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Relaxed Planning Graphs

m relaxed planning graphs: represent which variables in M*
can be reached and how

m graphs with variable layers V' and action layers A’

m variable layer V° contains the variable vertex v° forall v € |
® action layer A*" contains the action vertex a’*' for action a
if V' contains the vertex v/ for all v € pre(a)
m variable layer V*' contains the variable vertex vi*'
if previous variable layer contains v/,
or previous action layer contains a*! with v € add(a)
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Relaxed Planning Graphs (Continued)

m goal vertices G if v/ € Viforallv € G

m graph can be constructed for arbitrary many layers
but stabilizes after a bounded number of layers
~ Vi+1 — Vi and Ai+1 — Ai

m directed edges:

= fromVvitoa
= from a to v/ ifv € add(a) (effect edges)
m from v/ to G' if v € G (goal edges)

m from v to v*' (no-op edges)

#1if v € pre(a) (precondition edges)
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Illustrative Example

we write actions a with pre(a) = {p1, ..., pr}, add(a) = {as, ..., q;},

del(a) = @ and cost(a) = ¢

as {p1,....pr} — {ar,...,a;}
V={ab,cdef,gh}

I'={a}

G=1{cdef,g}
A = {a1, 03,03, 04, A5, 6 }
a; = {a} = {b,c}
a, = {a,c} = {d}
as = {b,c} = {e}
a, = {b} = {f}
as = {d} = {e.f}
as = {d} = {g}
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Illustrative Example: Relaxed Planning Graph

a = {a} > {b,c} a, = {a,c} > {d} as = {b,c} > {e}
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Concrete Examples for Generic RPG Heuristic

many planning heuristics are derived from the RPG

in this course:
m maximum heuristic h™** (Bonet & Geffner, 1999)
m additive heuristic h*® (Bonet, Loerincs & Geffner, 1997)

m Keyder & Geffner’s (2008) variant of the FF heuristic h"" (Hoffmann
& Nebel, 2001)

remark:

m the most efficient implementations of these heuristics
do not use explicit planning graphs,
but rather alternative (equivalent) definitions
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Maximum and Additive Heuristics

m h™* and h*%9 are the simplest RPG heuristics
® annotate vertices with numerical values

m the vertex values estimate the costs

= to make a given variable true
m to reach and apply a given action
m to reach the goal
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Maximum and Additive Heuristics: Heuristic Computation

computation of annotations:

m costs of variable vertices:
0in layer 0;
otherwise minimum of the costs of predecessor vertices

m costs of action and goal vertices:
maximum (h™®) or sum (h?49) of predecessor vertex costs;
for action vertices a', also add cost(a)
termination criterion:
m stability: terminate if V/ = Vi~" and costs of all vertices
in V' equal corresponding vertex costs in Vi~
heuristic value:

m value of goal vertex in the last layer
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Maximum and Additive Heuristics: Intuition

intuition:
m variable vertices:
m choose cheapest way of reaching the variable
m action/goal vertices:
m h™ makes optimistic assumptions:
when reaching the most expensive precondition variable,
we can reach the other precondition variables in parallel
(hence maximization of costs)
m h?99 makes pessimistic assumptions:
all precondition variables must be reached completely
independently of each other (hence summation of costs)
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~> h? not suited for optimal planning
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Planning Graphs

FF Heuristic

identical to h?%9, but additional steps at the end:

m mark goal vertex in the last graph layer
m apply the following marking rules until nothing more to do:
m marked action or goal vertex?
~» mark all predecessors
m marked variable vertex v' in layer i > 1?
~>» mark one predecessor with minimal h4 value
(tie-breaking: prefer variable vertices; otherwise arbitrary)
heuristic value:
m the actions corresponding to the marked action vertices
build a relaxed plan

m the cost of this plan is the heuristic value
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FF Heuristic: Remarks

m like h?99, hFF is safe and goal-aware,
but neither admissible nor consistent

® approximation of h™ which is always at least as good as h?%¢
m usually significantly better

m can be computed in almost linear time (O(n log n))
in the size of the description of the planning task
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FF Heuristic: Remarks

m like h2%9, hFF is safe and goal-aware,

but neither admissible nor consistent
® approximation of h™ which is always at least as good as h?%¢
m usually significantly better

m can be computed in almost linear time (O(n log n))
in the size of the description of the planning task

m computation of heuristic value depends on tie-breaking
of marking rules (hff not well-defined)

m one of the most successful planning heuristics
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Comparison of Relaxation Heuristics

Relationships of Relaxation Heuristics

Let s be a state in the STRIPS planning task (V, I, G, A).

Then
m h™¥(s) < h*(s) < h*(s)
m h™™(s) < h*(s) < hfF(s) < h?94(s)

m h* and hF are incomparable

® h* and h*% are incomparable

further remarks:

m for non-admissible heuristics, it is generally neither good
nor bad to compute higher values than another heuristic

m for relaxation heuristics, the objective is to approximate h*
as closely as possible
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Quiz

Kahoot!
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