Artificial Intelligence

Planning: Abstraction Heuristics

Jendrik Seipp

Linköping University

Heuristics •000000000

Reminder: Heuristics

Definition (heuristic)

Let ${\cal S}$ be a state space with states S.

A heuristic function or heuristic for S is a function

$$h: S \to \mathbb{R}_0^+ \cup \{\infty\},$$

mapping each state to a non-negative number (or ∞).

Reminder: Perfect Heuristic

Definition (perfect heuristic)

Let $\mathcal S$ be a state space with states S.

The perfect heuristic for S, written h^* , maps each state $s \in S$ to the cost of an optimal solution for s.

remark: $h^*(s) = \infty$ if no solution for s exists

Reminder: Properties of Heuristics

Definition (safe, goal-aware, admissible, consistent)

Let S be a state space with states S.

A heuristic h for S is called

- safe if $h^*(s) = \infty$ for all $s \in S$ with $h(s) = \infty$
- **goal-aware** if h(s) = 0 for all goal states s
- **admissible** if $h(s) \le h^*(s)$ for all states $s \in S$
- **consistent** if $h(s) \le cost(a) + h(s')$ for all transitions $s \xrightarrow{a} s'$

A Simple Planning Heuristic

The STRIPS planner (Fikes & Nilsson, 1971) uses the number of goals not yet satisfied in a STRIPS planning task as heuristic:

$$h(s) := |G \setminus s|$$
.

intuition: fewer unsatisfied goals → closer to goal state

→ STRIPS heuristic

Problems of STRIPS Heuristic

drawback of STRIPS heuristic?

- rather uninformed: for state s, if there is no applicable action a in s such that applying a in s satisfies strictly more (or fewer) goals, then all successor states have the same heuristic value as s
- very sensitive to reformulation: can easily transform any planning task into an equivalent one where h(s) = 1 for all non-goal states
- ignores almost the whole task structure:the heuristic values do not depend on the actions
- → we need better methods to design heuristics

Planning Heuristics

General Procedure for Obtaining a Heuristic

Solve a simplified version of the problem.

there are many ideas for domain-independent planning heuristics:

- abstraction ~> now
- delete relaxation ~ later
- landmarks
- critical paths
- network flows
- potential heuristics

Planning Heuristics

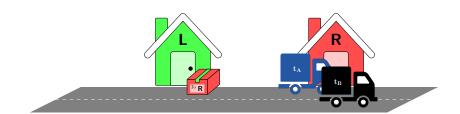
Abstraction: Idea

Estimate solution costs by considering a smaller planning task where states are merged into abstract states.

there are many ideas for domain-independent planning heuristics:

- abstraction ~> now
- delete relaxation ~ later
- landmarks
- critical paths
- network flows
- potential heuristics

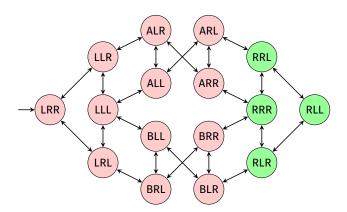
Example: Logistics Task with One Package, Two Trucks



Example: Logistics Task with One Package, Two Trucks

- $V = \{p, t_A, t_B\}$
- \blacksquare $dom(p) = \{L, R, A, B\}$ and $dom(t_A) = dom(t_B) = \{L, R\}$
- $\blacksquare I = \{p \mapsto \bot, t_A \mapsto R, t_B \mapsto R\}$
- $G = \{p \mapsto R\}$
- A = $\{load_{i,j} \mid i \in \{A, B\}, j \in \{L, R\}\}$ $\cup \{unload_{i,j} \mid i \in \{A, B\}, j \in \{L, R\}\}$ $\cup \{move_{i,j,j'} \mid i \in \{A, B\}, j, j' \in \{L, R\}, j \neq j'\}$ with:
 - load_{i,i} has precondition $\{t_i \mapsto j, p \mapsto i\}$, effect $\{p \mapsto i\}$
 - *unload*_{i,j} has precondition $\{t_i \mapsto j, p \mapsto i\}$, effect $\{p \mapsto j\}$
 - $move_{i,i,i'}$ has precondition $\{t_i \mapsto j\}$, effect $\{t_i \mapsto j'\}$
 - all actions have cost 1

State Space for Example Task



- state $\{p \mapsto i, t_{\Delta} \mapsto j, t_{B} \mapsto k\}$ denoted as ijk
- annotations of edges not shown for simplicity
- for example, edge from LLL to ALL has annotation load_{AL}

Abstractions

Abstraction

abstractions drop distinctions between certain states, but preserve the state space behavior as well as possible.

- lacksquare an abstraction of a state space $\mathcal S$ is defined by an abstraction function α that determines which states can be distinguished in the abstraction
- **based** on S and α , we compute the abstract state space S^{α} which is "similar" to S but smaller

idea of the abstraction heuristic h^{α} :
use abstract solution costs (solution costs in S^{α})
as heuristic values for concrete solution costs (solution costs in S)

Induced Abstraction

Definition (induced abstraction)

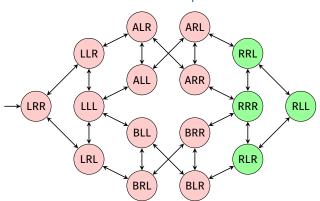
Let $S = \langle S, A, cost, T, s_l, S_{\star} \rangle$ be a state space, and let $\alpha : S \to S'$ be a surjective function.

The abstraction of S induced by α , denoted as S^{α} , is the state space $S^{\alpha} = \langle S', A, cost, T', s'_1, S'_+ \rangle$ with:

- $T' = \{ \langle \alpha(s), a, \alpha(t) \rangle \mid \langle s, a, t \rangle \in T \}$
- $\mathbf{s}_{l}' = \boldsymbol{\alpha}(\mathbf{s}_{l})$
- $S'_{\star} = \{ \alpha(s) \mid s \in S_{\star} \}$

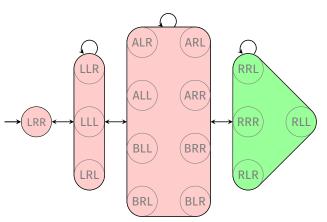
Abstraction: Example

concrete state space



Abstraction: Example

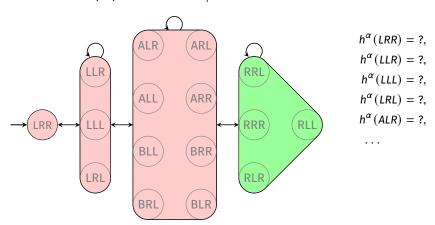
(an) abstract state space



remark: most edges correspond to several (parallel) transitions with different annotations

Abstraction Heuristic: Example

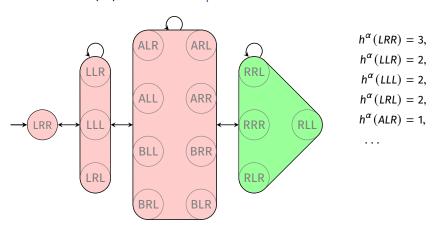
(an) abstract state space



remark: most edges correspond to several (parallel) transitions with different annotations

Abstraction: Example

(an) abstract state space



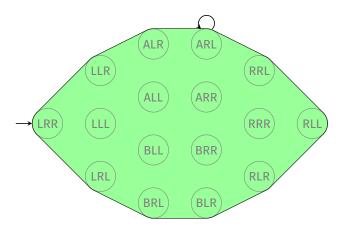
remark: most edges correspond to several (parallel) transitions with different annotations

Abstraction Heuristics: Discussion

- every abstraction heuristic is admissible and consistent
- \blacksquare the choice of the abstraction function α is very important
 - \blacksquare every α yields an admissible and consistent heuristic
 - but most α lead to poor heuristics
- \blacksquare a "good" α must yield an informative heuristic ...
- ...as well as being efficiently computable

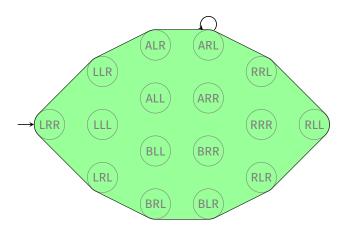
How can we find a suitable α ?

Usually a Bad Idea: Single-State Abstraction



one state abstraction: $\alpha(s) := \text{const}$

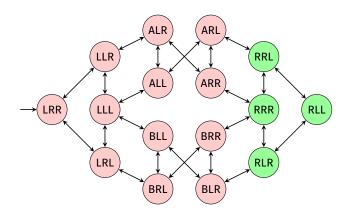
Usually a Bad Idea: Single-State Abstraction



one state abstraction: $\alpha(s) := const$

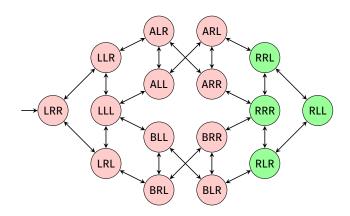
- + compactly representable and α easy to compute
- very uninformed heuristic

Usually a Bad Idea: Identity Abstraction



identity abstraction: $\alpha(s) := s$

Usually a Bad Idea: Identity Abstraction



identity abstraction: $\alpha(s) := s$

- + perfect heuristic and α easy to compute
- too many abstract states \rightarrow computation of h^{α} too hard

Automatic Computation of Suitable Abstractions

Main Problem with Abstraction Heuristics

How to find a good abstraction?

several successful methods:

- pattern databases (PDBs)(Culberson & Schaeffer, 1996)
- domain abstractions (Hernádvölgyi and Holte, 2000)
- merge-and-shrink abstractions (Dräger, Finkbeiner & Podelski, 2006)
- Cartesian abstractions (Seipp & Helmert, 2013)

Pattern Databases

Pattern Databases: Background

- the most common abstraction heuristics are pattern database heuristics
- originally introduced for the 15-puzzle (Culberson & Schaeffer, 1996)
 and for Rubik's Cube (Korf, 1997)
- introduced for automated planning by Edelkamp (2001)
- for many search problems the best known heuristics
- many research papers studying
 - theoretical properties
 - efficient implementation and application
 - pattern selection
 - ...

Pattern Databases: Projections

a PDB heuristic is an abstraction heuristic where

- some aspects (= state variables) of the task are preserved with perfect precision while
- all other aspects are not preserved at all

formalized as projections on a pattern P, e.g.:

- $\blacksquare s = \{v_1 \mapsto d_1, v_2 \mapsto d_2, v_3 \mapsto d_3\}$
- projection on $P = \{v_1\}$ (= ignore v_2, v_3): $\alpha(s) = s|_P = \{v_1 \mapsto d_1\}$
- projection on $P = \{v_1, v_3\}$ (= ignore v_2): $\alpha(s) = s|_P = \{v_1 \mapsto d_1, v_3 \mapsto d_3\}$

Pattern Databases: Definition

Definition (pattern database heuristic)

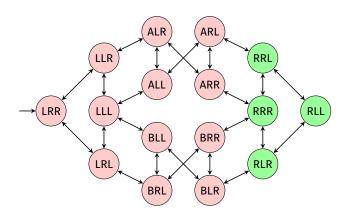
Let P be a subset of the variables of a planning task.

The abstraction heuristic induced by the projection π_P on P is called pattern database heuristic (PDB heuristic) with pattern P.

abbreviated notation: h^P for h^{π_P}

remark: "pattern databases" in analogy to endgame databases (which have been successfully applied in 2-person-games)

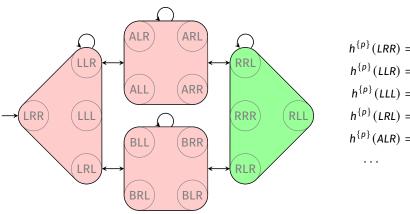
Example: Concrete State Space



- state variable for package, p: {L, R, A, B}
- **state variable for truck A,** t_A : {L, R}
- state variable for truck B, t_R : {L, R}

Example: Projection (1)

abstraction $\mathcal{S}^{\pi_{\{p\}}}$ induced by $\pi_{\{p\}}$:

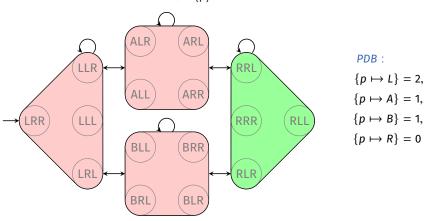


$$h^{\{p\}}(LRR) = 2,$$

 $h^{\{p\}}(LLR) = 2,$
 $h^{\{p\}}(LLL) = 2,$
 $h^{\{p\}}(LRL) = 2,$
 $h^{\{p\}}(ALR) = 1,$
...

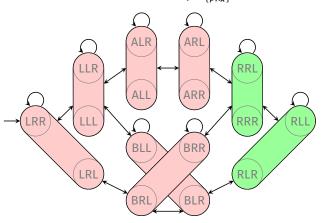
Example: Projection (1)

abstraction $\mathcal{S}^{\pi_{\{p\}}}$ induced by $\pi_{\{p\}}$:



Example: Projection (2)

abstraction $\mathcal{S}^{\pi_{\{p,\mathsf{t}_A\}}}$ induced by $\pi_{\{p,\mathsf{t}_A\}}$:

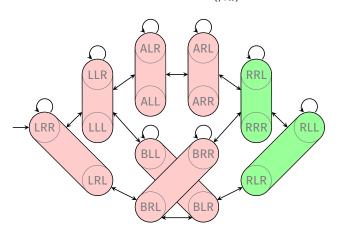


$$h^{\{p,t_A\}}(LRR) = 2,$$

 $h^{\{p,t_A\}}(LLR) = 2,$
 $h^{\{p,t_A\}}(LLL) = 2,$
 $h^{\{p,t_A\}}(LRL) = 2,$
 $h^{\{p,t_A\}}(ALR) = 2,$
...

Example: Projection (2)

abstraction $\mathcal{S}^{\pi_{\{p,t_{A}\}}}$ induced by $\pi_{\{p,t_{A}\}}$:



PDB:

$$\{p \mapsto L, t_A \mapsto L\} = 2,$$

$$\{p \mapsto L, t_A \mapsto R\} = 2,$$

$$\{p \mapsto A, t_A \mapsto L\} = 2,$$

$$\{p \mapsto A, t_A \mapsto R\} = 1,$$

$$\{p \mapsto B, t_A \mapsto L\} = 1,$$

$$\{p \mapsto B, t_A \mapsto R\} = 1,$$

$$\{p \mapsto R, t_A \mapsto L\} = 0,$$

$$\{p \mapsto R, t_A \mapsto R\} = 0$$

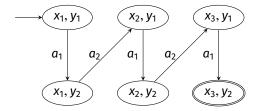
Pattern Databases in Practice

practical aspects which we do not discuss here:

- How to automatically find good patterns?
- How to combine multiple PDB heuristics?
- How to implement PDB heuristics efficiently?
 - good implementations efficiently handle abstract state spaces with 10⁷, 10⁸ or more abstract states
 - effort independent of the size of the concrete state space
 - usually all heuristic values are precomputed
 - → space complexity = number of abstract states

Pattern Databases Example

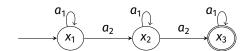
Consider the following state space:



Draw the abstract state space that is induced by the projection $\pi_{\{X\}}$ to the variable X. Give the heuristic value of the pattern database heuristic $h^{\{X\}}$ for each state in the original state space. A state label of x, y corresponds to state $\{X \mapsto x, Y \mapsto y\}$ and all actions have a cost of 1.

Pattern Databases Example: Solution

The abstract state space is



The heuristic function is

$$h^{\{X\}}(x_1y_1) = 2$$
 $h^{\{X\}}(x_2y_1) = 1$ $h^{\{X\}}(x_3y_1) = 0$
 $h^{\{X\}}(x_1y_2) = 2$ $h^{\{X\}}(x_2y_2) = 1$ $h^{\{X\}}(x_3y_2) = 0$

Summary

planning formalisms:

- STRIPS: particularly simple, easy to handle for algorithms
 - binary state variables
 - preconditions, add and delete effects, goals: sets of variables
- SAS+: extension of STRIPS
 - state variables with arbitrary finite domains

abstraction heuristics:

- estimate solution cost by considering a smaller planning task
- Pattern database heuristics are abstraction heuristics based on projections onto state variable subsets (patterns): states are distinguishable iff they differ on the pattern.