Artificial Intelligence Planning 3: Delete Relaxation

Jendrik Seipp

Linköping University

based on slides by Thomas Keller and Malte Helmert (University of Basel)

Delete Relaxatior 00000

Questions?

post feedback and ask questions anonymously at

https://padlet.com/jendrikseipp/tddc17

Intended Learning Outcomes

- contrast normal STRIPS tasks with "delete-relaxed" STRIPS tasks
- **compute** h^{max} , h^{add} and h^{FF} for delete-relaxed tasks
- **compare** the h^{max} , h^{add} and h^{FF} heuristics

Delete Relaxation

Planning Heuristics

General Procedure for Obtaining a Heuristic

Solve a simplified version of the problem.

there are many ideas for domain-independent planning heuristics:

- abstraction → yesterday
- delete relaxation \rightsquigarrow now
- landmarks
- critical paths
- network flows
- potential heuristics

Planning Heuristics

Delete Relaxation: Idea

Estimate solution costs by considering a simplified planning task where all negative action effects are ignored.

there are many ideas for domain-independent planning heuristics:

- abstraction → yesterday
- delete relaxation → now
- landmarks
- critical paths
- network flows
- potential heuristics

Relaxed Planning Tasks: Idea

In STRIPS tasks, good and bad effects are easy to distinguish:

- add effects are always useful
- delete effects are always harmful

Why?

Relaxed Planning Tasks: Idea

In STRIPS tasks, good and bad effects are easy to distinguish:

- add effects are always useful
- delete effects are always harmful

Why? more facts true \rightarrow more actions applicable

Relaxed Planning Tasks: Idea

In STRIPS tasks, good and bad effects are easy to distinguish:

- add effects are always useful
- delete effects are always harmful

Why? more facts true \rightarrow more actions applicable

idea for designing heuristics: ignore all delete effects

Relaxed Planning Tasks

Definition (relaxation of actions)

The relaxation a^+ of STRIPS action a is the action with $pre(a^+) = pre(a)$, $add(a^+) = add(a)$, $cost(a^+) = cost(a)$, and $del(a^+) = \emptyset$.

Definition (relaxation of planning tasks)

The relaxation Π^+ of a STRIPS planning task $\Pi = \langle V, I, G, A \rangle$ is the task $\Pi^+ := \langle V, I, G, \{a^+ \mid a \in A\} \rangle$.

Definition (relaxation of action sequences)

The relaxation of action sequence $\pi = \langle a_1, \ldots, a_n \rangle$ is the action sequence $\pi^+ := \langle a_1^+, \ldots, a_n^+ \rangle$.

Relaxed Planning Tasks: Terminology

- STRIPS planning tasks without delete effects are called relaxed planning tasks or delete-free planning tasks
- plans for relaxed planning tasks are called relaxed plans
- if Π is a STRIPS planning task and π^+ is a plan for Π^+ , then π^+ is called relaxed plan for Π

Relaxed Planning Tasks: Terminology

- STRIPS planning tasks without delete effects are called relaxed planning tasks or delete-free planning tasks
- plans for relaxed planning tasks are called relaxed plans
- if Π is a STRIPS planning task and π^+ is a plan for Π^+ , then π^+ is called relaxed plan for Π
- h⁺(Π) denotes the cost of an optimal plan for Π⁺,
 i.e., of an optimal relaxed plan
- analogously: h⁺(s) cost of optimal relaxed plan starting in state s (instead of initial state)
- h^+ is called optimal relaxation heuristic

Examples

- $\blacksquare V = \{at_{OL}, at_{OR}, at_{BL}, at_{BR}, at_{TL}, at_{TR}, in_{OT}, in_{BT}\}$
- $\blacksquare I = \{at_{OL}, at_{BR}, at_{TL}\}$
- $\blacksquare G = \{at_{OR}, at_{BL}\}$
- $A = \{move_{LR}, move_{RL}, load_{OL}, load_{OR}, load_{BL}, load_{BR}, unload_{OL}, unload_{OR}, unload_{BL}, unload_{BR}\}$

- pre(move_{LR}) = {at_{TL}}, add(move_{LR}) = {at_{TR}}, del(move_{LR}) = {at_{TL}}, cost(move_{LR}) = 1
- $pre(load_{OL}) = \{at_{TL}, at_{OL}\}, add(load_{OL}) = \{in_{OT}\}, \\ del(load_{OL}) = \{at_{OL}\}, cost(load_{OL}) = 1$

...

- optimal plan:
 - 🚺 load_{OL}
 - 2 move_{LR}
 - unload_{OR}
 - 🎱 load_{BR}
 - 5 move_{RL}
 - unload_{BL}
- optimal relaxed plan: ?

■
$$h^*(I) = 6, h^+(I) = ?$$

- optimal plan:
 - 🚺 load_{OL}
 - 2 move_{LR}
 - Inload_{OR}
 - 🎱 load_{BR}
 - 5 move_{RL}
 - o unload_{BL}
- optimal relaxed plan: like optimal plan without move_{RL}

■
$$h^*(I) = 6, h^+(I) = 5$$

Example: 8-Puzzle

(original) task:

- A tile can be moved from cell A to B if A and B are adjacent and B is free.
- simplification (basis for Manhattan distance):
 - A tile can be moved from cell A to B if A and B are adjacent.
- relaxed task:
 - A tile can be moved from cell A to B if A and B are adjacent and B is free.
 - ...where delete effects are ignored (in particular: free cells at earlier time remain free)

Example: 8-Puzzle

- actual goal distance: $h^*(s) = 8$
- Manhattan distance: $h^{MD}(s) = 6$
- optimal delete relaxation: $h^+(s) = 7$

relationship:

 h^+ dominates the Manhattan distance in the sliding tile puzzle (i.e., $h^{MD}(s) \le h^+(s) \le h^*(s)$ for all states s)

Exercise

Consider the STRIPS formalization of blocks world and the following task with blocks A, B and C, initial state $I = \{on-table_A, on_{B,A}, on_{C,B}, clear_C\}$ (left stack in the picture below) and the goal

 $G = \{on-table_A, on_{C,A}, on_{B,C}\}$ (right stack in the picture below).

- Calculate the perfect heuristic values h*(I) and h*(I') for the initial state I and the only successor state I' of I.
- Onsider the STRIPS heuristic h^{S} . Calculate the heuristic values $h^{S}(I)$ and $h^{S}(I')$.
- **(a)** Calculate $h^+(I)$ and $h^+(I')$.
- Compare and discuss the results of exercise parts (a), (b) and (c). 12/14

Exercise: Solution

The only successor state of I is $I' = \{on-table_A, on_{B,A}, on-table_C\}$.

- The following plan is optimal for *I*: $\langle to-table_{C,B}, to-table_{B,A}, from-table_{C,A}, from-table_{B,C} \rangle$. Therefore $h^*(I) = 4$. Since the plan starts with the action that reaches *I'*, we have $h^*(I') = 3$.
- The goal variables $on_{C,A}$ and $on_{B,C}$ do not hold in *I* nor in *I'*, so $h^{S}(I) = h^{S}(I') = 2$.
- To calculate h^+ , we inspect the relaxed planning task Π^+ . To reach *G* from *I* in Π^+ , we need 3 actions: *to-table*_{C,B}, *move*_{B,A,C} and *from-table*_{C,A}. Thus $h^+(I) = 3$. Since we already applied *to-table*_{C,B} to reach *I'*, we have $h^+(I') = 2$.
- The STRIPS heuristic only changes between two states if a goal variable becomes true or false, so h^S(I) = h^S(I'). Since the STRIPS heuristic also ignores the actions, it underestimates the effort to reach the goal: h^S(I) = 2 < h^{*}(s) = 4. In the delete relaxation, C remains clear even when moving B from A to C in the second step. This is not possible in the original task.

Relaxed Solutions: Suboptimal or Optimal?

for general STRIPS planning tasks, h⁺
 is an admissible and consistent heuristic

Relaxed Solutions: Suboptimal or Optimal?

- for general STRIPS planning tasks, h⁺
 is an admissible and consistent heuristic
- Can *h*⁺ be computed efficiently?
 - it is easy to solve delete-free planning tasks suboptimally
 - optimal solution (and hence the computation of h⁺) is NP-hard
- in practice, heuristics approximate h^+ from below or above