Artificial Intelligence

Planning: Planning Tasks

Jendrik Seipp

Linköping University

based on slides by Thomas Keller and Malte Helmert (University of Basel)

Intended Learning Outcomes

- explain what "AI planning" is
- contrast the STRIPS and SAS⁺ planning formalisms
- model planning tasks in these formalisms
- explain what a heuristic is and how we can obtain them
- justify why the STRIPS heuristic is not very informative

Introduction	
00	

Introduction

- general approach to solving state-space search problems
- classical planning: static, deterministic, fully observable
- probabilistic planning: later in the course
- variants (not considered in the course):
 - planning under partial observability
 - online planning (dynamic)
 - • •

Classification of Classical Planning

"Planning is the art and practice of thinking before acting."

— P. Haslum

environment:

- fully vs. partially vs. not observable
- single-agent vs. multi-agent (competitive and/or cooperative)
- deterministic vs. non-deterministic vs. stochastic
- episodic vs. sequential
- static vs. dynamic
- discrete vs. continuous

problem solving method:

problem-specific vs. general vs. learning

"Planning is the art and practice of thinking before acting."

- P. Haslum

objective of the agent:

- find a plan (a sequence of actions)
- that reaches a goal state
- from an initial state

performance measure:

- optimal planning: guarantee that returned plans are optimal, i.e., have minimal cost or a proof that no plan exists
- suboptimal planning (satisficing): minimize plan cost (given available resources)

Looks familiar?

- description and quote also fit (state space) search
- environment as in constraint satisfaction problems

Looks familiar?

- description and quote also fit (state space) search
- environment as in constraint satisfaction problems
- many previously encountered problems are indeed planning tasks or can be modelled as one, e.g.:

13	2	3	12
9	11	1	10
	6	4	14
15	8	7	5

Looks familiar?

- description and quote also fit (state space) search
- environment as in constraint satisfaction problems
- many previously encountered problems are indeed planning tasks or can be modelled as one, e.g.:

13	2	3	12
9	11	1	10
	6	4	14
15	8	7	5

So what is old and what is new?

What is Old?	
0000	

STRIPS 0000000 SAS⁺ 00000000

What is Old?

Reminder: State Spaces

To cleanly study search problems we need a formal model.

Definition (state space)

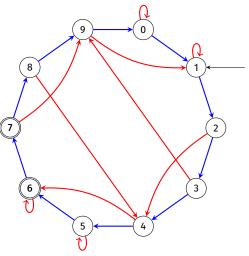
A state space or transition system is a 6-tuple $S = \langle S, A, cost, T, s_l, S_{\star} \rangle$ with

- finite set of states S
- finite set of actions A
- action costs cost : $A \rightarrow \mathbb{R}_0^+$
- transition relation $T \subseteq S \times A \times S$ that is deterministic in $\langle s, a \rangle$
- initial state $s_l \in S$
- set of goal states $S_{\star} \subseteq S$

Reminder: Graph Interpretation

state spaces are often depicted as directed, labeled graphs

- states: graph vertices
- transitions: labeled arcs (here: colors instead of labels)
- initial state: incoming arrow
- goal states: double circles
- actions: the arc labels
- action costs: described separately (or implicitly = 1)



Reminder: Heuristic Search Algorithms

we still use heuristic search algorithms like A* or GBFS \rightsquigarrow search is guided by a heuristic

01 de	f best-first-search($\langle S, A, cost, T, s_l, S_{\star} \rangle$):
02	open := new MinHeap ordered by f
03	open.insert(make_root_node(s ₁))
04	distances := new HashMap
05	<pre>while not open.is_empty()</pre>
06	n := <i>open</i> .pop_min()
07	if n.state \notin distances or $g(n) < distances[n.state]$:
08	distances[n.state] := g(n)
09	if n.state ∈ S _* : return extract_path(<i>n</i>)
10	for each $\langle a, s' \rangle$ s.t. $\langle n.state, a, s' \rangle \in T$:
11	<pre>open.insert(make_node(n, a, s'))</pre>
12	return unsolvable

Introduction	What is Old?	What is New?	STRIPS	SAS ⁺
OO	0000	●00000	0000000	00000000

What is New?

Introduction 00	What is Old? 0000	What is New? ○●○○○○	STRIPS 0000000	SAS ⁺ 00000000
What	is New?			
01	def best-first-search((S, A			
02	open := new MinHeap	ordered by f		
03	open.insert(make_roo	ot_node(s _i))		
04	distances := new Has	hMap		
05	while not open.is_em	pty()		
06	n := <i>open</i> .pop_m	in()		
07	if n.state ∉ dista	nces or g(n) <distance< th=""><td>es[n.state]:</td><td></td></distance<>	es[n.state]:	
08	distances[n.:	state] := g(n)		
09	if n.state ∈ \$	S _★ : return extract_path	n(<i>n</i>)	
10	for each $\langle a, z \rangle$	s' \rangle s.t. $\langle n.state,a,s' \rangle \in$	<i>T</i> :	
11	open.ins	ert(make_node(<i>n</i> , <i>a</i> , s'	())	
12	return unsolvable			

so far, we didn't care where these came from

Introduction 00	What is Old? 0000	What is New? ○●○○○○	STRIPS 0000000	SAS ⁺ 00000000
What i	s New?			
01 d	l ef best-first-search(⟨S, A,	cost, T, s _I , S _{\star}):		
02	open := new MinHeap	ordered by f		
03	open.insert(make_roo	t_node(s _i))		
04	distances := new Hash	Мар		
05	while not open.is_emp	oty()		
06	n := <i>open</i> .pop_mi	n()		
07	if n.state ∉ distan	ces or g(n) <distance< td=""><td>es[n.state]:</td><td></td></distance<>	es[n.state]:	
08	distances[n.s	tate] := g(n)		
09	if n.state \in S	*: return extract_path	n(<i>n</i>)	
10	for each $\langle a, s angle$	' \rangle s.t. $\langle n.state, a, s' \rangle \in$	Т:	
11	open.inse	ert(make_node(<i>n</i> , <i>a</i> , s'	<i>'</i>))	
12	return unsolvable			

so far, we didn't care where these came from

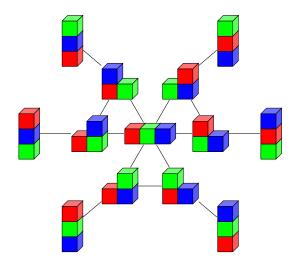
and the developer needed to know the problem to design a heuristic

State Spaces with Declarative Representations

- now we are interested in general algorithms, i.e., the developer of the solver does not know the tasks that the algorithm needs to solve
- → input is a state space description given in terms of suitable problem description language (planning formalism)
- \rightarrow problem-independent heuristics!
 - now, we represent state spaces declaratively:
 - compact description of state space as input to algorithms → state spaces exponentially larger than the input
 - algorithms directly operate on compact description
- → allows automatic reasoning about problem: reformulation, simplification, abstraction, etc.

Introduction	What is Old?	What is New?	STRIPS	sas+
OO	0000	○○○●○○	0000000	00000000

Blocks World



Compact Description of State Spaces

How to describe state spaces compactly?

- introduce state variables
- states: assignments to state variables
- \rightarrow e.g., *n* binary state variables can describe 2^{*n*} states
 - transitions and goal are compactly described with a logic-based formalism

different variants: different planning formalisms

Three Planning Formalisms

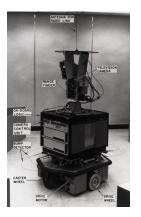
- a description language for planning tasks is called a planning formalism
- we consider two planning formalisms:
 - STRIPS (Stanford Research Institute Problem Solver)
 - SAS⁺ (Simplified Action Structures)
- more expressive formalisms exist,
 - e.g., PDDL (Planning Domain Definition Language)

	STRIPS	
	000000	

STRIPS

Introduction	What is Old?	What is New?	STRIPS	SAS ⁺
OO	0000	000000	0●00000	00000000

STRIPS



- was developed as input language for Shakey the robot (1971)
- is the simplest commonly used planning formalism

STRIPS: Basic Concepts

state variables V describe properties that can be true or false

- states are sets $s \subseteq V$ representing which properties are true
- goals are given as sets of properties that must be true (values of other variables do not matter)
- actions describe which transitions are allowed
 - preconditions denote properties required to apply the action
 - effects specify which properties the action changes

Introduction	What is Old?	What is New?	STRIPS	sas+
00	0000	000000	0000000	00000000

STRIPS Planning Task

Definition (STRIPS Planning Task)

A STRIPS planning task is a 4 tuple $\Pi = \langle V, I, G, A \rangle$, where

- V is a finite set of binary state variables
- I \subseteq V is the initial state
- $G \subseteq V$ is the set of goals
- A is a finite set of actions $a = \langle pre, add, del, cost \rangle$ with
 - **preconditions** $pre(a) \subseteq V$
 - add effects (or add list) $add(a) \subseteq V$
 - delete effects (or delete list) $del(a) \subseteq V$
 - costs cost(a) $\in \mathbb{N}_0$ (cost(a) = 1 if not specified explicitly)

remark: action costs are an extension of "traditional" STRIPS

- $\Pi = \langle V, I, G, A \rangle$ with:
 - V = {on(R,B), on(R,G), on(B,R), on(B,G), on(G,R), on(G,B), on-table(R), on-table(B), on-table(G), clear(R), clear(B), clear(G)}
 - $I = \{on(G,R), on-table(R), on-table(B), clear(G), clear(B)\}$
 - $\blacksquare G = \{on(R,B), on(B,G)\}$
 - A = {move(R,B,G), move(R,G,B), move(B,R,G), move(B,G,R), move(G,R,B), move(G,B,R), to-table(R,B), to-table(R,G), to-table(B,R), to-table(B,G), to-table(G,R), to-table(G,B), from-table(R,B), from-table(R,G), from-table(B,R), from-table(B,G), from-table(G,R), from-table(G,B)}

action move(R,B,G):

- $pre(move(R,B,G)) = \{on(R,B), clear(R), clear(G)\}$
- $add(move(R,B,G)) = \{on(R,G), clear(B)\}$
- $\blacksquare del(move(R,B,G)) = \{on(R,B), clear(G)\}$
- cost(move(R,B,G)) = 1

action move(R,B,G):

- $pre(move(R,B,G)) = \{on(R,B), clear(R), clear(G)\}$
- $\blacksquare add(move(R,B,G)) = \{on(R,G), clear(B)\}$
- $\blacksquare del(move(R,B,G)) = \{on(R,B), clear(G)\}$
- cost(move(R,B,G)) = 1

action to-table(R, B):

- pre(to-table(**R**, **B**)) = ???
- add(to-table(R, B)) = ???
- del(to-table(R, B)) = ???
- cost(to-table(R, B)) = 1

action move(R,B,G):

- $pre(move(R,B,G)) = \{on(R,B), clear(R), clear(G)\}$
- $\blacksquare add(move(R,B,G)) = \{on(R,G), clear(B)\}$
- $\blacksquare del(move(R,B,G)) = \{on(R,B), clear(G)\}$
- cost(move(R,B,G)) = 1

action to-table(R, B):

- $pre(to-table(R, B)) = \{clear(R), on(R, B)\}$
- add(to-table(R, B)) = {on-table(R), clear(B)}
- $\blacksquare del(to-table(R, B)) = \{on(R, B)\}$
- cost(to-table(R, B)) = 1

State Space for STRIPS Planning Task

Definition (state space induced by STRIPS planning task)

Let $\Pi = \langle V, I, G, A \rangle$ be a STRIPS planning task.

Then Π induces the state space $S(\Pi) = \langle S, A, cost, T, s_l, S_{\star} \rangle$:

set of states: $S = 2^V$ (= power set of V)

actions: actions A as defined in Π

action costs: cost as defined in Π

transitions: $s \xrightarrow{a} s'$ for states s, s' and action a iff

• $pre(a) \subseteq s$ (preconditions satisfied)

• $s' = (s \setminus del(a)) \cup add(a)$ (effects are applied)

• initial state: $s_I = I$

goal states: $s \in S_{\star}$ for state s iff $G \subseteq s$ (goals reached)

Introduction	What is Old?	What is New?	STRIPS	SAS ⁺
00	0000	000000	0000000	●0000000

 SAS^+

Basic Concepts of SAS⁺

basic concepts of SAS⁺:

- very similar to STRIPS: state variables not necessarily binary, but with given finite domain (cf. CSPs)
- states are assignments to these variables (cf. CSPs)
- preconditions and goals given as partial assignments
- effects are assignments to subset of variables

SAS⁺ Planning Task

Definition (SAS⁺ planning task)

- A SAS⁺ planning task is a 5-tuple $\Pi = \langle V, dom, I, G, A \rangle$, where
 - V is a finite set of state variables
 - dom(v) is a finite and non-empty domain for all $v \in V$
 - *I* is a total assignment of *V* to *dom*, the initial state
 - G is a partial assignment of V to dom, the goals
 - A is a finite set of actions $a = \langle pre, eff, cost \rangle$ with
 - preconditions pre(a), a partial assignment of V to dom
 - effects eff(a), a partial assignment of V
 - $cost cost(a) \in \mathbb{N}_0$

State Space of SAS⁺ Planning Task

Definition (state space induced by SAS⁺ planning task)

Let $\Pi = \langle V, dom, I, G, A \rangle$ be a SAS⁺ planning task.

Then Π induces the state space $S(\Pi) = \langle S, A, cost, T, s_0, S_{\star} \rangle$:

- set of states: total assignments of V according to dom
- actions: actions A as defined in Π
- action costs: cost as defined in Π
- **transitions:** $s \xrightarrow{a} s'$ for states s, s' and action a iff
 - pre(a) complies with s (precondition satisfied)
 - s' complies with eff(a) for all variables mentioned in eff; complies with s for all other variables (effects are applied)
- initial state: $s_0 = I$

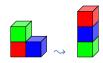
goal states: $s \in S_{\star}$ for state s iff G complies with s

		SAS ⁺
		00000000

 $\Pi = \langle V, dom, I, G, A \rangle$ with:

V = {pos(R), pos(B), pos(G), clear(R), clear(B), clear(G)}

		SAS ⁺
		000000000



$$I = \{pos(R) \mapsto T, pos(B) \mapsto T, pos(G) \mapsto R, \\ clear(R) \mapsto F, clear(B) \mapsto T, clear(G) \mapsto T \}$$

$$\blacksquare G = \{ pos(R) \mapsto B, pos(B) \mapsto G \}$$

		SAS ⁺
		000000000

action move(R,B,G):

- $pre(move(R,B,G)) = \{pos(R) \mapsto B, clear(R) \mapsto T, clear(G) \mapsto T\}$
- *eff*(*move*(*R*,*B*,*G*)) = ???
- cost(move(R,B,G)) = 1

		SAS ⁺
		00000000

action *move*(*R*,*B*,*G*):

- $pre(move(R,B,G)) = \{pos(R) \mapsto B, clear(R) \mapsto T, clear(G) \mapsto T\}$
- $eff(move(\mathbf{R}, B, G)) = \{pos(\mathbf{R}) \mapsto G, clear(B) \mapsto \mathbf{T}, clear(G) \mapsto \mathbf{F}\}$
- cost(move(R,B,G)) = 1

Introduction	What is Old?	What is New?	STRIPS	SAS ⁺
OO	0000	000000	0000000	0000000●
Why SAS ⁺				

- modeling with finite-domain variables is often more user friendly than modeling with binary variables
- some techniques benefit from STRIPS, some from SAS⁺
- automatic "compilers" exist that translate simpler formalisms (like STRIPS) to SAS⁺

Introduction	What is Old?	What is New?	STRIPS	SAS ⁺
OO	0000	000000	0000000	0000000●
Why SAS ⁺				

- modeling with finite-domain variables is often more user friendly than modeling with binary variables
- some techniques benefit from STRIPS, some from SAS⁺
- automatic "compilers" exist that translate simpler formalisms (like STRIPS) to SAS⁺
- → in practice, planning systems convert automatically to the "best-fitting" planning formalism