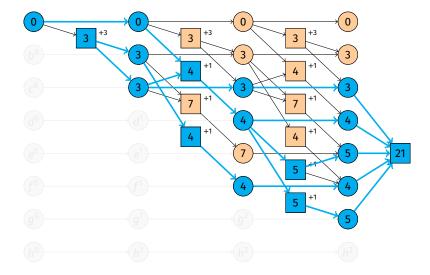


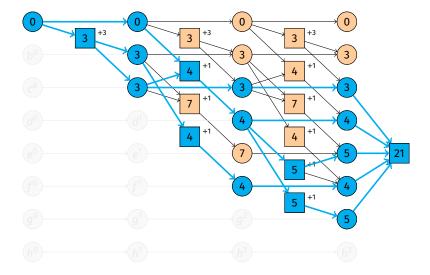


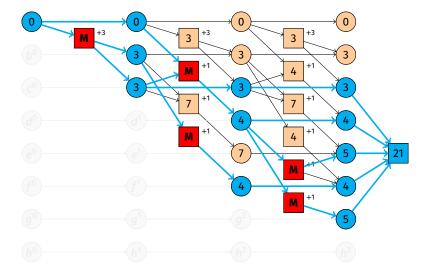




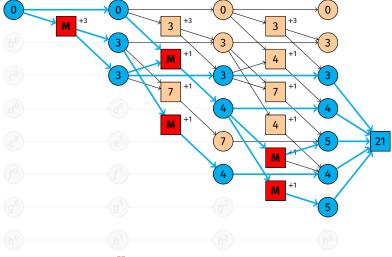








Illustrative Example: h^{FF}



$$h^{FF}({a}) = 3 + 1 + 1 + 1 + 1 = 7$$

FF Heuristic: Remarks

- like h^{add}, h^{FF} is safe and goal-aware, but neither admissible nor consistent
- \blacksquare approximation of h^+ which is always at least as good as h^{add}
- usually significantly better
- can be computed in almost linear time (O(n log n))
 in the size of the description of the planning task

FF Heuristic: Remarks

- like h^{add}, h^{FF} is safe and goal-aware, but neither admissible nor consistent
- \blacksquare approximation of h^+ which is always at least as good as h^{add}
- usually significantly better
- can be computed in almost linear time (O(n log n))
 in the size of the description of the planning task
- computation of heuristic value depends on tie-breaking of marking rules (h^{FF} not well-defined)
- one of the most successful planning heuristics

Comparison of Relaxation Heuristics

Relationships of Relaxation Heuristics

Let s be a state in the STRIPS planning task $\langle V, I, G, A \rangle$.

Then

- $h^{\max}(s) \le h^+(s) \le h^*(s)$
- $h^{\max}(s) \le h^{+}(s) \le h^{FF}(s) \le h^{\text{add}}(s)$
- \blacksquare h^* and h^{FF} are incomparable
- \blacksquare h^* and h^{add} are incomparable

further remarks:

- for non-admissible heuristics, it is generally neither good nor bad to compute higher values than another heuristic
- for relaxation heuristics, the objective is to approximate h^+ as closely as possible

Quiz

