
Artificial Intelligence
Planning 1: Planning Tasks

Jendrik Seipp

Linköping University

based on slides by Thomas Keller and Malte Helmert (University of Basel)

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Questions?

post feedback and ask questions anonymously at

https://padlet.com/jendrikseipp/tddc17

2/41

https://padlet.com/jendrikseipp/tddc17

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Intended Learning Outcomes

explain what “automated planning” is

contrast the PDDL, STRIPS and SAS+ planning formalisms

model planning tasks in these formalisms

explain what a heuristic is and how we can obtain them

justify why the STRIPS heuristic is not very informative

3/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Introduction

4/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Automated Planning

“Planning is the art and practice of thinking before acting.”
— P. Haslum

{ finding plans (sequences of actions)

{

that lead from an initial state to a goal state

general approach to solving state-space search problems

classical planning: static, deterministic, fully observable
variants (not considered here):

probabilistic planning
planning under partial observability
online planning
. . .

5/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Motivation

general: domain-independent
relevant: Ericsson, Saab, NASA
declarative: “what?” instead of “how?”
MSc and PhD theses on planning available

6/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Motivation

general: domain-independent
relevant: Ericsson, Saab, NASA
declarative: “what?” instead of “how?”
MSc and PhD theses on planning available

6/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Planning: Informally

given:

state space description in terms of suitable problem description
language (planning formalism)

required:

a plan, i.e., a solution for the described state space
(sequence of actions from initial state to goal)

or a proof that no plan exists

distinguish between

optimal planning: guarantee that returned plans
are optimal, i.e., have minimal overall cost

suboptimal planning (satisficing):
suboptimal plans are allowed

7/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

What is New?
we have seen planning tasks before, e.g.:

as before: we solve these tasks with
informed search algorithms like A∗ or greedy-best first search
as before: search is guided by a heuristic
new: we are now interested in general algorithms,
i.e., the developer of the search algorithm does not know
the tasks that the algorithm needs to solve

{ no problem-specific heuristics!
{ input language to model the planning task

8/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Compact Descriptions

9/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

State Spaces with Declarative Representations

How do we represent state spaces in the computer?

so far, states were black boxes
now, we represent state spaces declaratively:

compact description of state space as input to algorithms
{ state spaces exponentially larger than the input

algorithms directly operate on compact description

{ allows automatic reasoning about problem:
reformulation, simplification, abstraction, etc.

10/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Blocks World

11/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Compact Description of State Spaces

How to describe state spaces compactly?

introduce state variables

states: assignments to state variables

{ e.g., n binary state variables can describe 2n states

transitions and goal are compactly described
with a logic-based formalism

different variants: different planning formalisms

12/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Three Planning Formalisms

a description language for planning tasks
is called a planning formalism
we introduce three planning formalisms:

1 “AIMA-PDDL”
(Planning Domain Definition Language as introduced in AIMA)

2 STRIPS (Stanford Research Institute Problem Solver)
3 SAS+ (Simplified Action Structures)

STRIPS and SAS+ are simpler formalisms than PDDL

13/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

PDDL

14/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Planning Domain Definition Language

PDDL is the standard language used to describe
planning tasks in practice

descriptions in (restricted) predicate logic
(even more compact than propositional logic)
support for many “advanced” features like

numeric variables
temporal semantics
stochastic effects
. . .

15/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

PDDL planning task

{

a first-order PDDL planning task is given by

a set of predicates: on/2, ontable/1, clear/1

a set of objects: R, B, G
a set of action schemata (move, to-table, from-table) with

a schematic precondition
a schematic effect
a cost (optionally)

an initial state:
on(G, R) ∧ ontable(R) ∧ ontable(B) ∧ clear(G) ∧ clear(B)

a goal description: on(R, B) ∧ on(B, G)

16/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Example: Blocks World in PDDL

17/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

PDDL Fragments

even without “advanced” features, PDDL is
very expressive
but non-trivial to formalize

there are predefined PDDL fragments

PDDL as presented in AIMA is also a PDDL fragment

18/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

STRIPS

19/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

STRIPS

was developed as input language for Shakey
the robot (1971)

is the simplest commonly used
planning formalism
is a special case of ground AIMA-PDDL where

preconditions are restricted to conjunctions
over positive literals
goals are restricted to
conjunctions over positive literals

20/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

STRIPS: Basic Concepts

all state variables in V are binary (true or false)
states s can be represented in three equivalent ways:

as assignments s : V → {F, T}
as a conjunction over V (closed world assumption)
as sets s ⊆ V,
where s encodes the set of state variables that are true in s

we use the set representation

goals and preconditions of actions
are given as sets of variables that must be true
(values of other variables do not matter)

effects of actions are given as sets of variables
that are set to true and set to false, respectively

21/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

STRIPS: Basic Concepts

all state variables in V are binary (true or false)
states s can be represented in three equivalent ways:

as assignments s : V → {F, T}
as a conjunction over V (closed world assumption)
as sets s ⊆ V,
where s encodes the set of state variables that are true in s

we use the set representation

goals and preconditions of actions
are given as sets of variables that must be true
(values of other variables do not matter)

effects of actions are given as sets of variables
that are set to true and set to false, respectively

21/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

STRIPS: Basic Concepts

all state variables in V are binary (true or false)
states s can be represented in three equivalent ways:

as assignments s : V → {F, T}
as a conjunction over V (closed world assumption)
as sets s ⊆ V,
where s encodes the set of state variables that are true in s

we use the set representation

goals and preconditions of actions
are given as sets of variables that must be true
(values of other variables do not matter)

effects of actions are given as sets of variables
that are set to true and set to false, respectively

21/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

STRIPS Planning Task

Definition (STRIPS Planning Task)
A STRIPS planning task is a 4 tuple Π = ⟨V, I, G, A⟩, where

V is a finite set of binary state variables

I ⊆ V is the initial state

G ⊆ V is the set of goals
A is a finite set of actions a = ⟨pre, add, del, cost⟩ with

preconditions pre(a) ⊆ V
add effects (or add list) add(a) ⊆ V
delete effects (or delete list) del(a) ⊆ V
costs cost(a) ∈ Î0 (cost(a) = 1 if not specified explicitly)

remark: action costs are an extension of “traditional” STRIPS

22/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Example: Blocks World in STRIPS

{
Π = ⟨V, I, G, A⟩ with:

V = {on(R,B), on(R,G), on(B,R), on(B,G), on(G,R), on(G,B),
on-table(R), on-table(B), on-table(G),
clear(R), clear(B), clear(G)}

I = {on(G,R), on-table(R), on-table(B), clear(G), clear(B)}
G = {on(R,B), on(B,G)}
A = {move(R,B,G),move(R,G,B),move(B,R,G),

move(B,G,R),move(G,R,B),move(G,B,R),
to-table(R,B), to-table(R,G), to-table(B,R),
to-table(B,G), to-table(G,R), to-table(G,B),
from-table(R,B), from-table(R,G), from-table(B,R),
from-table(B,G), from-table(G,R), from-table(G,B)}

23/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Example: Blocks World in STRIPS

action move(R,B,G):

pre(move(R,B,G)) = {on(R,B), clear(R), clear(G)}
add(move(R,B,G)) = {on(R,G), clear(B)}
del(move(R,B,G)) = {on(R,B), clear(G)}
cost(move(R,B,G)) = 1

action to-table(R, B):

pre(to-table(R, B)) =
add(to-table(R, B)) =
del(to-table(R, B)) =
cost(to-table(R, B)) = 1

24/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Example: Blocks World in STRIPS

action move(R,B,G):

pre(move(R,B,G)) = {on(R,B), clear(R), clear(G)}
add(move(R,B,G)) = {on(R,G), clear(B)}
del(move(R,B,G)) = {on(R,B), clear(G)}
cost(move(R,B,G)) = 1

action to-table(R, B):

pre(to-table(R, B)) =
add(to-table(R, B)) =
del(to-table(R, B)) =
cost(to-table(R, B)) = 1

24/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Example: Blocks World in STRIPS

action move(R,B,G):

pre(move(R,B,G)) = {on(R,B), clear(R), clear(G)}
add(move(R,B,G)) = {on(R,G), clear(B)}
del(move(R,B,G)) = {on(R,B), clear(G)}
cost(move(R,B,G)) = 1

action to-table(R, B):

pre(to-table(R, B)) = {clear(R), on(R, B)}
add(to-table(R, B)) = {on-table(R), clear(B)}
del(to-table(R, B)) = {on(R, B)}
cost(to-table(R, B)) = 1

24/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

State Space for STRIPS Planning Task

Definition (state space induced by STRIPS planning task)
Let Π = ⟨V, I, G, A⟩ be a STRIPS planning task.

Then Π induces the state space S(Π) = ⟨S, A, cost, T, s0, S⋆⟩:
set of states: S = 2V (= power set of V)

actions: actions A as defined in Π

action costs: cost as defined in Π

transitions: s
a−→ s′ for states s, s′ and action a iff

pre(a) ⊆ s (preconditions satisfied)
s′ = (s \ del(a)) ∪ add(a) (effects are applied)

initial state: s0 = I

goal states: s ∈ S⋆ for state s iff G ⊆ s (goals reached)

25/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Why STRIPS?

STRIPS is particularly simple

{ simplifies the design and implementation of
planning algorithms and heuristics

restriction to positive preconditions and goals makes it
cumbersome for the “user” to model tasks directly in STRIPS

but: STRIPS is equally “powerful”
to much more complex planning formalisms

{ automatic “compilers” exist that translate more complex
formalisms (like AIMA-PDDL and SAS+) to STRIPS

26/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

SAS+

27/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Basic Concepts of SAS+

basic concepts of SAS+:

very similar to STRIPS: state variables not necessarily binary, but
with given finite domain (cf. CSPs)

states are assignments to these variables (cf. CSPs)

preconditions and goals given as partial assignments

effects are assignments to subset of variables

28/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

SAS+ Planning Task

Definition (SAS+ planning task)

A SAS+ planning task is a 5-tuple Π = ⟨V, dom, I, G, A⟩, where

V is a finite set of state variables

dom(v) is a finite and non-empty domain for all v ∈ V

I is a total assignment of V to dom, the initial state

G is a partial assignment of V to dom, the goals
A is a finite set of actions a = ⟨pre, eff, cost⟩ with

preconditions pre(a), a partial assignment of V to dom
effects eff(a), a partial assignment of V
cost cost(a) ∈ Î0

29/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

State Space of SAS+ Planning Task

Definition (state space induced by SAS+ planning task)

Let Π = ⟨V, dom, I, G, A⟩ be a SAS+ planning task.
Then Π induces the state space S(Π) = ⟨S, A, cost, T, s0, S⋆⟩:

set of states: total assignments of V according to dom

actions: actions A as defined in Π

action costs: cost as defined in Π

transitions: s
a−→ s′ for states s, s′ and action a iff

pre(a) complies with s (precondition satisfied)
s′ complies with eff(a) for all variables mentioned in eff; complies
with s for all other variables (effects are applied)

initial state: s0 = I

goal states: s ∈ S⋆ for state s iff G complies with s

30/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Example: Blocks World in SAS+

{

Π = ⟨V, dom, I, G, A⟩ with:

V = {pos(R), pos(B), pos(G),
clear(R), clear(B), clear(G)}

dom(pos(R)) = {B, G, T}
dom(pos(B)) = {R, G, T}
dom(pos(G)) = {R, B, T}
dom(clear(R)) = {F, T}
dom(clear(B)) = {F, T}
dom(clear(G)) = {F, T}

31/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Example: Blocks World in SAS+

{

I = {pos(R) ↦→ T, pos(B) ↦→ T, pos(G) ↦→ R,
clear(R) ↦→ F, clear(B) ↦→ T, clear(G) ↦→ T}

G = {pos(R) ↦→ B, pos(B) ↦→ G}
A = {move(R,B,G),move(R,G,B),move(B,R,G),

move(B,G,R),move(G,R,B),move(G,B,R),
move(R, B, T),move(R, G, T),move(B, R, T),
move(B, G, T),move(G, R, T),move(G, B, T),
move(R, T, B),move(R, T, G),move(B, T, R),
move(B, T, G),move(G, T, R),move(G, T, B)}

32/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Example: Blocks World in SAS+

action move(R,B,G):

pre(move(R,B,G)) = {pos(R) ↦→ B, clear(R) ↦→ T, clear(G) ↦→ T}
eff(move(R,B,G)) =
cost(move(R,B,G)) = 1

33/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Example: Blocks World in SAS+

action move(R,B,G):

pre(move(R,B,G)) = {pos(R) ↦→ B, clear(R) ↦→ T, clear(G) ↦→ T}
eff(move(R,B,G)) = {pos(R) ↦→ G, clear(B) ↦→ T, clear(G) ↦→ F}
cost(move(R,B,G)) = 1

33/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Why SAS+

modeling with finite-domain variables is often more user friendly
than modeling with binary variables

some techniques benefit from STRIPS, some from SAS+

automatic “compilers” exist that translate simpler formalisms (like
AIMA-PDDL and STRIPS) to SAS+

{ in practice, planning systems convert automatically
to the “best-fitting” planning formalism

34/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Why SAS+

modeling with finite-domain variables is often more user friendly
than modeling with binary variables

some techniques benefit from STRIPS, some from SAS+

automatic “compilers” exist that translate simpler formalisms (like
AIMA-PDDL and STRIPS) to SAS+

{ in practice, planning systems convert automatically
to the “best-fitting” planning formalism

34/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Heuristics

35/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Reminder: Heuristics

Definition (heuristic)
Let S be a state space with states S.
A heuristic function or heuristic for S is a function

h : S → Ò+
0 ∪ {∞},

mapping each state to a non-negative number (or ∞).

36/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Reminder: Perfect Heuristic

Definition (perfect heuristic)
Let S be a state space with states S.

The perfect heuristic for S, written h∗, maps each state s ∈ S
to the cost of an optimal solution for s.

remark: h∗(s) = ∞ if no solution for s exists

37/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Reminder: Properties of Heuristics

Definition (safe, goal-aware, admissible, consistent)
Let S be a state space with states S.

A heuristic h for S is called

safe if h∗(s) = ∞ for all s ∈ S with h(s) = ∞
goal-aware if h(s) = 0 for all goal states s

admissible if h(s) ≤ h∗(s) for all states s ∈ S

consistent if h(s) ≤ cost(a) + h(s′) for all transitions s
a−→ s′

38/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

A Simple Planning Heuristic

The STRIPS planner (Fikes & Nilsson, 1971) uses the number of goals not
yet satisfied in a STRIPS planning task as heuristic:

h(s) := |G \ s|.

intuition: fewer unsatisfied goals{ closer to goal state

{ STRIPS heuristic

39/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Problems of STRIPS Heuristic

drawback of STRIPS heuristic?

rather uninformed:
for state s, if there is no applicable action a in s such that applying
a in s satisfies strictly more (or fewer) goals,
then all successor states have the same heuristic value as s

very sensitive to reformulation:
can easily transform any planning task into an equivalent one
where h(s) = 1 for all non-goal states

ignores almost the whole task structure:
the heuristic values do not depend on the actions

{ we need better methods to design heuristics

40/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Planning Heuristics

General Procedure for Obtaining a Heuristic
Solve a simplified version of the problem.

there are many ideas for domain-independent planning heuristics:

abstraction{ this course

delete relaxation{ this course

landmarks

critical paths

network flows

potential heuristics

41/41

Introduction Compact Descriptions PDDL STRIPS SAS+ Heuristics

Planning Heuristics

General Procedure for Obtaining a Heuristic
Solve a simplified version of the problem.

there are many ideas for domain-independent planning heuristics:

abstraction{ this course

delete relaxation{ this course

landmarks

critical paths

network flows

potential heuristics

41/41

	Introduction
	

	Compact Descriptions
	

	PDDL
	

	STRIPS
	

	SAS+
	

	Heuristics
	

