Artificial Intelligence

Planning: Delete Relaxation

Jendrik Seipp

Linköping University

Intended Learning Outcomes

- contrast normal STRIPS tasks with "delete-relaxed" STRIPS tasks
- \blacksquare compute h^{max} , h^{add} and h^{FF} for delete-relaxed tasks
- \blacksquare compare the h^{max} , h^{add} and h^{FF} heuristics

Delete Relaxation

Planning Heuristics

General Procedure for Obtaining a Heuristic

Solve a simplified version of the problem.

there are many ideas for domain-independent planning heuristics:

- lacktriangle abstraction \leadsto previous lecture
- delete relaxation → now
- landmarks
- critical paths
- network flows
- potential heuristics

Planning Heuristics

Delete Relaxation: Idea

Estimate solution costs by considering a simplified planning task where all negative action effects are ignored.

there are many ideas for domain-independent planning heuristics:

- abstraction → previous lecture
- delete relaxation ~> now
- landmarks
- critical paths
- network flows
- potential heuristics

Relaxed Planning Tasks: Idea

In STRIPS tasks, good and bad effects are easy to distinguish:

- add effects are always useful
- delete effects are always harmful

Why?

Relaxed Planning Tasks: Idea

In STRIPS tasks, good and bad effects are easy to distinguish:

- add effects are always useful
- delete effects are always harmful

Why? more facts true \rightarrow more actions applicable

Relaxed Planning Tasks: Idea

In STRIPS tasks, good and bad effects are easy to distinguish:

- add effects are always useful
- delete effects are always harmful

Why? more facts true \rightarrow more actions applicable

idea for designing heuristics: ignore all delete effects

Relaxed Planning Tasks

Definition (relaxation of actions)

The relaxation a^+ of STRIPS action a is the action with $pre(a^+) = pre(a)$, $add(a^+) = add(a)$, $cost(a^+) = cost(a)$, and $del(a^+) = \emptyset$.

Definition (relaxation of planning tasks)

The relaxation Π^+ of a STRIPS planning task $\Pi = \langle V, I, G, A \rangle$ is the task $\Pi^+ := \langle V, I, G, \{a^+ \mid a \in A\} \rangle$.

Definition (relaxation of action sequences)

The relaxation of action sequence $\pi = \langle a_1, \dots, a_n \rangle$ is the action sequence $\pi^+ := \langle a_1^+, \dots, a_n^+ \rangle$.

Relaxed Planning Tasks: Terminology

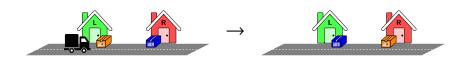
- STRIPS planning tasks without delete effects are called relaxed planning tasks or delete-free planning tasks
- plans for relaxed planning tasks are called relaxed plans
- if Π is a STRIPS planning task and π^+ is a plan for Π^+ , then π^+ is called relaxed plan for Π

Relaxed Planning Tasks: Terminology

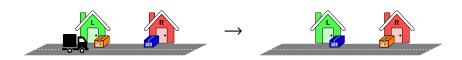
- STRIPS planning tasks without delete effects are called relaxed planning tasks or delete-free planning tasks
- plans for relaxed planning tasks are called relaxed plans
- if Π is a STRIPS planning task and π^+ is a plan for Π^+ , then π^+ is called relaxed plan for Π
- $h^+(\Pi)$ denotes the cost of an optimal plan for Π^+ , i.e., of an optimal relaxed plan
- **a** analogously: $h^+(s)$ cost of optimal relaxed plan starting in state s (instead of initial state)
- \blacksquare h^+ is called optimal relaxation heuristic

Examples

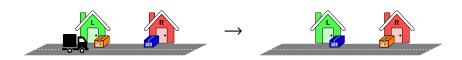
- $V = \{at_{OL}, at_{OR}, at_{BL}, at_{BR}, at_{TL}, at_{TR}, in_{OT}, in_{BT}\}$
- $I = \{at_{OL}, at_{BR}, at_{TL}\}$
- $G = \{at_{OR}, at_{BL}\}$
- $A = \{move_{LR}, move_{RL}, load_{OL}, load_{OR}, load_{BL}, load_{BR}, unload_{OL}, unload_{OR}, unload_{BL}, unload_{BR}\}$
- ...



- $pre(move_{LR}) = \{at_{TL}\}, add(move_{LR}) = \{at_{TR}\},\ del(move_{LR}) = \{at_{TL}\}, cost(move_{LR}) = 1$
- $pre(load_{OL}) = \{at_{TL}, at_{OL}\}, add(load_{OL}) = \{in_{OT}\}, del(load_{OL}) = \{at_{OL}\}, cost(load_{OL}) = 1$
- $pre(unload_{OL}) = \{at_{TL}, in_{OT}\}, add(unload_{OL}) = \{at_{OL}\}, del(unload_{OL}) = \{in_{OT}\}, cost(unload_{OL}) = 1$
- **...**



- optimal plan:
 - load_{OL}
 - 2 move_{LR}
 - unload_{OR}
 - load_{BR}
 - move_{RL}
 - unload_{BL}
- optimal relaxed plan: ?
- $h^*(I) = 6, h^+(I) = ?$



- optimal plan:
 - load_{OL}
 - 2 move_{LR}
 - unload_{OR}
 - load_{BR}
 - move_{RL}
 - unload_{BL}
- optimal relaxed plan: like optimal plan without move_{RL}
- $h^*(I) = 6, h^+(I) = 5$

Example: 8-Puzzle

- (original) task:
 - A tile can be moved from cell A to B if A and B are adjacent and B is free.
- simplification (basis for Manhattan distance):
 - A tile can be moved from cell A to B if A and B are adjacent.
- relaxed task:
 - A tile can be moved from cell A to B if A and B are adjacent and B is free.
 - ...where delete effects are ignored
 (in particular: free cells at earlier time remain free)

Example: 8-Puzzle

1	2	3		1	2	3
5	6	8	\longrightarrow	4		5
4	7			6	7	8

- **actual goal distance:** $h^*(s) = 8$
- Manhattan distance: $h^{MD}(s) = 6$
- optimal delete relaxation: $h^+(s) = 7$

relationship:

 h^+ dominates the Manhattan distance in the sliding tile puzzle (i.e., $h^{MD}(s) \le h^+(s) \le h^*(s)$ for all states s)

Exercise

Consider the STRIPS formalization of blocks world and the following task with blocks A, B and C, initial state $I = \{on\text{-}table_A, on_{B,A}, on_{C,B}, clear_C\}$ (left stack in the picture below) and the goal $G = \{on\text{-}table_A, on_{C,A}, on_{B,C}\}$ (right stack in the picture below).

- ② Calculate the perfect heuristic values $h^*(I)$ and $h^*(I')$ for the initial state I and the only successor state I' of I.
- Oconsider the STRIPS heuristic h^S . Calculate the heuristic values $h^S(I)$ and $h^S(I')$.
- © Calculate $h^+(I)$ and $h^+(I')$.
- Compare and discuss the results of exercise parts (a), (b) and (c).

Exercise: Solution

The only successor state of I is $I' = \{on\text{-}table_A, on_{B,A}, on\text{-}table_C\}$.

- The following plan is optimal for I: $\langle to\text{-table}_{C,B}, to\text{-table}_{B,A}, from\text{-table}_{C,A}, from\text{-table}_{B,C} \rangle$. Therefore $h^*(I) = 4$. Since the plan starts with the action that reaches I', we have $h^*(I') = 3$.
- The goal variables $on_{C,A}$ and $on_{B,C}$ do not hold in I nor in I', so $h^S(I) = h^S(I') = 2$.
- ⓐ To calculate h^+ , we inspect the relaxed planning task Π^+ . To reach G from I in Π^+ , we need 3 actions: to-table_{C,B}, $move_{B,A,C}$ and from-table_{C,A}. Thus $h^+(I) = 3$. Since we already applied to-table_{C,B} to reach I', we have $h^+(I') = 2$.

The STRIPS heuristic only changes between two states if a goal

variable becomes true or false, so $h^S(I) = h^S(I')$. Since the STRIPS heuristic also ignores the actions, it underestimates the effort to reach the goal: $h^S(I) = 2 < h^*(s) = 4$. In the delete relaxation, C remains clear even when moving B from A to C in the second step. This is not possible in the original task.

Relaxed Solutions: Suboptimal or Optimal?

for general STRIPS planning tasks, h⁺
 is an admissible and consistent heuristic

Relaxed Solutions: Suboptimal or Optimal?

- for general STRIPS planning tasks, h⁺
 is an admissible and consistent heuristic
- Can h⁺ be computed efficiently?
 - it is easy to solve delete-free planning tasks suboptimally
 - optimal solution (and hence the computation of h⁺) is NP-hard
- \blacksquare in practice, heuristics approximate h^+ from below or above