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Unconditional Conditional Probabilistic Inference

Discuss Feedback

post feedback and ask questions anonymously at

https://padlet.com/jendrikseipp/tddc17
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Unconditional Conditional Probabilistic Inference

Unconditional Probability

3/23



Unconditional Conditional Probabilistic Inference

Uncertainty Example I

Adam is in the pizzeria.

Today’s special offer I is to get a
random piece of the depicted pizza.

What are his chances to get a slice

with salami?

{ 9
20 = 0.45

without salami?

{ 11
20 = 0.55

with salami and broccoli?

{ 3
20 = 0.15

with salami or brocoli?

{ 14
20 = 0.7
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Unconditional Conditional Probabilistic Inference

Worlds and Sample Space

a world ω is one possible state of the agent’s
environment

often described as assignments to
(propositional or finite-domain) variables

e.g., ω1,1 or ω3,4 are worlds

the sample space Ω is the (finite) set of all
possible worlds

{ Ω = {ωx,y | 1 ≤ x ≤ 4 and 1 ≤ y ≤ 5}
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Unconditional Conditional Probabilistic Inference

Probability Model

a probability model associates probability
P(ω) to each ω ∈ Ω s.t.

0 ≤ P(ω) ≤ 1 for all ω ∈ Ω∑
ω∈Ω P(ω) = 1

each slice is picked with equal probability:

P(ω) = 1
20

for all ω ∈ Ω
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Unconditional Conditional Probabilistic Inference

Events

an event ϕ is a subset of Ω, e.g.:
ϕ = {ωx,y | 1 ≤ x ≤ 4 and 1 ≤ y ≤ 2}
we also describe ϕ verbally, e.g., as the
event that the slice “has onions on it”

probability of an event is the sum of
probabilities over its worlds

P(ϕ) =
∑

1≤x≤4

∑
1≤y≤2

P(ωx,y) =
8
20
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Unconditional Conditional Probabilistic Inference

Random Variables

a random variable X is a property of the world
about which we may be uncertain

formally: X : Ω ↦→ dom(X), where dom(X) is
the domain (also range) of X
by convention:

random variables use upper-case names
values use lower-case names (if possible)
dom(X) = {+x,−x} if X can be true (+x) or
false (−x)

examples:
O (for Onion) with dom(O) = {+o,−o}
O(ω1,1) = +o, O(ω2,3) = −o
NumTops with dom(NumTops) = {1, 2, 3}
NumTops(ω1,1) = 2, NumTops(ω2,3) = 3
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Unconditional Conditional Probabilistic Inference

(Probability) Distributions
How likely are the values of a random variable?

O P(O)
+o 0.4
-o 0.6

B P(B)
+b 0.4
-b 0.6

M P(M)
+m 0.6
-m 0.4

S P(S)
+s 0.45
-s 0.55

=
∑

ω∈Ω:S(ω )=+s P(ω)equivalent alternatives:

P(B = +b) = 0.4, P(B = −b) = 0.6

P(+b) = 0.4, P(−b) = 0.6

P(B) = ⟨0.4, 0.6⟩ (requires ordered domain)

∑
m∈dom(M) P(m) = 1

short:
∑
m P(m) = 1
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Unconditional Conditional Probabilistic Inference

Joint Distributions
How likely are all value combinations of a set of random variables?

S B P(S, B)
+s +b 0.15
+s -b 0.3
-s +b 0.25
-s -b 0.3

S O M P(S, O,M)
+s +o +m 0.0
+s +o -m 0.0
+s -o +m 0.15
+s -o -m 0.3
-s +o +m 0.4
-s +o -m 0.0
-s -o +m 0.05
-s -o -m 0.1

=
∑

ω∈Ω:S(ω )=+s and B(ω)=−b P(ω)

notation: P(−s, +o, +m) = 0.4
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Unconditional Conditional Probabilistic Inference

Full Joint Distribution

size with n variables and maximal do-
main size k?

{ O(kn)

too big even for this small example
{ omit 0.0 entries in the following (no solution for size problem!)

O M S B P(O,M, S, B)
+o +m +s +b 0.0
+o +m +s -b 0.0
+o +m -s +b 0.1
+o +m -s -b 0.3
+o -m +s +b 0.0
+o -m +s -b 0.0
+o -m -s +b 0.0
+o -m -s -b 0.0
-o +m +s +b 0.05
-o +m +s -b 0.1
-o +m -s +b 0.05
-o +m -s -b 0.0
-o -m +s +b 0.1
-o -m +s -b 0.2
-o -m -s +b 0.1
-o -m -s -b 0.0

O M S B P
+o +m -s +b 0.1
+o +m -s -b 0.3
-o +m +s +b 0.05
-o +m +s -b 0.1
-o +m -s +b 0.05
-o -m +s +b 0.1
-o -m +s -b 0.2
-o -m -s +b 0.1
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Unconditional Conditional Probabilistic Inference

Marginalization

full joint distribution “contains” all (joint) distributions

What if we don’t care about some variables?

retrieve by summing out irrelevant variables Y1, . . . , Ym:

P(X1, . . . , Xn) =
∑

y1,...,ym

P(X1, . . . , Xn, y1, . . . , ym)

this is called marginalization and yields marginal distribution
(a subtable where some variables have been eliminated)

O M S B P
+o +m -s +b 0.1
+o +m -s -b 0.3
-o +m +s +b 0.05
-o +m +s -b 0.1
-o +m -s +b 0.05
-o -m +s +b 0.1
-o -m +s -b 0.2
-o -m -s +b 0.1

O M S B P
+o +m -s +b 0.1
+o +m -s -b 0.3
-o +m +s +b 0.05
-o +m +s -b 0.1
-o +m -s +b 0.05
-o -m +s +b 0.1
-o -m +s -b 0.2
-o -m -s +b 0.1

O M S B P
+o +m -s +b 0.1
+o +m -s -b 0.3
-o +m +s +b 0.05
-o +m +s -b 0.1
-o +m -s +b 0.05
-o -m +s +b 0.1
-o -m +s -b 0.2
-o -m -s +b 0.1

S P
+s ?
-s ?

S P
+s 0.45
-s 0.55

S P
+s 0.45
-s 0.55

P(s) = ∑
o
∑
m
∑
b P(o,m, s, b)

S B P
+s +b ?
+s -b ?
-s +b ?
-s -b ?

S B P
+s +b 0.15
+s -b 0.3
-s +b 0.25
-s -b 0.3

P(s, b) = ∑
o
∑
m P(o,m, s, b)
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Unconditional Conditional Probabilistic Inference

Uncertainty Example I Revisited

O M S B P
+o +m -s +b 0.1
+o +m -s -b 0.3
-o +m +s +b 0.05
-o +m +s -b 0.1
-o +m -s +b 0.05
-o -m +s +b 0.1
-o -m +s -b 0.2
-o -m -s +b 0.1

Adam is in the pizzeria.

Today’s special offer I is to get a
random piece of the depicted pizza.

What are his chances to get a slice

with salami?{ 0.45

without salami?{ 0.55

with salami and broccoli?{ 0.15

with salami or broccoli?{ 0.7

{ full joint distribution sufficient for all (unconditional) queries
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Unconditional Conditional Probabilistic Inference

Conditional Probability
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Unconditional Conditional Probabilistic Inference

Uncertainty Example II

Adam is in the pizzeria and still undecided.

Special offer II is to name one topping and get a
random piece among those with the topping.

Which topping should he name to maximize the
probability to get salami and broccoli?

onions

{ 0
8

mushrooms

{ 1
12

salami

{ 1
3

broccoli

{ 3
8

15/23
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Unconditional Conditional Probabilistic Inference

Conditional Probabilities

P(x) is called prior probability of x because it assumes no
additional information
if we learn that variable Y has value y (i.e., we obtain evidence), our
belief on x changes

{ we can update to conditional probability P(x | y),
which is defined in terms of joint probabilities:

P(x | y) = P(x, y)
P(y)

does this match our intuition?

name mushrooms to get salami and broccoli:
P(+s, +b | +m) = 1

12

= 1/20
12/20 = P(+s,+b,+m)

P(+m) ✓

name broccoli to get salami and broccoli:
P(+s, +b | +b) = 3

8

= 3/20
8/20 = P(+s,+b,+b)

P(+b) ✓

{ full joint distribution sufficient for all (unconditional) queries
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Unconditional Conditional Probabilistic Inference

Conditional Distributions

: Normalization Trick

conditional distributions are a distribution over random variables given evidence

P(S, B)
S B P

+s +b 0.15
+s -b 0.3
-s +b 0.25
-s -b 0.3

P(S | +b)
S P

+s 3
8

-s 5
8

P(S | −b)
S P

+s 0.5
-s 0.5

aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
a

︸            
              

              
︷︷       

              
              

     ︸

P(S | B)

P(S, +b)
S B P

+s +b 0.15
-s +b 0.25

P(S,−b)
S B P

+s -b 0.3
-s -b 0.3

1.

1.

1. select entries matching evidence

2.

2.

2. normalize selected entries
(divide each entry by sum)

Why does this work? e.g., P(+s | +b) = P(+s,+b)
P(+b) = P(+s,+b)∑

s P(s,+b) =
0.15

0.15+0.25 = 3
8

{ write P(S | B) ∝ P(S, B)
or P(S | B) = αP(S, B) if
we plan to normalize later
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Unconditional Conditional Probabilistic Inference

Product and Chain Rule
two important rules that are often used can be derived:

definition of conditional probability:

P(x | y) = P(x, y)
P(y)

reorder to obtain product rule:

P(x, y) = P(x | y) · P(y)

recursive application yields chain rule:

P(x1, . . . , xn) = P(xn | x1, . . . , xn−1) · P(x1, . . . , xn−1)
= P(xn | x1, . . . , xn−1) · P(xn−1 | x1, . . . , xn−2) · P(x1, . . . , xn−2)
= P(xn | x1, . . . , xn−1) · P(xn−1 | x1, . . . , xn−2) · . . . · P(x2 | x1) · P(x1)

=
n∏
i=1

P(xi | x1, . . . , xi−1)
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Unconditional Conditional Probabilistic Inference

Probabilistic Inference
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Unconditional Conditional Probabilistic Inference

Probabilistic Inference

probabilistic inference: compute a desired probability from other
known probabilities (e.g., conditional from joint)
we usually compute conditional probabilities that
represent the agent’s belief given the evidence
probabilities change with new evidence,
i.e., the agent’s belief is updated

we consider three probabilistic inference methods:

using the full joint distribution

using Bayes’ rule

using Bayesian networks

probabilistic inference example:

Adam’s initial belief to get mushroom and
salami with special offer I is P(+m, +s) = 0.15

Adam learns that the used onions were bad and
cannot be sold{ P(+m, +s | −o) = 0.25

the neighbor table orders all remaining pieces with
broccoli{ P(+m, +s | −o,−b) = 1

3

. . .
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Unconditional Conditional Probabilistic Inference

Probabilistic Inference Using Full Joint Distribution
How can we answer a query from the full joint distribution?

O M S B P
+o +m -s +b 0.1
+o +m -s -b 0.3
-o +m +s +b 0.05
-o +m +s -b 0.1
-o +m -s +b 0.05
-o -m +s +b 0.1
-o -m +s -b 0.2
-o -m -s +b 0.1

O M S B P
+o +m -s +b 0.1
+o +m -s -b 0.3
-o +m +s +b 0.05
-o +m +s -b 0.1
-o +m -s +b 0.05

M S B P
+m -s +b 0.15
+m -s -b 0.3
+m +s +b 0.05
+m +s -b 0.1

S B P
-s +b 0.25
-s -b 0.5
+s +b 1

12
+s -b 1

6

given: full joint distribution P(O,M, S, B) and query P(S, B | m)

step 1: partition variables in query, evidence and hidden variables
step 2: select entries consistent with evidence
step 3: sum out hidden variables
step 4: normalize (e.g., P(+s, +b | +m) = P(+s,+b,+m)

P(+m) = 0.15
0.15+0.3+0.05+0.1 = 1

4 )
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step 4: normalize (e.g., P(+s, +b | +m) = P(+s,+b,+m)

P(+m) = 0.15
0.15+0.3+0.05+0.1 = 1

4 )
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Unconditional Conditional Probabilistic Inference

Bayes’ Rule

recall product rule:

P(x, y) = P(x | y) · P(y)

x and y are symmetrical in P(x, y):

P(x | y) · P(y) = P(x, y) = P(y | x) · P(x)

from this, we can derive Bayes’ rule (or Bayes’ theorem):

P(x | y) = P(y | x) · P(x)
P(y)

allows to compute conditional probability from its reverse

Why is this useful?

{ often hard to obtain one conditional while the reverse is simple
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Unconditional Conditional Probabilistic Inference

Probabilistic Inference With Bayes’ Rule
a typical use case for Bayes’ rule is medical diagnosis, where

P(illness | symptom) = P(symptom | illness) · P(illness)
P(symptom)

example

variables M (meningitis) and S (stiff neck)

(statistical) evidence:

1 in 10000 patients suffers from meningitis{ P(+m) = 0.0001
80% of meningitis patients suffer from a stiff neck
{ P(+s | +m) = 0.8
1 in 100 patients have a stiff neck but no meningitis
{ P(+s | −m) = 0.01

P(+m | +s) = P(+s |+m)P(+m)
P(+s) = P(+s |+m)P(+m)

P(+s |+m)P(+m)+P(+s |−m)P(−m) ≈ 0.008

{ only 0.8% of patients with stiff neck have meningitis
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