
•

•

•

• The environment

• The reinforcement function r(s,a)
• Pure delay reward and avoidance problems

• Minimum time to goal

• Games

• The value function V(s)
• Policy : S → A

• Value V (s) := i 
i rt+i

• Find the optimal policy  that
maximizes V (s) for all states s.

A minimum time to goal world

Value function Optimal policy Optimal value

for random function

movement

Assume:

• finite set of states S, finite set of actions A

• at each discrete time agent observes state st S and chooses action at A

• then receives immediate reward rt

• and state changes to st+1

• Markov assumption: st+1 = (st,at) and rt = r(st,at)

• i.e. rt and st+1 depend only on current state and action

• functions  and r may be non-deterministic

• functions  and r not necessarily known to the agent

r(s,a) V*(s)

An optimal policy

Optimal policy:

• *(s) = argmaxa[r (s,a) + V *((s,a))]

• Doesn't work if we don't know r and .

The Q-function:

• Q (s,a) := r (s,a) + V *((s,a))

• *(s) = argmaxaQ (s,a)

r(s,a)

Q(s,a)

• Note Q and V* closely related:
V *(s) = maxa' Q (s,a')

• Therefore Q can be written as:

Q (st ,at) := r (st ,at) + V *((st ,at)) =

r (st ,at) +  maxa' Q (st+1 ,a')

• If Q^ denote the current approximation of Q then it can be updated by:

Q^(s,a) := r +  maxa' Q
^(s',a')

• Value-Based:
• Learn value function
• Implicit policy (e.g. greedy selection)
• Example: Deep Q Networks (DQN)

• Policy-Based:
• No value function
• Learn explicit (stochastic) policy
• Example: Stochastic Policy Gradients

• Model-Based:
• Learn transition model
• Implicit policy
• Example: Dreamer

• Actor-Critic:
• Learn value function
• Learn policy using value function
• Example: Asynchronous Advantage Actor Critic (A3C)

For each s, a initialize table entry Q^(s,a) := 0.

Observe current state s.

Do forever:

1. Select an action a and execute it

2. Receive immediate reward r

3. Observe the new state s'

4. Update the table entry for Q^(s,a):
Q^(s,a) := r +  maxa' Q

^(s',a')

5. s := s'

Q ^(s1 ,aright) := r +  maxa' Q
^(s2 ,a')

:= 0 + 0.9 max{63, 81, 100}

:= 90

• Exploration

• Selecting the best action

• Probabilistic choice

• Improving convergence

• Update sequences

• Remember old state-action transitions and their immediate reward

• Non-deterministic MDPs

• Temporal Difference Learning

• DQN - baseline

• Double DQN - de-overestimate values

• Prioritized experience

• Dueling networks

• Distributional DQN - probability
distribution

• Noisy DQN - parametric noise

• -> ADDITIVE

• Take parameterized policy πθ0

• Sample an episode τ with parameters θ1

• If it is better, then push parameters in that direction

• If not, then push parameters the other way

• (aka: vanilla policy gradient)

• Value-Based:
• Learn value function
• Implicit policy (e.g. greedy selection)
• Example: Deep Q Networks (DQN)

• Policy-Based:
• No value function
• Learn explicit (stochastic) policy
• Example: Stochastic Policy Gradients

• Model-Based:
• Learn transition model
• Implicit policy
• Example: Dreamer

• Actor-Critic:
• Learn value function
• Learn policy using value function
• Example: Asynchronous Advantage Actor Critic (A3C)

Learn policy direct or learn transition first and then policy?

• s → a → s’ → a’ → s’’ → a’’ → s’’’ → a’’’ → s’’’’

• Learning a policy s → a

• Learning how to react in an environment

• Learning a transition s → a → s’

• Learning how the environment reacts

• Learning

• Agent changing state in the environment

• Irreversible state change

• Forward Path s → a → s’ → a’ → s’’ → a’’ → s’’’ → a’’’ → s’’’’

• Planning

• Agent changing own local state

• Reversible local state change

• Backtracking Tree

Learn policy directly

Learn model
and then plan actions

Use experience to
update both model and policy

• Model-based RL reduces sample complexity.

• As soon as Model has enough transition entries, the policy can be learned
from the Model, for free.

• This free learning is called planning. It does not involve environment
samples, hence, “free”.

• Value-Based:
• Learn value function
• Implicit policy (e.g. greedy selection)
• Example: Deep Q Networks (DQN)

• Policy-Based:
• No value function
• Learn explicit (stochastic) policy
• Example: Stochastic Policy Gradients

• Model-Based:
• Learn transition model
• Implicit policy
• Example: Dreamer

• Actor-Critic:
• Learn value function
• Learn policy using value function
• Example: Asynchronous Advantage Actor Critic (A3C)

Learn policy direct or learn transition first and then policy?

• An Actor that controls how our agent behaves (policy-based method).

• A Critic that measures how good the action taken is (value-based
method).

• Two ideas to reduce variance

• Temporal difference bootstrapping

• Baseline subtraction

• Asynchronous: The algorithm is an asynchronous algorithm where multiple
worker agents are trained in parallel, each with their environment. This allows the
algorithm to train faster as more workers are training in parallel and attain a
more diverse training experience as each worker's experience is independent.

• Advantage: Advantage is a metric to judge how good its actions were and how
they turned out. This allows the algorithm to focus on where the network's
predictions were lacking. Intuitively, this will enable it to measure the advantage
of taking action, following the policy π at the given timestep.

• Actor-Critic: The Actor-Critic aspect of the algorithm uses an architecture that
shares layers between the policy and value function.

1. Fetch the global network parameters

2. Interact with the environment by following
the local policy for n number of steps

3. Calculate value and policy loss

4. Get gradients from losses

5. Update the global network

6. Repeat

https://pylessons.com/A3C-reinforcement-learning

https://pylessons.com/A3C-reinforcement-learning

• Many real-world tasks may present an agent with
multiple, possibly conflicting objectives:

• Time

• Safety

• Resource consumption

• Multi-Objective Reinforcement Learning allows an
agent to learn how to prioritize among objectives at
runtime

• Possible to create diverse populations of agents, or
adapt agents to time-varying user needs, e.g. difficulty
level or training session contents

• Training goals can also be considered by agents

J. Källström and F.Heintz, Tunable Dynamics in Agent-Based Simulation using Multi-
Objective Reinforcement Learning, AAMAS Adaptive and Learning Agents Workshop 2019.

DESTINATION
Reach the desired

destination on time

2

SAFETY
Travel in a safe manner,

without any incidents of

collis ions

3

COMFORT

The trip should be

smooth, no excessive

breaking or jerking

CONSUMPTION
The driving style should

minimise fuel

comsumpt ion

4

How to specify the

reward for a collision?

- 10?

- 100?

- 100 0 0 0 ?

• This dilemma of reward scale exists for
each behaviour we want to encourage:

• avoiding collisions

• reaching the destination on time

• staying within speed limits

• avoiding sudden changes in speed

• driving within the lane

• ...

1. Design/tweak scalar reward function

2. (Re-)Train RL agent using new/updated reward function (may take
hours or days)

3. Evaluate performance (and try to figure out what went wrong!)

• Repeat until the desired agent behaviour is (finally) learned

• Wasteful and time consuming process – each trained agent must be
discarded if the reward function changes

• Designers implicitly bake in tradeoffs between different behaviours

• Should AI engineers make the decisions about these tradeoffs?

1. Design/tweak scalar reward function

2. (Re-)Train RL agent using new/updated reward function (may take
hours or days)

3. Evaluate performance (and try to figure out what went wrong!)

• GT Sophy - Super Human Racing AI Agent, Sony AI

• Objectives: high precision race car control, efficient racing tactics
and maneuvers, while respecting an imprecisely defined racing
etiquette

• With enough time and computation, good results can be achieved:

• Could we have done better?

• Vector-valued reward function

• r = [r_objective1, r_objective2, …]

• Length of the reward vector =
number of objectives

Action

State

Vectorial reward

Multi-Objective MDP

Set of states

Set of actions

A vectorial reward function

objectives

Transition function (dynamics of the environment)

Discount factor 𝛾 [0, 1]

Vamplew, P., Foale, C., & Dazeley, R. (2022).

The impact of environmental stochasticity

on value-based multiobjective

reinforcement learning. Neural Computing

and Applications, 1-17.

Example: MOMDP with deterministic

state transitions and stochastic rewards

The agent behaves according to a policy:

The value function of a policy in a MOMDP:

where

Action

State

Vectorial reward

Episodic task, 2 objectives

2 deterministic policies:

Vamplew, P., Dazeley, R., Barker, E., & Kelarev, A. (2009). Constructing stochastic mixture policies for
episodic multiobjective reinforcement learning tasks. In AI 2009: Advances in Artificial Intelligence.

Proceedings 22 (pp. 340-349). Springer Berlin Heidelberg.

Episodic task, 2 objectives

2 deterministic policies:

Always choosing action a1 will maximise the reward on objective 1,but

minimise the reward for objective 2

Vamplew, P., Dazeley, R., Barker, E., & Kelarev, A. (2009). Constructing stochastic mixture policies for
episodic multiobjective reinforcement learning tasks. In AI 2009: Advances in Artificial Intelligence.

Proceedings 22 (pp. 340-349). Springer Berlin Heidelberg.

Episodic task, 2 objectives

2 deterministic policies:

Always choosing action a2 will maximise the reward on objective 2, but

minimise the reward for objective 1

Vamplew, P., Dazeley, R., Barker, E., & Kelarev, A. (2009). Constructing stochastic mixture policies for
episodic multiobjective reinforcement learning tasks. In AI 2009: Advances in Artificial Intelligence.

Proceedings 22 (pp. 340-349). Springer Berlin Heidelberg.

Consider a stochastic policy which selects between actions a1 and a2

with probabilities p1 and (1-p1)

The average reward received by this policy will be (p1, 1-p1)

Vamplew, P., Dazeley, R., Barker, E., & Kelarev, A. (2009). Constructing stochastic mixture policies for
episodic multiobjective reinforcement learning tasks. In AI 2009: Advances in Artificial Intelligence.

Proceedings 22 (pp. 340-349). Springer Berlin Heidelberg.

Vectorial value functions now supply only a partial ordering, even for a

given state:

We can no longer determine which values are optimal without additional

information about how to prioritize the objectives

A utility function, ,is used to represent a user's preferences over

objectives

Utility function maps a vector reward to a scalar utility:

For MODeM, a utility function,

increasing:

is assumed to be monotonically

Linear utility function:

Each element w specifies how much one unit of value for the

corresponding objective contributes to the scalarised value

The elements of the weight vector are all positive real numbers and

sum to 1

• Examples of non-linear utility functions

• The product utility function

• seeks to make the objective values as balanced as
possible

• [3, 1] ? [2, 2]

• Examples of non-linear utility functions

• The product utility function

• seeks to make the objective values as balanced as
possible

• [3, 1] ? [2, 2]

• The sum of squares utility function

• tends to prioritise achieving higher values on a
single objective at the expense of other objectives

• [3, 1] ? [2, 2]

• Examples of non-linear utility functions

• The product utility function

• seeks to make the objective values as balanced as
possible

• u([3, 1]) < u([2, 2])

• The sum of squares utility function

• tends to prioritise achieving higher values on a
single objective at the expense of other objectives

• u([3, 1]) > u([2, 2])

• In single-objective RL problems, there exist a unique optimal value V, and
there can be multiple optimal policies 𝜋 that all have this value

• The goal is to learn one of these optimal policies

• In multi-objective settings there can now be multiple possibly optimal
value vectors 𝐕

• We need to reason about sets of possibly optimal value vectors and
policies when thinking about solutions to MORL problems

The most general set of solutions: the undominated set

The undominated set, U, is the subset of all possible policies Π and

associated value vectors for which there exists a possible utility function

u with a maximal scalarised value:

The undominated set may contain excess policies

We do not need to retain all policies to retain optimal utility

A set CS is a coverage set if it is a subset of U and if, for every u, it

contains a policy with maximal scalarised value:

If the utility function u is any monotonically increasing function, then the

Pareto Front (PF) is the undominated set:

where is the Pareto dominance relationship:

• The definition of Pareto dominance corresponds exactly to the definition of
monotonically increasing value functions

• Again, we can retain one of the policies that have the same value vector

• A set of policies whose value functions correspond to the PF is called a
Pareto Coverage Set (PCS)

Pareto dominance illustration,

maximising objectives

Solution A strongly dominates

solution C

Solution B weakly dominates

solution C

A and B are incomparable

Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., & Dekker, E. (2011). Empirical evaluation

methods for multiobjective reinforcement learning algorithms. Machine learning, 84, 51-80.

Black points indicate solutions

which form the Pareto front

Grey solutions are dominated by

at least one member of the Pareto

front

Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., & Dekker, E. (2011). Empirical evaluation

methods for multiobjective reinforcement learning algorithms. Machine learning, 84, 51-80.

The convex hull is the undominated set for non-decreasing linear utility

functions

The convex hull (CH) is the subset of Π for which there exists a 𝐰 (for a

linear u) for which the linearly scalarised value is maximal:

A set CCS(Π) is a convex coverage set if it is

a subset of CH(Π) and if for every 𝐰 it contains

a policy whose linearly scalarised value is

maximal:

van Doorna, J., Odijkac, D., Roijersab, D. M., & de Rijkea, M. Multi-

Objective Optimization for Information Retrieval.

CCS

PCS

Roijers, D. M., Whiteson, S.,& Oliehoek, F. A. (2015).Computing convex coverage sets for faster

multi-objective coordination. Journal of Artificial Intelligence Research, 52, 399-443.

Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., & Dekker, E. (2011).Empirical evaluation

methods for multiobjective reinforcement learning algorithms. Machine learning, 84, 51-80.

Pareto front containing a concave region,

indicated by the grey points

Fundamental limitation of linear scalarisation:

it cannot find policies which lie in non-

convex regions of the Pareto front

SOLUTION SETS

The choice of solution set is key to the

efficiency of the algorithms used to

solve multi- objective problems

www.ida.liu.se/~TDDC17

	Slide 1: TDDC17 LE11 HT2024 Machine Learning III
	Slide 2: Classes of Learning Problems
	Slide 3: Reinforcement Learning: Key Concepts
	Slide 4: Reinforcement Learning: Key Concepts
	Slide 5: Reinforcement Learning: Key Concepts
	Slide 6: Reinforcement Learning: Key Concepts
	Slide 7: Reinforcement Learning: Key Concepts
	Slide 8: Reinforcement Learning: Key Concepts
	Slide 9: Reinforcement Learning: Key Concepts
	Slide 10: Reinforcement Learning: Key Concepts
	Slide 11: Reinforcement Learning: Key Concepts
	Slide 12: Reinforcement Learning: Key Concepts
	Slide 13: A Reinforcement Learning Problem
	Slide 14: RL Value Function - Example
	Slide 15: Markov Decision Processes
	Slide 16: MDP Example
	Slide 17: Defining the Q-Function
	Slide 18: How to Take Actions Given a Q-Function
	Slide 19: The Q-Function
	Slide 20: The Q-Function
	Slide 21: Reinforcement Learning Approaches
	Slide 22: Reinforcement Learning Algorithms
	Slide 23: Reinforcement Learning Algorithms
	Slide 24: Q-Learning for Deterministic Worlds
	Slide 25: Q-Learning Example
	Slide 26: Q-Learning Continued
	Slide 27: Deep Q-Learning (DQN)
	Slide 28: Deep Q Networks (DQN): Training
	Slide 29: Deep Q Networks (DQN): Training
	Slide 30: Deep Q Networks (DQN): Training
	Slide 31: Deep Q Networks (DQN): Training
	Slide 32: Deep Q Network Summary
	Slide 33: DQN Atari Results
	Slide 34: DQN Atari Results
	Slide 35: Rainbow DQN
	Slide 36: Downsides of Q-Learning
	Slide 37: Reinforcement Learning Algorithms
	Slide 38: Deep Q Networks
	Slide 39: Policy Gradient (PG): Key Idea
	Slide 40: Discrete vs Continuous Action Spaces
	Slide 41: Discrete vs Continuous Action Spaces
	Slide 42: Policy Gradient (PG): Key Idea
	Slide 43: Training Policy Gradients: Case Study
	Slide 44: Training Policy Gradients
	Slide 45: Training Policy Gradients
	Slide 46: Training Policy Gradients
	Slide 47: Training Policy Gradients
	Slide 48: Training Policy Gradients
	Slide 49: REINFORCE
	Slide 50: Policy-Gradient Theorem
	Slide 51: REINFORCE
	Slide 52: AlphaGo Beats Top Human Player (2016)
	Slide 53: MuZero: Learning Dynamics for Planning (2020)
	Slide 54: Deep Reinforcement Learning Summary
	Slide 55: Reinforcement Learning Approaches
	Slide 56: Model-Based vs Model-Free RL
	Slide 57: Learning Policies vs Learning Transitions
	Slide 58: Learning vs Planning
	Slide 59: Model-Based RL
	Slide 60: Model-Based RL
	Slide 61: Dyna [Sutton]
	Slide 62: Example Model-Free RL
	Slide 63: Example Model-Based RL
	Slide 64: Sample Complexity
	Slide 65: Dreamer (Latent/Traj)
	Slide 66: Reinforcement Learning Approaches
	Slide 67: Model-Based vs Model-Free RL
	Slide 68: Actor-Critic RL
	Slide 69: Actor-Critic RL
	Slide 70: Advantage Variants
	Slide 71: A3C – Asynchronous Advantage Actor-Critic
	Slide 72: A3C – Asynchronous Advantage Actor-Critic
	Slide 73: Multi-Objective Reinforcement Learning
	Slide 74: Multi-Objective Reinforcement Learning (MORL)
	Slide 75: Objectives
	Slide 76: Self-Driving Car Objectives
	Slide 77: Reward Design
	Slide 78: Scalar Reward Design Process
	Slide 79: Scalar Reward Design Process
	Slide 80: Multi-Objective Reinforcement Learning
	Slide 81: Multi-Objective Reinforcement Learning
	Slide 82: Multi-Objective Reinforcement Learning
	Slide 83: Value Functions and Policies
	Slide 84: Deterministic vs Stochastic Policies
	Slide 85: Deterministic vs Stochastic Policies
	Slide 86: Deterministic vs Stochastic Policies
	Slide 87: Deterministic vs Stochastic Policies
	Slide 88: Value Functions and Policies
	Slide 89: Utility Functions in Multi-Object Decision Making (MODeM)
	Slide 90: Utility Functions
	Slide 91: Utility Functions
	Slide 92: Utility Functions
	Slide 93: Utility Functions
	Slide 94: Solution Sets
	Slide 95: Solution Sets – Undominated Set
	Slide 96: Solution Sets – Coverage Set
	Slide 97: Solution Sets – Pareto Front
	Slide 98: Solution Sets – Pareto Coverage Set
	Slide 99: Solution Sets – Pareto Front
	Slide 100: Solution Sets – Pareto Front
	Slide 101: Solution Sets – Convex Hull
	Slide 102: Solution Sets – Convex Coverage Set
	Slide 103: Solutions Sets – CCS vs PCS
	Slide 104: Solution Sets – Limitation of Linear U
	Slide 105: Solution Sets
	Slide 106: TDDC17 AI LE7 HT2024: Reinforcement learning Deep reinforcement learning Multi-objective reinforcement learning

