
Artificial Intelligence
Planning 3: Delete Relaxation

Jendrik Seipp

Linköping University

based on slides by Thomas Keller and Malte Helmert (University of Basel)



Delete Relaxation Examples

Questions?

post feedback and ask questions anonymously at

https://padlet.com/jendrikseipp/tddc17

2/14

https://padlet.com/jendrikseipp/tddc17


Delete Relaxation Examples

Intended Learning Outcomes

contrast normal STRIPS tasks with “delete-relaxed” STRIPS tasks

compute hmax, hadd and hFF for delete-relaxed tasks

compare the hmax, hadd and hFF heuristics

3/14



Delete Relaxation Examples

Delete Relaxation

4/14



Delete Relaxation Examples

Planning Heuristics

General Procedure for Obtaining a Heuristic
Solve a simplified version of the problem.

where all negative action effects are ignored.

there are many ideas for domain-independent planning heuristics:

abstraction{ yesterday

delete relaxation{ now

landmarks

critical paths

network flows

potential heuristics

5/14



Delete Relaxation Examples

Planning Heuristics

Delete Relaxation: Idea
Estimate solution costs by considering a simplified planning task where
all negative action effects are ignored.

there are many ideas for domain-independent planning heuristics:

abstraction{ yesterday

delete relaxation{ now

landmarks

critical paths

network flows

potential heuristics

5/14



Delete Relaxation Examples

Relaxed Planning Tasks: Idea

In STRIPS tasks, good and bad effects are easy to distinguish:

add effects are always useful

delete effects are always harmful

Why? more facts true → more actions applicable

idea for designing heuristics: ignore all delete effects

6/14



Delete Relaxation Examples

Relaxed Planning Tasks: Idea

In STRIPS tasks, good and bad effects are easy to distinguish:

add effects are always useful

delete effects are always harmful

Why? more facts true → more actions applicable

idea for designing heuristics: ignore all delete effects

6/14



Delete Relaxation Examples

Relaxed Planning Tasks: Idea

In STRIPS tasks, good and bad effects are easy to distinguish:

add effects are always useful

delete effects are always harmful

Why? more facts true → more actions applicable

idea for designing heuristics: ignore all delete effects

6/14



Delete Relaxation Examples

Relaxed Planning Tasks

Definition (relaxation of actions)
The relaxation a+ of STRIPS action a is the action with pre(a+) = pre(a),
add(a+) = add(a), cost(a+) = cost(a),
and del(a+) = ∅.

Definition (relaxation of planning tasks)

The relaxation Π+ of a STRIPS planning task Π = ⟨V, I, G, A⟩
is the task Π+ := ⟨V, I, G, {a+ | a ∈ A}⟩.

Definition (relaxation of action sequences)
The relaxation of action sequence π = ⟨a1, . . . , an⟩
is the action sequence π+ := ⟨a+1 , . . . , a+n⟩.

7/14



Delete Relaxation Examples

Relaxed Planning Tasks: Terminology

STRIPS planning tasks without delete effects
are called relaxed planning tasks
or delete-free planning tasks

plans for relaxed planning tasks are called relaxed plans

if Π is a STRIPS planning task and π+ is a plan for Π+,
then π+ is called relaxed plan for Π

h+(Π) denotes the cost of an optimal plan for Π+,
i.e., of an optimal relaxed plan

analogously: h+(s) cost of optimal relaxed plan
starting in state s (instead of initial state)

h+ is called optimal relaxation heuristic

8/14



Delete Relaxation Examples

Relaxed Planning Tasks: Terminology

STRIPS planning tasks without delete effects
are called relaxed planning tasks
or delete-free planning tasks

plans for relaxed planning tasks are called relaxed plans

if Π is a STRIPS planning task and π+ is a plan for Π+,
then π+ is called relaxed plan for Π

h+(Π) denotes the cost of an optimal plan for Π+,
i.e., of an optimal relaxed plan

analogously: h+(s) cost of optimal relaxed plan
starting in state s (instead of initial state)

h+ is called optimal relaxation heuristic

8/14



Delete Relaxation Examples

Examples

9/14



Delete Relaxation Examples

Example: Logistics

L R

RTo LTo

→ L R

RToLTo

V = {atOL, atOR, atBL, atBR, atTL, atTR, inOT, inBT}
I = {atOL, atBR, atTL}
G = {atOR, atBL}
A = {moveLR,moveRL, loadOL, loadOR, loadBL, loadBR,

unloadOL, unloadOR, unloadBL, unloadBR}
. . .

pre(moveLR) = {atTL}, add(moveLR) = {atTR},
del(moveLR) = {atTL}, cost(moveLR) = 1

pre(loadOL) = {atTL, atOL}, add(loadOL) = {inOT},
del(loadOL) = {atOL}, cost(loadOL) = 1

pre(unloadOL) = {atTL, inOT}, add(unloadOL) = {atOL},
del(unloadOL) = {inOT}, cost(unloadOL) = 1

. . .

optimal plan:
1 loadOL
2 moveLR
3 unloadOR
4 loadBR
5 moveRL
6 unloadBL

optimal relaxed plan:

h∗(I) = 6, h+(I) =

10/14



Delete Relaxation Examples

Example: Logistics

L R

RTo LTo

→ L R

RToLTo

V = {atOL, atOR, atBL, atBR, atTL, atTR, inOT, inBT}
I = {atOL, atBR, atTL}
G = {atOR, atBL}
A = {moveLR,moveRL, loadOL, loadOR, loadBL, loadBR,

unloadOL, unloadOR, unloadBL, unloadBR}
. . .

pre(moveLR) = {atTL}, add(moveLR) = {atTR},
del(moveLR) = {atTL}, cost(moveLR) = 1

pre(loadOL) = {atTL, atOL}, add(loadOL) = {inOT},
del(loadOL) = {atOL}, cost(loadOL) = 1

pre(unloadOL) = {atTL, inOT}, add(unloadOL) = {atOL},
del(unloadOL) = {inOT}, cost(unloadOL) = 1

. . .

optimal plan:
1 loadOL
2 moveLR
3 unloadOR
4 loadBR
5 moveRL
6 unloadBL

optimal relaxed plan:

h∗(I) = 6, h+(I) =

10/14



Delete Relaxation Examples

Example: Logistics

L R

RTo LTo

→ L R

RToLTo

V = {atOL, atOR, atBL, atBR, atTL, atTR, inOT, inBT}
I = {atOL, atBR, atTL}
G = {atOR, atBL}
A = {moveLR,moveRL, loadOL, loadOR, loadBL, loadBR,

unloadOL, unloadOR, unloadBL, unloadBR}
. . .

pre(moveLR) = {atTL}, add(moveLR) = {atTR},
del(moveLR) = {atTL}, cost(moveLR) = 1

pre(loadOL) = {atTL, atOL}, add(loadOL) = {inOT},
del(loadOL) = {atOL}, cost(loadOL) = 1

pre(unloadOL) = {atTL, inOT}, add(unloadOL) = {atOL},
del(unloadOL) = {inOT}, cost(unloadOL) = 1

. . .

optimal plan:
1 loadOL
2 moveLR
3 unloadOR
4 loadBR
5 moveRL
6 unloadBL

optimal relaxed plan: ?

h∗(I) = 6, h+(I) = ?

10/14



Delete Relaxation Examples

Example: Logistics

L R

RTo LTo

→ L R

RToLTo

V = {atOL, atOR, atBL, atBR, atTL, atTR, inOT, inBT}
I = {atOL, atBR, atTL}
G = {atOR, atBL}
A = {moveLR,moveRL, loadOL, loadOR, loadBL, loadBR,

unloadOL, unloadOR, unloadBL, unloadBR}
. . .

pre(moveLR) = {atTL}, add(moveLR) = {atTR},
del(moveLR) = {atTL}, cost(moveLR) = 1

pre(loadOL) = {atTL, atOL}, add(loadOL) = {inOT},
del(loadOL) = {atOL}, cost(loadOL) = 1

pre(unloadOL) = {atTL, inOT}, add(unloadOL) = {atOL},
del(unloadOL) = {inOT}, cost(unloadOL) = 1

. . .

optimal plan:
1 loadOL
2 moveLR
3 unloadOR
4 loadBR
5 moveRL
6 unloadBL

optimal relaxed plan: like optimal plan without moveRL

h∗(I) = 6, h+(I) = 5

10/14



Delete Relaxation Examples

Example: 8-Puzzle

1 2 3

5 6 8

4 7

1 2 3

4 5

6 7 8

(original) task:
A tile can be moved from cell A to B
if A and B are adjacent and B is free.

simplification (basis for Manhattan distance):
A tile can be moved from cell A to B
if A and B are adjacent.

relaxed task:
A tile can be moved from cell A to B if
A and B are adjacent and B is free.
. . .where delete effects are ignored
(in particular: free cells at earlier time remain free)

11/14



Delete Relaxation Examples

Example: 8-Puzzle

1 2 3

5 6 8

4 7

1 2 3

4 5

6 7 8

actual goal distance: h∗(s) = 8

Manhattan distance: hMD(s) = 6

optimal delete relaxation: h+(s) = 7

relationship:
h+ dominates the Manhattan distance in the sliding tile puzzle
(i.e., hMD(s) ≤ h+(s) ≤ h∗(s) for all states s)

11/14



Delete Relaxation Examples

Exercise
Consider the STRIPS formalization of blocks world and the following task
with blocks A, B and C, initial state I = {on-tableA, onB,A, onC,B, clearC}
(left stack in the picture below) and the goal
G = {on-tableA, onC,A, onB,C} (right stack in the picture below).

A

B

C

A

C

B

(a) Calculate the perfect heuristic values h∗(I) and h∗(I′) for the initial
state I and the only successor state I′ of I.

(b) Consider the STRIPS heuristic hS. Calculate the heuristic values
hS(I) and hS(I′).

(c) Calculate h+(I) and h+(I′).
(d) Compare and discuss the results of exercise parts (a), (b) and (c). 12/14



Delete Relaxation Examples

Exercise: Solution
The only successor state of I is I′ = {on-tableA, onB,A, on-tableC}.

(a) The following plan is optimal for I: ⟨to-tableC,B, to-tableB,A,
from-tableC,A, from-tableB,C⟩. Therefore h∗(I) = 4. Since the plan
starts with the action that reaches I′, we have h∗(I′) = 3.

(b) The goal variables onC,A and onB,C do not hold in I nor in I′, so
hS(I) = hS(I′) = 2.

(c) To calculate h+, we inspect the relaxed planning task Π+. To reach G
from I in Π+, we need 3 actions: to-tableC,B, moveB,A,C and
from-tableC,A. Thus h+(I) = 3. Since we already applied to-tableC,B
to reach I′, we have h+(I′) = 2.

(d) The STRIPS heuristic only changes between two states if a goal
variable becomes true or false, so hS(I) = hS(I′). Since the STRIPS
heuristic also ignores the actions, it underestimates the effort to
reach the goal: hS(I) = 2 < h∗(s) = 4.
In the delete relaxation, C remains clear even when moving B from A
to C in the second step. This is not possible in the original task.

13/14



Delete Relaxation Examples

Relaxed Solutions: Suboptimal or Optimal?

for general STRIPS planning tasks, h+

is an admissible and consistent heuristic
Can h+ be computed efficiently?

it is easy to solve delete-free planning tasks suboptimally
optimal solution (and hence the computation of h+)
is NP-hard

in practice, heuristics approximate h+ from below or above

14/14



Delete Relaxation Examples

Relaxed Solutions: Suboptimal or Optimal?

for general STRIPS planning tasks, h+

is an admissible and consistent heuristic
Can h+ be computed efficiently?

it is easy to solve delete-free planning tasks suboptimally
optimal solution (and hence the computation of h+)
is NP-hard

in practice, heuristics approximate h+ from below or above

14/14


	Delete Relaxation
	

	Examples
	


