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Introduction What is Old? What is New? STRIPS SAS+

Intended Learning Outcomes

explain what “AI planning” is

contrast the STRIPS and SAS+ planning formalisms

model planning tasks in these formalisms

explain what a heuristic is and how we can obtain them

justify why the STRIPS heuristic is not very informative
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Automated Planning

“Planning is the art and practice of thinking before acting.”
— P. Haslum

general approach to solving state-space search problems

classical planning: static, deterministic, fully observable

probabilistic planning: later in the course
variants (not considered in the course):

planning under partial observability
online planning (dynamic)
. . .

environment:

fully vs. partially vs. not observable

single-agent vs. multi-agent (competitive and/or cooperative)

deterministic vs. non-deterministic vs. stochastic

episodic vs. sequential

static vs. dynamic

discrete vs. continuous

problem solving method:

problem-specific vs. general vs. learning

objective of the agent:

find a plan (a sequence of actions)

that reaches a goal state

from an initial state

performance measure:

optimal planning: guarantee that returned plans
are optimal, i.e., have minimal cost
or a proof that no plan exists

suboptimal planning (satisficing):
minimize plan cost (given available resources)

Looks familiar?

description and quote also fit (state space) search

environment as in constraint satisfaction problems

many previously encountered problems are indeed
planning tasks or can be modelled as one, e.g.:

So what is old and what is new?
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Classification of Classical Planning

“Planning is the art and practice of thinking before acting.”
— P. Haslum

general approach to solving state-space search problems

classical planning: static, deterministic, fully observable

probabilistic planning: later in the course
variants (not considered in the course):

planning under partial observability
online planning (dynamic)
. . .

environment:

fully vs. partially vs. not observable

single-agent vs. multi-agent (competitive and/or cooperative)

deterministic vs. non-deterministic vs. stochastic

episodic vs. sequential

static vs. dynamic

discrete vs. continuous

problem solving method:

problem-specific vs. general vs. learning

objective of the agent:

find a plan (a sequence of actions)

that reaches a goal state

from an initial state

performance measure:

optimal planning: guarantee that returned plans
are optimal, i.e., have minimal cost
or a proof that no plan exists

suboptimal planning (satisficing):
minimize plan cost (given available resources)

Looks familiar?

description and quote also fit (state space) search

environment as in constraint satisfaction problems

many previously encountered problems are indeed
planning tasks or can be modelled as one, e.g.:

So what is old and what is new?
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Informal Description
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or a proof that no plan exists

suboptimal planning (satisficing):
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Reminder: State Spaces

To cleanly study search problems we need a formal model.

Definition (state space)
A state space or transition system is a
6-tuple S = ⟨S, A, cost, T, sI, S⋆⟩ with

finite set of states S

finite set of actions A

action costs cost : A → Ò+
0

transition relation T ⊆ S × A × S that is
deterministic in ⟨s, a⟩
initial state sI ∈ S

set of goal states S⋆ ⊆ S
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Reminder: Graph Interpretation
state spaces are often depicted as directed, labeled graphs

states: graph vertices

transitions: labeled arcs
(here: colors instead of labels)

initial state: incoming arrow

goal states: double circles

actions: the arc labels

action costs: described separately (or
implicitly = 1)
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Reminder: Heuristic Search Algorithms

we still use heuristic search algorithms like A∗or GBFS
{ search is guided by a heuristic

01 def best-first-search(⟨S, A, cost, T, sI, S⋆⟩):
02 open := new MinHeap ordered by f
03 open.insert(make_root_node(sI))
04 distances := new HashMap
05 while not open.is_empty()
06 n := open.pop_min()
07 if n.state < distances or g(n) <distances[n.state]:
08 distances[n.state] := g(n)
09 if n.state ∈ S⋆: return extract_path(n)
10 for each ⟨a, s′⟩ s.t. ⟨n.state,a,s’⟩ ∈ T:
11 open.insert(make_node(n, a, s′))
12 return unsolvable
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What is New?

01 def best-first-search(⟨S, A, cost, T, sI, S⋆⟩):
02 open := new MinHeap ordered by f
03 open.insert(make_root_node(sI))
04 distances := new HashMap
05 while not open.is_empty()
06 n := open.pop_min()
07 if n.state < distances or g(n) <distances[n.state]:
08 distances[n.state] := g(n)
09 if n.state ∈ S⋆: return extract_path(n)
10 for each ⟨a, s′⟩ s.t. ⟨n.state,a,s’⟩ ∈ T:
11 open.insert(make_node(n, a, s′))
12 return unsolvable

so far, we didn’t care where these came from

and the developer needed to know the problem to design a heuristic
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State Spaces with Declarative Representations

now we are interested in general algorithms,
i.e., the developer of the solver does not know the tasks
that the algorithm needs to solve

{ input is a state space description given in terms of suitable problem
description language (planning formalism)

{ problem-independent heuristics!
now, we represent state spaces declaratively:

compact description of state space as input to algorithms
{ state spaces exponentially larger than the input
algorithms directly operate on compact description

{ allows automatic reasoning about problem:
reformulation, simplification, abstraction, etc.
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Blocks World
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Compact Description of State Spaces

How to describe state spaces compactly?

introduce state variables

states: assignments to state variables

{ e.g., n binary state variables can describe 2n states

transitions and goal are compactly described
with a logic-based formalism

different variants: different planning formalisms

13/29



Introduction What is Old? What is New? STRIPS SAS+

Three Planning Formalisms

a description language for planning tasks
is called a planning formalism
we consider two planning formalisms:

1 STRIPS (Stanford Research Institute Problem Solver)
2 SAS+ (Simplified Action Structures)

more expressive formalisms exist,
e.g., PDDL (Planning Domain Definition Language)
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STRIPS
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STRIPS

was developed as input language for Shakey
the robot (1971)

is the simplest commonly used
planning formalism
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STRIPS: Basic Concepts

state variables V describe properties
that can be true or false

states are sets s ⊆ V representing which properties are true

goals are given as sets of properties that must be true
(values of other variables do not matter)
actions describe which transitions are allowed

preconditions denote properties required to apply the action
effects specify which properties the action changes
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STRIPS Planning Task

Definition (STRIPS Planning Task)
A STRIPS planning task is a 4 tuple Π = ⟨V, I, G, A⟩, where

V is a finite set of binary state variables

I ⊆ V is the initial state

G ⊆ V is the set of goals
A is a finite set of actions a = ⟨pre, add, del, cost⟩ with

preconditions pre(a) ⊆ V
add effects (or add list) add(a) ⊆ V
delete effects (or delete list) del(a) ⊆ V
costs cost(a) ∈ Î0 (cost(a) = 1 if not specified explicitly)

remark: action costs are an extension of “traditional” STRIPS
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Example: Blocks World in STRIPS

{
Π = ⟨V, I, G, A⟩ with:

V = {on(R,B), on(R,G), on(B,R), on(B,G), on(G,R), on(G,B),
on-table(R), on-table(B), on-table(G),
clear(R), clear(B), clear(G)}

I = {on(G,R), on-table(R), on-table(B), clear(G), clear(B)}
G = {on(R,B), on(B,G)}
A = {move(R,B,G),move(R,G,B),move(B,R,G),

move(B,G,R),move(G,R,B),move(G,B,R),
to-table(R,B), to-table(R,G), to-table(B,R),
to-table(B,G), to-table(G,R), to-table(G,B),
from-table(R,B), from-table(R,G), from-table(B,R),
from-table(B,G), from-table(G,R), from-table(G,B)}
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Example: Blocks World in STRIPS

action move(R,B,G):

pre(move(R,B,G)) = {on(R,B), clear(R), clear(G)}
add(move(R,B,G)) = {on(R,G), clear(B)}
del(move(R,B,G)) = {on(R,B), clear(G)}
cost(move(R,B,G)) = 1

action to-table(R, B):

pre(to-table(R, B)) =
add(to-table(R, B)) =
del(to-table(R, B)) =
cost(to-table(R, B)) = 1
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Example: Blocks World in STRIPS

action move(R,B,G):

pre(move(R,B,G)) = {on(R,B), clear(R), clear(G)}
add(move(R,B,G)) = {on(R,G), clear(B)}
del(move(R,B,G)) = {on(R,B), clear(G)}
cost(move(R,B,G)) = 1

action to-table(R, B):

pre(to-table(R, B)) = ???

add(to-table(R, B)) = ???

del(to-table(R, B)) = ???

cost(to-table(R, B)) = 1
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Example: Blocks World in STRIPS

action move(R,B,G):

pre(move(R,B,G)) = {on(R,B), clear(R), clear(G)}
add(move(R,B,G)) = {on(R,G), clear(B)}
del(move(R,B,G)) = {on(R,B), clear(G)}
cost(move(R,B,G)) = 1

action to-table(R, B):

pre(to-table(R, B)) = {clear(R), on(R, B)}
add(to-table(R, B)) = {on-table(R), clear(B)}
del(to-table(R, B)) = {on(R, B)}
cost(to-table(R, B)) = 1
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State Space for STRIPS Planning Task

Definition (state space induced by STRIPS planning task)
Let Π = ⟨V, I, G, A⟩ be a STRIPS planning task.

Then Π induces the state space S(Π) = ⟨S, A, cost, T, sI, S⋆⟩:
set of states: S = 2V (= power set of V)

actions: actions A as defined in Π

action costs: cost as defined in Π

transitions: s
a−→ s′ for states s, s′ and action a iff

pre(a) ⊆ s (preconditions satisfied)
s′ = (s \ del(a)) ∪ add(a) (effects are applied)

initial state: sI = I

goal states: s ∈ S⋆ for state s iff G ⊆ s (goals reached)
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SAS+
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Basic Concepts of SAS+

basic concepts of SAS+:

very similar to STRIPS: state variables not necessarily binary, but
with given finite domain (cf. CSPs)

states are assignments to these variables (cf. CSPs)

preconditions and goals given as partial assignments

effects are assignments to subset of variables
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SAS+ Planning Task

Definition (SAS+ planning task)

A SAS+ planning task is a 5-tuple Π = ⟨V, dom, I, G, A⟩, where

V is a finite set of state variables

dom(v) is a finite and non-empty domain for all v ∈ V

I is a total assignment of V to dom, the initial state

G is a partial assignment of V to dom, the goals
A is a finite set of actions a = ⟨pre, eff, cost⟩ with

preconditions pre(a), a partial assignment of V to dom
effects eff(a), a partial assignment of V
cost cost(a) ∈ Î0
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State Space of SAS+ Planning Task

Definition (state space induced by SAS+ planning task)

Let Π = ⟨V, dom, I, G, A⟩ be a SAS+ planning task.
Then Π induces the state space S(Π) = ⟨S, A, cost, T, s0, S⋆⟩:

set of states: total assignments of V according to dom

actions: actions A as defined in Π

action costs: cost as defined in Π

transitions: s
a−→ s′ for states s, s′ and action a iff

pre(a) complies with s (precondition satisfied)
s′ complies with eff(a) for all variables mentioned in eff; complies
with s for all other variables (effects are applied)

initial state: s0 = I

goal states: s ∈ S⋆ for state s iff G complies with s
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Example: Blocks World in SAS+

{

Π = ⟨V, dom, I, G, A⟩ with:

V = {pos(R), pos(B), pos(G),
clear(R), clear(B), clear(G)}

dom(pos(R)) = {B, G, T}
dom(pos(B)) = {R, G, T}
dom(pos(G)) = {R, B, T}
dom(clear(R)) = {F, T}
dom(clear(B)) = {F, T}
dom(clear(G)) = {F, T}
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Example: Blocks World in SAS+

{

I = {pos(R) ↦→ T, pos(B) ↦→ T, pos(G) ↦→ R,
clear(R) ↦→ F, clear(B) ↦→ T, clear(G) ↦→ T}

G = {pos(R) ↦→ B, pos(B) ↦→ G}
A = {move(R,B,G),move(R,G,B),move(B,R,G),

move(B,G,R),move(G,R,B),move(G,B,R),
move(R, B, T),move(R, G, T),move(B, R, T),
move(B, G, T),move(G, R, T),move(G, B, T),
move(R, T, B),move(R, T, G),move(B, T, R),
move(B, T, G),move(G, T, R),move(G, T, B)}
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Example: Blocks World in SAS+

action move(R,B,G):

pre(move(R,B,G)) = {pos(R) ↦→ B, clear(R) ↦→ T, clear(G) ↦→ T}
eff(move(R,B,G)) = ???

cost(move(R,B,G)) = 1

28/29



Introduction What is Old? What is New? STRIPS SAS+

Example: Blocks World in SAS+

action move(R,B,G):

pre(move(R,B,G)) = {pos(R) ↦→ B, clear(R) ↦→ T, clear(G) ↦→ T}
eff(move(R,B,G)) = {pos(R) ↦→ G, clear(B) ↦→ T, clear(G) ↦→ F}
cost(move(R,B,G)) = 1
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Why SAS+

modeling with finite-domain variables is often more user friendly
than modeling with binary variables

some techniques benefit from STRIPS, some from SAS+

automatic “compilers” exist that translate simpler formalisms (like
STRIPS) to SAS+

{ in practice, planning systems convert automatically
to the “best-fitting” planning formalism
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