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• The environment

• The reinforcement function r(s,a)
• Pure delay reward and avoidance problems

• Minimum time to goal

• Games

• The value function V(s)
• Policy : S → A

• Value V (s) := i 
i rt+i

• Find the optimal policy  that 
maximizes V (s) for all states s.



A minimum time to goal world

Value function                 Optimal policy                  Optimal value

for random                                                                     function

movement



Assume:

• finite set of states S, finite set of actions A

• at each discrete time agent observes state st S and chooses action at A

• then receives immediate reward rt

• and state changes to st+1

• Markov assumption: st+1 = (st,at) and rt = r(st,at)

• i.e. rt and st+1 depend only on current state and action

• functions  and r may be non-deterministic

• functions  and r not necessarily known to the agent



r(s,a) V*(s)

An optimal policy







Optimal policy:

• *(s) = argmaxa[r (s,a) + V *((s,a))]

• Doesn't work if we don't know r and .

The Q-function:

• Q (s,a) := r (s,a) + V *((s,a))

• *(s) = argmaxaQ (s,a)

r(s,a)

Q(s,a)



• Note Q and V* closely related:
V *(s) = maxa' Q (s,a' )

• Therefore Q can be written as:

Q (st ,at) := r (st ,at) + V *((st ,at)) =

r (st ,at) +  maxa' Q (st+1 ,a' )

• If Q^ denote the current approximation of Q then it can be updated by:

Q^(s,a) := r +  maxa' Q
^(s',a' )



• Value-Based:
• Learn value function
• Implicit policy (e.g. greedy selection)
• Example: Deep Q Networks (DQN)

• Policy-Based:
• No value function
• Learn explicit (stochastic) policy
• Example: Stochastic Policy Gradients

• Model-Based:
• Learn transition model
• Implicit policy
• Example: Dreamer

• Actor-Critic:
• Learn value function
• Learn policy using value function
• Example: Asynchronous Advantage Actor Critic (A3C)







For each s, a initialize table entry Q^(s,a) := 0.

Observe current state s.

Do forever:

1. Select an action a and execute it

2. Receive immediate reward r

3. Observe the new state s'

4. Update the table entry for Q^(s,a):
Q^(s,a) := r +  maxa' Q

^(s',a' )

5. s := s'



Q ^(s1 ,aright) := r +  maxa' Q
^(s2 ,a' )

:= 0 + 0.9 max{63, 81, 100}

:= 90



• Exploration

• Selecting the best action

• Probabilistic choice

• Improving convergence

• Update sequences

• Remember old state-action transitions and their immediate reward

• Non-deterministic MDPs

• Temporal Difference Learning



















• DQN - baseline

• Double DQN - de-overestimate values

• Prioritized experience

• Dueling networks

• Distributional DQN - probability 
distribution

• Noisy DQN - parametric noise

• -> ADDITIVE





























• Take parameterized policy πθ0

• Sample an episode τ with parameters θ1

• If it is better, then push parameters in that direction

• If not, then push parameters the other way

• (aka: vanilla policy gradient)













• Value-Based:
• Learn value function
• Implicit policy (e.g. greedy selection)
• Example: Deep Q Networks (DQN)

• Policy-Based:
• No value function
• Learn explicit (stochastic) policy
• Example: Stochastic Policy Gradients

• Model-Based:
• Learn transition model
• Implicit policy
• Example: Dreamer

• Actor-Critic:
• Learn value function
• Learn policy using value function
• Example: Asynchronous Advantage Actor Critic (A3C)



Learn policy direct or learn transition first and then policy?



• s → a → s’ → a’ → s’’ → a’’ → s’’’ → a’’’ → s’’’’

• Learning a policy s → a

• Learning how to react in an environment

• Learning a transition s → a → s’

• Learning how the environment reacts



• Learning

• Agent changing state in the environment

• Irreversible state change

• Forward Path s → a → s’ → a’ → s’’ → a’’ → s’’’ → a’’’ → s’’’’

• Planning

• Agent changing own local state

• Reversible local state change

• Backtracking Tree





Learn policy directly

Learn model 
and then plan actions

Use experience to 
update both model and policy









• Model-based RL reduces sample complexity.

• As soon as Model has enough transition entries, the policy can be learned 
from the Model, for free.

• This free learning is called planning. It does not involve environment 
samples, hence, “free”.





• Value-Based:
• Learn value function
• Implicit policy (e.g. greedy selection)
• Example: Deep Q Networks (DQN)

• Policy-Based:
• No value function
• Learn explicit (stochastic) policy
• Example: Stochastic Policy Gradients

• Model-Based:
• Learn transition model
• Implicit policy
• Example: Dreamer

• Actor-Critic:
• Learn value function
• Learn policy using value function
• Example: Asynchronous Advantage Actor Critic (A3C)



Learn policy direct or learn transition first and then policy?



• An Actor that controls how our agent behaves (policy-based method).

• A Critic that measures how good the action taken is (value-based 
method).

• Two ideas to reduce variance

• Temporal difference bootstrapping

• Baseline subtraction







• Asynchronous: The algorithm is an asynchronous algorithm where multiple 
worker agents are trained in parallel, each with their environment. This allows the 
algorithm to train faster as more workers are training in parallel and attain a 
more diverse training experience as each worker's experience is independent.

• Advantage: Advantage is a metric to judge how good its actions were and how 
they turned out. This allows the algorithm to focus on where the network's 
predictions were lacking. Intuitively, this will enable it to measure the advantage 
of taking action, following the policy π at the given timestep.

• Actor-Critic: The Actor-Critic aspect of the algorithm uses an architecture that 
shares layers between the policy and value function.



1. Fetch the global network parameters

2. Interact with the environment by following 
the local policy for n number of steps

3. Calculate value and policy loss

4. Get gradients from losses

5. Update the global network

6. Repeat

https://pylessons.com/A3C-reinforcement-learning

https://pylessons.com/A3C-reinforcement-learning




• Many real-world tasks may present an agent with 
multiple, possibly conflicting objectives:

• Time

• Safety

• Resource consumption

• Multi-Objective Reinforcement Learning allows an 
agent to learn how to prioritize among objectives at 
runtime

• Possible to create diverse populations of agents, or 
adapt agents to time-varying user needs, e.g. difficulty 
level or training session contents

• Training goals can also be considered by agents

J. Källström and F.Heintz, Tunable Dynamics in Agent-Based Simulation using Multi-
Objective Reinforcement Learning, AAMAS Adaptive and Learning Agents Workshop 2019.





DESTINATION
Reach the desired 

destination on time

2

SAFETY
Travel in a safe manner, 

without any incidents of 

collis ions

3

COMFORT

The trip should be

smooth, no excessive 

breaking or jerking

CONSUMPTION
The driving style should 

minimise fuel

comsumpt ion

4



How to specify the 

reward for a collision?

- 10?

- 100?

- 100 0 0 0 ?

• This dilemma of reward scale exists for 
each behaviour we want to encourage:

• avoiding collisions

• reaching the destination on time

• staying within speed limits

• avoiding sudden changes in speed

• driving within the lane

• ...



1. Design/tweak scalar reward function

2. (Re-)Train RL agent using new/updated reward function (may take 
hours or days)

3. Evaluate performance (and try to figure out what went wrong!)

• Repeat until the desired agent behaviour is (finally) learned

• Wasteful and time consuming process – each trained agent must be 
discarded if the reward function changes

• Designers implicitly bake in tradeoffs between different behaviours

• Should AI engineers make the decisions about these tradeoffs?



1. Design/tweak scalar reward function

2. (Re-)Train RL agent using new/updated reward function (may take 
hours or days)

3. Evaluate performance (and try to figure out what went wrong!)

• GT Sophy - Super Human Racing AI Agent, Sony AI

• Objectives: high precision race car control, efficient racing tactics 
and maneuvers, while respecting an imprecisely defined racing 
etiquette

• With enough time and computation, good results can be achieved:

• Could we have done better?



• Vector-valued reward function

• r = [r_objective1, r_objective2, …]

• Length of the reward vector = 
number of objectives

Action

State

Vectorial reward



Multi-Objective MDP 

Set of states

Set of actions

A vectorial reward function 

objectives

Transition function (dynamics of the environment) 

Discount factor 𝛾 [0, 1]



Vamplew, P., Foale, C., & Dazeley, R. (2022). 

The impact of environmental stochasticity 

on value-based multiobjective 

reinforcement learning. Neural Computing 

and Applications, 1-17.

Example: MOMDP with deterministic 

state transitions and stochastic rewards



The agent behaves according to a policy:

The value function of a policy in a MOMDP:

where

Action

State

Vectorial reward



Episodic task, 2 objectives 

2 deterministic policies:

Vamplew, P., Dazeley, R., Barker, E., & Kelarev, A. (2009). Constructing stochastic mixture policies for
episodic multiobjective reinforcement learning tasks. In AI 2009: Advances in Artificial Intelligence.

Proceedings 22 (pp. 340-349). Springer Berlin Heidelberg.



Episodic task, 2 objectives 

2 deterministic policies:

Always choosing action a1 will maximise the reward on objective 1,but 

minimise the reward for objective 2

Vamplew, P., Dazeley, R., Barker, E., & Kelarev, A. (2009). Constructing stochastic mixture policies for
episodic multiobjective reinforcement learning tasks. In AI 2009: Advances in Artificial Intelligence.

Proceedings 22 (pp. 340-349). Springer Berlin Heidelberg.



Episodic task, 2 objectives 

2 deterministic policies:

Always choosing action a2 will maximise the reward on objective 2, but 

minimise the reward for objective 1

Vamplew, P., Dazeley, R., Barker, E., & Kelarev, A. (2009). Constructing stochastic mixture policies for
episodic multiobjective reinforcement learning tasks. In AI 2009: Advances in Artificial Intelligence.

Proceedings 22 (pp. 340-349). Springer Berlin Heidelberg.



Consider a stochastic policy which selects between actions a1 and a2 

with probabilities p1 and (1-p1)

The average reward received by this policy will be (p1, 1-p1)

Vamplew, P., Dazeley, R., Barker, E., & Kelarev, A. (2009). Constructing stochastic mixture policies for
episodic multiobjective reinforcement learning tasks. In AI 2009: Advances in Artificial Intelligence.

Proceedings 22 (pp. 340-349). Springer Berlin Heidelberg.



Vectorial value functions now supply only a partial ordering, even for a 

given state:

We can no longer determine which values are optimal without additional 

information about how to prioritize the objectives



A utility function, ,is used to represent a user's preferences over 

objectives

Utility function maps a vector reward to a scalar utility:

For MODeM, a utility function, 

increasing:

is assumed to be monotonically



Linear utility function:

Each element w specifies how much one unit of value for the 

corresponding objective contributes to the scalarised value

The elements of the weight vector are all positive real numbers and 

sum to 1



• Examples of non-linear utility functions 

• The product utility function

• seeks to make the objective values as balanced as 
possible

• [3, 1] ? [2, 2]



• Examples of non-linear utility functions 

• The product utility function

• seeks to make the objective values as balanced as 
possible

• [3, 1] ? [2, 2]

• The sum of squares utility function 

• tends to prioritise achieving higher values on a 
single objective at the expense of other objectives

• [3, 1] ? [2, 2]



• Examples of non-linear utility functions 

• The product utility function

• seeks to make the objective values as balanced as 
possible

• u([3, 1]) < u([2, 2])

• The sum of squares utility function 

• tends to prioritise achieving higher values on a 
single objective at the expense of other objectives

• u([3, 1]) > u([2, 2])



• In single-objective RL problems, there exist a unique optimal value V, and 
there can be multiple optimal policies 𝜋 that all have this value

• The goal is to learn one of these optimal policies

• In multi-objective settings there can now be multiple possibly optimal 
value vectors 𝐕

• We need to reason about sets of possibly optimal value vectors and 
policies when thinking about solutions to MORL problems



The most general set of solutions: the undominated set

The undominated set, U, is the subset of all possible policies Π and 

associated value vectors for which there exists a possible utility function 

u with a maximal scalarised value:



The undominated set may contain excess policies

We do not need to retain all policies to retain optimal utility

A set CS is a coverage set if it is a subset of U and if, for every u, it 

contains a policy with maximal scalarised value:



If the utility function u is any monotonically increasing function, then the

Pareto Front (PF) is the undominated set:

where is the Pareto dominance relationship:



• The definition of Pareto dominance corresponds exactly to the definition of 
monotonically increasing value functions

• Again, we can retain one of the policies that have the same value vector 

• A set of policies whose value functions correspond to the PF is called a 
Pareto Coverage Set (PCS)



Pareto dominance illustration, 

maximising objectives 

Solution A strongly dominates 

solution C

Solution B weakly dominates 

solution C

A and B are incomparable

Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., & Dekker, E. (2011). Empirical evaluation 

methods for multiobjective reinforcement learning algorithms. Machine learning, 84, 51-80.



Black points indicate solutions 

which form the Pareto front

Grey solutions are dominated by

at least one member of the Pareto 

front

Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., & Dekker, E. (2011). Empirical evaluation 

methods for multiobjective reinforcement learning algorithms. Machine learning, 84, 51-80.



The convex hull is the undominated set for non-decreasing linear utility 

functions

The convex hull (CH) is the subset of Π for which there exists a 𝐰 (for a 

linear u) for which the linearly scalarised value is maximal:



A set CCS(Π) is a convex coverage set if it is 

a subset of CH(Π) and if for every 𝐰 it contains 

a policy whose linearly scalarised value is 

maximal:

van Doorna, J., Odijkac, D., Roijersab, D. M., & de Rijkea, M. Multi-

Objective Optimization for Information Retrieval.



CCS 

PCS

Roijers, D. M., Whiteson, S.,& Oliehoek, F. A. (2015).Computing convex coverage sets for faster 

multi-objective coordination. Journal of Artificial Intelligence Research, 52, 399-443.



Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., & Dekker, E. (2011).Empirical evaluation

methods for multiobjective reinforcement learning algorithms. Machine learning, 84, 51-80.

Pareto front containing a concave region, 

indicated by the grey points

Fundamental limitation of linear scalarisation: 

it cannot find policies which lie in non-

convex regions of the Pareto front



SOLUTION SETS

The choice of solution set is key to the 

efficiency of the algorithms used to 

solve multi- objective problems



www.ida.liu.se/~TDDC17
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