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Unconditional
08000000000

Uncertainty Example |

@ e @&

Adam is in the pizzeria.

Co O O Al ~ 8 Today's special offer | is to get a

< | random piece of the depicted pizza.
~ - ~ What are his chances to get a slice
g ‘ ! m with salami?

m without salami?

m with salami and broccoli?

m with salami or brocoli?

4/23



Unconditional
08000000000

Uncertainty Example |

Pl &8 @ Adam is in the pizzeria.
@ Y (@ ([0 %Y e Today's special offer I is to get a
o o random piece of the depicted pizza.
oy ~ ~ What are his chances to get a slice
€ 1@ @ ® with salami? ~ = = 0.45
m without salami?
) <@ m with salami and broccoli?
m with salami or brocoli?
T 1@
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Unconditional
08000000000

Uncertainty Example |

Adam is in the pizzeria.

Today's special offer I is to get a
random piece of the depicted pizza.

What are his chances to get a slice

m with salami? ~» % = 0.45

m without salami? ~» % =0.55

m with salami and broccoli?

m with salami or brocoli?

423



Unconditional
08000000000

vilistic Inference

O lOR SO O

Ve Ao Ao e

« |«

. 20 o e

c |z @ ®
®

Adam is in the pizzeria.

Today's special offer I is to get a
random piece of the depicted pizza.

What are his chances to get a slice

m with salami? ~» = = 0.45

20
m without salami? ~» % =0.55
m with salami and broccoli? ~ = = 0.15

20
m with salami or brocoli?
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Unconditional
08000000000

Uncertainty Example |

Adam is in the pizzeria.

Today's special offer I is to get a
random piece of the depicted pizza.

What are his chances to get a slice

m with salami? ~» = = 0.45

20

m without salami? ~» % =0.55

m with salami and broccoli? ~» % =0.15
m with salami or brocoli? ~ % = 0.7

20

423



Unconditional
00@00000000

Worlds and Sample Space

2@ @0 @AW

m a world w is one possible state of the agent’s

environment 280 R0 R0 R

m often described as assignments to g |q
(propositional or finite-domain) variables ~ o] -
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Unconditional
00@00000000

Worlds and Sample Space

m a world w is one possible state of the agent’s
environment

m often described as assignments to
(propositional or finite-domain) variables

e.g., wy or ws, are worlds
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Unconditional ¢ ona >robabilistic Inference

[e]e] lelelelele]e]ele]

Worlds and Sample Space

m a world w is one possible state of the agent’s : - 2
environment

m often described as assignments to « |«
(propositional or finite-domain) variables

~
P
>)
&
~

L4

5
4

e.g., wy or ws, are worlds < < @ @
m the sample space Q is the (finite) set of all |« @ @ @

possible worlds

~ Q={wy |1<x<4tand1<y <5} « e e @
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Unconditional
00080000000

Probability Model

D @® @ °
m a probability model associates probability
P(w) to each w € Q sit. ORI CORAIC
B 0<P(w)<1forallw € Q L L
B Yo P(w) =1 A~ A~
g 9@
each slice is picked with equal probability:
g 4@
1
P(w) = — forallw € Q
(@) 20 ¢ 1 @
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Unconditional
00008000000

Events

m an event ¢ is a subset of Q, e.g.:
Bp={wy |1<x<4and1<y<2}
m we also describe ¢ verbally, e.g., as the
event that the slice “has onions on it”

m probability of an event is the sum of
probabilities over its worlds

8
Pp)= D, D Plowy) =5
1<x<4 1<y <2
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Unconditional >robabilistic Inference

00000800000

Random Variables

m arandom variable X is a property of the world
about which we may be uncertain

. tay L Y (» Y L YV
m formally: X : Q — dom(X), where dom(X) is
the domain (also range) of X OO IO o
m by convention: g |q
m random variables use upper-case names ~ ~ ~ ~
m values use lower-case names (if possible) Co ® o
m dom(X) = {+x, —x} if X can be true (+x) or
false (—x)
f 9@
g 19 @
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Unconditional >robabilistic Inference

00000800000

Random Variables

m arandom variable X is a property of the world
about which we may be uncertain

X © %) @ @) 0 Q) 0 N
m formally: X : Q — dom(X), where dom(X) is
the domain (also range) of X 920 20 R DR
m by convention: g |q
m random variables use upper-case names ~ ~ ~ ~
m values use lower-case names (if possible) < @ ® o
m dom(X) = {+x, —x} if X can be true (+x) or
false (—x)
f 9@
m examples:
® O (for Onion) with dom(0) = {+o0, —o0} « 1 @

O(w11) = +0, 0(wy3) = —0
® NumTops with dom(NumTops) = {1,2,3}
NumTops(wy,1) = 2, NumTops(w;3) = 3
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Unconditional
00000080000

(Probability) Distributions

How likely are the values of a random variable?

0 | P(0) CRSIOR S IORA O M | P(M)
+0 | 04 +m 0.6
-0 0.6 P @ S0 @@ -m 0.4
T |1
o @
c® |
B | P(B)
+b | 04
-b| 06
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Unconditional
00000080000

(Probability) Distributions

How likely are the values of a random variable?

0 | P(0) "a0 @0 &6 M | P(M)
+0 0.4 +m 0.6
-0 0.6 CRAC A RONANC -m 04
«
f ©1@ @
B | P(B) T |t® s | P(s)
+b | 04 +s | (0.45)
-b | 06 € 1 @ s | o055

= ZwEQ:S(w)=+s P(w)
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Unconditional
00000080000

(Probability) Distributions

How likely are the values of a random variable?

0 | P(0) 9 ao &0 &6 M | P(M)
+0 0.4 +m 0.6
-0 0.6 CRAJORARCORANC -m 0.4
q |q
g 9@ @
B | P(B) T |2 @ s | P(S)
+b | 04 +s | (0.45)
-b | 06 < 1@ -s | 0.55
equivalent alternatives: = ZweQ:S(w)=+s P(w)

m P(B=+b) =0.4,P(B=—b) =0.6
m P(+b) = 0.4, P(—b) = 0.6
m P(B) = (0.4,0.6) (requires ordered domain) 9/23



Unconditional
00000080000

(Probability) Distributions

How likely are the values of a random variable?

0 | P(0) v @0 Ao &s M | P(M)
+0 0.4 +m
-0 0.6 9 @0 &0 a @ -m @
q |q
~ ~ ~ Zmedom(M) P(m) =1
g 1@ @
B | P(B) T |2 @ s | P(S)
+b | 04 +s | (0.45)
-b | 06 < 1@ -s | 0.55
equivalent alternatives: = ZweQ:S(w)=+s P(w)

m P(B=+b) =0.4,P(B=—b) =0.6
m P(+b) = 0.4, P(—b) = 0.6
m P(B) = (0.4,0.6) (requires ordered domain) 9/23



Unconditional o) ona >robabilistic Inference

00000080000

(Probability) Distributions

How likely are the values of a random variable?

0 | P(O) 9 a0 A0 &0k M | P(M)
+0 0.4 +m
-0 0.6 a0 @0 @0@ -m @
q |19
~ ~ ~ 0 Zmedom(M) P(m) =1
g |18 @ @ short: 3, P(m) =1
B | P(B) 1T 2@ @ S | P(S)
b | 04 +s | (045)
b| 06 € 1 @ ® -s | 0.55
equivalent alternatives: = Zweg:s(w):+s P(w)

m P(B=+b) =0.4,P(B=-b) =0.6
m P(+b) = 0.4,P(—b) = 0.6
m P(B) = {0.4,0.6) (requires ordered domain) 9/23



Joint Distributions

How likely are all value combinations of a set of random variables?

s | B| P(s,B)
+s | +b 0.15
+s | -b 0.3 ; 7
s | +b 025 9w &0 o e
-s | -b 0.3

9 40 &0 &0
s| o] m]| P(s,0 M) q |«
+S | +0 | +m 0.0 ~ ~ ~
+ | 40 | -m 0.0 < < @ @
+S | -0 | +m 0.15
+S | -0 | -m 0.3

<
=S | +0 | +m 0.4 “® d
-s | +0 | -m 0.0
-s | -0 | +m 0.05 < “9 @
-s | -0 | -m 0.1
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Joint Distributions

How likely are all value combinations of a set of random variables?

S B | P(S,B) = ZwEQ:S(w)=+s and B(w)=-b P(w)
+s | +b 015
+s | -b
) Pwe @O @@
s | +b 0.25
-s | -b 0.3

9 &9 &0 &8
s| o| m| P(s0,m q |9
+S | +0 | +m 0.0 CaY o ~y
+S | +0 | -m 0.0 « < @ @
+S | -0 | +m 015
+s | -0 | -m 0.3

«
=S | +0 | +m 0.4 1@ ®
-s | +0 | -m 0.0
-s | -0 | +m 0.05 I I e
-S| -0 | -m 01
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Unconditional

00000008000

Joint Distributions

How likely are all value combinations of a set of random variables?

s| B| P(s,B) = YweQ:s(w)=+s and B(w)=—b P(®)

+s | +b 0.15

w5 | b

s [+b | 025 SO C AR R

-s | -b 0.3

040 o e e

s| o| m]| p(s,0,m) q |1

+S +0 +m 0.0 fa) ~y ~y ay

+S | +0 | -m 0.0 « < @ ® @

+S | -0 | +m 015

+S | -0 | -m 0.3 « @
SR — e

=S | +0 | -m 0.0

-s | -0 | +m 0.05 I I o9

-s | -0 | -m 01

notation: P(—s, +0,+m) = 0.4
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Unconditional

00000000800

Full Joint Distribution

Ao e oo &
a ~ ~~ oy

0 M S B | P(O,M,S,B)
+0 | +m | +s | +b 0.0
+0 | +m | +s | -b 0.0
+0 | +m | -s | +b 0.1
+0 | +m | -s | -b 0.3
+0 | -m | +s | +b 0.0
+0 | -m | +s | -b 0.0
+0 | -m | -s | +b 0.0
+0 | -m | -s | -b 0.0
-0 | +m | +s | +b 0.05
-0 | +m | +s | -b 0.1
-0 | +m | -s | +b 0.05
0| +m | -s | -b 0.0
-0 | -m | +s | +b 0.1
-0 | -m | +s | -b 0.2
-0 | -m | -s | +b 0.1
0| -m | -s | -b 0.0
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Unconditional

00000000800

Full Joint Distribution

o| M| s| B| POM,S,B)

size with nvariables and maximaldo- +o | +m | +s | +b 0.0
main size k? +0 | +m | +s | -b 0.0
+0 | +m | -s | +b 0.1

9 Yo WO & W +0 | +m | -s | -b 0.3
+0 | -m | +s | +b 0.0

9 W0 &40 &0 @ +0 | -m | +s | -b 0.0
q g +0 | -m | -s | +b 0.0
~ ~ ~ ~ +0 | -m | -s | -b 0.0

o <@ 6 @ -0 | +m | +s | +b 0.05
-0 | +m | +s | -b 0.1

-0 | +m | -s | +b 0.05

< @ ® @ 0| +m | -s | -b 0.0
-0 | -m | +s | +b 0.1

! <@ @ -0 | -m | +s | -b 0.2
-0 | -m | -s | +b 0.1

0| -m | -s | -b 0.0
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Unconditional

00000000800

Full Joint Distribution

o| M| s| B| POM,S,B)

size with nvariables and maximaldo- +o | +m | +s | +b 0.0
main size k? ~» O(R") +0 | +m | +s | -b 0.0
+0 | +m | -s | +b 0.1

9 Yo WO & W +0 | +m | -s | -b 0.3
+0 | -m | +s | +b 0.0

9 W0 &40 &0 @ +0 | -m | +s | -b 0.0
q g +0 | -m | -s | +b 0.0
~ ~ ~ ~ +0 | -m | -s | -b 0.0

o <@ 6 @ -0 | +m | +s | +b 0.05
-0 | +m | +s | -b 0.1

-0 | +m | -s | +b 0.05

< @ ® @ 0| +m | -s | -b 0.0
-0 | -m | +s | +b 0.1

! <@ @ -0 | -m | +s | -b 0.2
-0 | -m | -s | +b 0.1

0| -m | -s | -b 0.0
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Unconditional
00000000800

Full Joint Distribution

o| M| s| B| P(O,M,S,B)
too big even for this small example  +o | +m | +s | +b 0.0
+0 | +m | +s | -b 0.0
+0 | +m | -s | +b 0.1
@0 @0 & 0e +0 | +m | -s | -b 0.3
+0 | -m | +s | +b 0.0
P89 a9 R0@ +0 | -m | +s | -b 0.0
q (q +0 | -m | -s | +b 0.0
) ~ o +0 | -m | -s | -b 0.0
7 % -0 | +m | +s | +b 0.05
-0 | +m | +s | -b 0.1
-0 | +m | -s | +b 0.05
0| +m | -s| -b 0.0
-0 | -m | +s | +b 0.1
-0 | -m | +s | -b 0.2
-0 | -m | -s | +b 0.1
0| -m | -s | -b 0.0 11/23




Unconditional
00000000800

Full Joint Distribution

too big even for this small example

~> omit 0.0 entries in the following (no solution for size problem!)

9 @90 @0 W0
0 M S B P
CF AOE A O~ C +0 | +m | -s | +b 0.1
o< < +0 | +m | -s | -b 0.3
-~ -~ ~ -0 | +m | +s | +b | 0.05
- _ _ -0 | +m | +s | -b 0.1
< 1@ @ -0 | +m | -s | +b | 0.05
-0 | -m | +s | +b 0.1
< 1@ @ o | -m|+ | -b| 02
0| -m| -s | +b 0.1
€« 1@
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Unconditional

00000000080

Marginalization

full joint distribution “contains” all (joint) distributions

m What if we don't care about some variables?

retrieve by summing out irrelevant variables Y4, . .., Ym:

POG . Xa) = D Pty X Vi Yim)
Y15es¥m

m this is called marginalization and yields marginal distribution
(a subtable where some variables have been eliminated)
0 M S B P
+0 | +m | -s | +b 0.1
+0 | +m | -s | -b 0.3

S P -0 | +m | +s | +b | 0.05
+S ? -0 | +m | +s | -b 0.1
-s ? -0 | +m | -s | +b | 0.05

-0 | -m | +s | +b 0.1
0| -m | +s | -b 0.2
0| -m | -s | +b 0.1
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Unconditional

00000000080

Marginalization

full joint distribution “contains” all (joint) distributions

m What if we don't care about some variables?

retrieve by summing out irrelevant variables Y4, . .., Ym:

POG . Xa) = D Pty X Vi Yim)
Y15es¥m

m this is called marginalization and yields marginal distribution
(a subtable where some variables have been eliminated)
0 M S B P
+0 | +m | -s | +b 0.1
+0 | +m | -s | -b 0.3

S P -0 | +m | +s | +b | 0.05
+S | 0.45 -0 | +m | +s | -b 0.1
-s | 0.55 -0 | +m | -s | +b | 0.05

-0 | -m | +s | +b 0.1
-0 | -m | +s | -b 0.2
0| -m | -s | +b 0.1
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Unconditional

00000000080

Marginalization

full joint distribution “contains” all (joint) distributions

m What if we don't care about some variables?

retrieve by summing out irrelevant variables Y4, . .., Ym:

POG . Xa) = D Pty X Vi Yim)
Y15es¥m

m this is called marginalization and yields marginal distribution
(a subtable where some variables have been eliminated)

0 M S B P
+0 | +m | -s | +b 0.1

+0 | +m | -s | -b 0.3 S B P

S P -0 | +m | +s | +b | 0.05 +s | +b ?
+s | 0.45 -0 | +m | +s | -b 0.1 +s | -b ?
-s | 0.55 -0 | +m | -s | +b | 0.05 -s | +b ?
-0 | -m | +s | +b 0.1 -s | -b ?

0| -m | +s | -b 0.2
0| -m | -s | +b 0.1
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Unconditional

00000000080

Marginalization

m full joint distribution “contains” all (joint) distributions

m What if we don't care about some variables?

m retrieve by summing out irrelevant variables Y4, . . .

,Ym:

P(X17--~9Xn)= Z P(X1,---,Xn,Y1,--~st)

Y15es¥m

m this is called marginalization and yields marginal distribution
(a subtable where some variables have been eliminated)

0.45
0.55

0 M S B P
+0 | +m -s | +b 0.1
+0 | +m | -s | -b 0.3

-0 | sm | s | +b | 005
-0 | +m | +s | -b 0.1
-0 | +m | -s | +b | 0.05

o | -m | 4s [ +b | 01
-0 | -m | +s | -b 0.2
-0 | -m | -s | +b 0.1
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Unconditional
00000000008

Uncertainty Example | Revisited

@0 e @ oM

Adam is in the pizzeria.

CR O A CE AN Today’s special offer | is to get a

< < random piece of the depicted pizza.

~ , -~ What are his chances to get a slice

® with salami? ~» 0.45
®m without salami? ~» 0.55
m with salami and broccoli? ~» 0.15

m with salami or broccoli? ~ 0.7
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Unconditional

Probabilistic Inference

000000000 0e

Uncertainty Example | Revisited

0 M S B P
+0 | +m | -s | +b 0.1
+0 | +m | -s | -b 0.3
-0 | +m | +s | +b | 0.05
-0 | +m | +s | -b 0.1
-0 | +m | -s | +b | 0.05
-0 | -m | +s | +b 0.1
-0 | -m | +s | -b 0.2
0| -m | -s | +b 0.1

Adam is in the pizzeria.

Today's special offer | is to get a
random piece of the depicted pizza.

What are his chances to get a slice

® with salami? ~» 0.45
® without salami? ~» 0.55
m with salami and broccoli? ~» 0.15

m with salami or broccoli? ~ 0.7

~> full joint distribution sufficient for all (unconditional) queries

13/23



Conditional Probability
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Conditional >robabilistic Inference

O®000

(. ~lC ~|C ~|c ~ | Adamisin the pizzeria and still undecided.

Special offer Il is to name one topping and get a
2 ® . - | random piece among those with the topping.

Which topping should he name to maximize the
probability to get salami and broccoli?

m onions

m salami

f‘_\
@
® mushrooms
4 2@ @ @
@

m broccoli

15/23



Conditional Probabilistic Inference

O®000 ) ( )¢

Uncertainty Example I

C =l ~|C =~ ~ | Adamisinthe pizzeria and still undecided.
Special offer Il is to name one topping and get a
- 2L oL 20 2 andom piece among those with the topping.
4 4 = Which topping should he name to maximize the
- St “| = probability to get salami and broccoli?
c 1@ @ o
® onions ~» ¢
< T @ @ ® mushrooms
m salami
g |1 @ @ m broccoli

15/23



Conditional >robabilistic Inference

O®000

Uncertainty Example I

(. ~lC ~|C ~|c ~ | Adamisin the pizzeria and still undecided.

Special offer Il is to name one topping and get a
C - ~ | random piece among those with the topping.

Which topping should he name to maximize the
probability to get salami and broccoli?

~
®)
N
¢
-
4
-
)

g |9 g @ ] .
= onions ~> 2

« |a @ @ ® mushrooms ~»> =
m salami

g |1 @ @ m broccoli

15/23



Conditional
0@000

Uncertainty Example I

Adam is in the pizzeria and still undecided.

Special offer Il is to name one topping and get a
random piece among those with the topping.

Which topping should he name to maximize the
probability to get salami and broccoli?

®m onions ~» g
® mushrooms ~»> =
m salami~ %

m broccoli

15/23



Conditional
0@000

Uncertainty Example I

Adam is in the pizzeria and still undecided.

Special offer Il is to name one topping and get a
random piece among those with the topping.

Which topping should he name to maximize the
probability to get salami and broccoli?

® onions ~» g

® mushrooms ~»> =
= salami~> 1
m broccoli ~» %

15/23



Conditional

[e]e] lele]

Conditional Probabilities

m P(x) is called prior probability of x because it assumes no
additional information
m if we learn that variable Y has value y (i.e., we obtain evidence), our
belief on x changes
~> we can update to conditional probability P(x | y),
which is defined in terms of joint probabilities:

Plx ) =

16/23



[e]e] lele]

Conditional >robabilistic Inference

Conditional Probabilities

m P(x) is called prior probability of x because it assumes no
additional information

m if we learn that variable Y has value y (i.e., we obtain evidence), our
belief on x changes

~> we can update to conditional probability P(x | y),
which is defined in terms of joint probabilities:

P(x,
P(x|y) = (x9) OF o)o8 oo Ol
P(y)
does this match our intuition? 920 o aoe
® name mushrooms to get salami and broccoli: T |t
P(+s,+b | +m) = & $ & @ @
( +m) = 5 e 2@ @ @
T 9@ @ @
f 10 & @

16/23



[e]e] lele]

Conditional >robabilistic Inference

Conditional Probabilities

m P(x) is called prior probability of x because it assumes no
additional information

m if we learn that variable Y has value y (i.e., we obtain evidence), our
belief on x changes

~> we can update to conditional probability P(x | y),
which is defined in terms of joint probabilities:

P(x,

p(x|y) = P& 980 50 &0

P(y)
does this match our intuition? 920 o aoe

® name mushrooms to get /salami a(nd broc)coli: T |t

_ 1 _ 1/20 _ P(+s,+b,+m fa) ~ ~ fa)
P(+S,+b|+m)—ﬁ—m—wl « <@ ® ®
T 9@ @ @
f 10 & @

16/23



[e]e] lele]

Conditional robabilistic Inference

Conditional Probabilities

m P(x) is called prior probability of x because it assumes no
additional information

m if we learn that variable Y has value y (i.e., we obtain evidence), our
belief on x changes

~> we can update to conditional probability P(x | y),
which is defined in terms of joint probabilities:

P(x,
P(x|y) = (x.y) 9 @e e &ea
P(y)
does this match our intuition? @9 20 &0&
® name mushrooms to get /salami a(nd broc)coli: T |t
_ 1 _ 1/20 _ P(+s,+b,+m fa) ~y ~ ‘a)
P(+S,+b|+m)—ﬁ—m—wl < PP P ®
® name broccoli to get salami and broccoli:
_3
P(+s,+b | +b) = 3 9 ©f@ @ @
f 10 & @

16/23



[e]e] lele]

Conditional robabilistic Inference

Conditional Probabilities

m P(x) is called prior probability of x because it assumes no
additional information

m if we learn that variable Y has value y (i.e., we obtain evidence), our
belief on x changes

~> we can update to conditional probability P(x | y),
which is defined in terms of joint probabilities:

P(x,
P(x|y) = () 9&0 @0 @0%
P(y)
does this match our intuition? @9 20 &0&
® name mushrooms to get /salami a(nd broc)coli: T |t
_ 1 _ 1/20 _ P(+s,+b,+m fa) ~y ~ ‘a)
P(+S,+b|+m)—ﬁ—m—wl < PP P ®
® name broccoli to get salami and broccoli:
3/20 _ P(+sq4btb
P(+s,+b|+b)=§=8ﬁ=%/ T «@ @ @
f 10 & @

16/23



Conditional >robabilistic Inference

[e]e] lele]

Conditional Probabilities

m P(x) is called prior probability of x because it assumes no
additional information

m if we learn that variable Y has value y (i.e., we obtain evidence), our
belief on x changes

~> we can update to conditional probability P(x | y),
which is defined in terms of joint probabilities:

P(x,
(x| y) = PO PRy
P(y)
does this match our intuition? OO SO C
® name mushrooms to get /salami a(nd broc)coli: T |t
_ 1 _ 1/20 _ P(+s,+b,+m oy fa) Y ‘o’
P+s,+b | +m) = 5§ = 5% = ~pim— ¥ c =0 ® @
® name broccoli to get salami and broccoli:
3/20 _ P(+s+btb
P(+s,+b | +b) = 2 = 320 = Pl / c a9 @ @
f 10 & @

~> full joint distribution sufficient for all {ureenditionat} queries
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Conditional Distributions
conditional distributions are a distribution over random variables given evidence

P(S | +b)
S P
P(S,B) s :
s| B P s | 3
+s | +b | 015
ws| b | 03 P(s | B)
-s | +b | 0.25 P(S | —b)
-s | -b 0.3 S p
+s | 0.5
s | 0.5
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Conditional robabilistic Inference

Conditional Distributions: Normalization Trick
conditional distributions are a distribution over random variables given evidence

P(S, +b)
S B P
A. +s | +b | 0.15 P(S | +b)
-s | +b | 0.25 S p
. . . 3
P(s, B) 1. select entries matching evidence +S H
s B] P s | 2
+s | +b | 015
ws | b | 03 P(STB)
-S +b 0.25 P(S | —b)
-s | -b 0.3 S p
P(S, —b) +s | 0.5
1 S B P -S 0.5
+s | -b | 0.3
s | -b |03
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Conditional >robabilistic Inference

Conditional Distributions: Normalization Trick
conditional distributions are a distribution over random variables given evidence

P(S,+b)
S B P
A +s | +b | 0.15 2 P(S | +b)
-s | +b | 0.25 S p
. . . 3
P(S, B) 1. select entries matching evidence +S 3
s| B p 2. normalize selected entries -s g
+s | +b | 015 (divide each entry by sum)
+s | -b| 03 P(s | B)
-S +b 0.25 P(S | —b)
-s | -b 0.3 S b
P(S’ _b) *S 0.5
A S B P v -S 0.5
+s | -b | 0.3
s | -b |03
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Conditional >robabilistic Inference

Conditional Distributions: Normalization Trick
conditional distributions are a distribution over random variables given evidence

P(S, +b)
S B P
A +s | +b | 0.15 2 P(S | +b)
-S +b 0.25 S p
. . . 3
P(s, B) 1. select entries matching evidence +S H
s| B p 2. normalize selected entries -s g
+s | +b | 015 (divide each entry by sum)
+s | -b 0.3 P(S | B)
-s | +b | 0.25 P(S | —b)
-s | -b 0.3 S p
P(S, —b) +s | 05
A S B P v -S 0.5
+s | -b | 0.3
-s | -b | 0.3
P(+s,#4b) __ P(+s,+b) _  0.15 3

Why does this work? e.g., P(+s | +b) =

P(+b) S, P(s+b) _ 015+025 _ 8  17/23
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Conditional >robabilistic Inference

Conditional Distributions: Normalization Trick
conditional distributions are a distribution over random variables given evidence

P(S, +b)
s| B [2
/’ +s | +b | 0.15 \ P(S | +b)
-s | +b | 0.25 S p
P(s, B) 1. select entries matching evidence +S %
s| B p 2. normalize selected entries -s g
+s | +b | 015 (d|v.|de each entry by sum) P(s | B)
+s | -b | 03 ~> write P(S | B) « P(S, B)
S | +b | 025 or P(S | B) = aP(s, B) if P(S | —b)
S| b 03 we plan to normalize later S P
P(S, —b) +s | 05
\ s| B P / s | 05
+s | -b | 0.3
s | -b |03
P(+s+b) _ P(+s+b) _ _ 0.1 3

Why does this work? e.g., P(+s | +b) =

P(+b) S, P(s+b) _ 015+025 _ 8  17/23
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Product and Chain Rule

two important rules that are often used can be derived:

m definition of conditional probability:

pix| ) = S

m reorder to obtain product rule:

P(x,y) = P(x | y) - P(y)
m recursive application yields chain rule:

P(x1,...,%n) = P(Xn | X1, ..., Xn—1) - P(Xq, ..., Xn—1)
=P(xn | X1, .. s Xn=1) - P(Xn=1 | X1, . . s Xn=2) - P(X1, . . ., Xn—2)

=P(xn | X1, .. Xn=1) - P(Xnoq | X4, .o aXn=2) - oo - P(Xa | X1) - P(xq)
n

=[ ]G 1x.xice)
i=1
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Probabilistic Inference

m probabilistic inference: compute a desired probability from other
known probabilities (e.g., conditional from joint)

m we usually compute conditional probabilities that
represent the agent’s belief given the evidence

m probabilities change with new evidence,
i.e., the agent’s belief is updated
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Probabilistic Inference

m probabilistic inference: compute a desired probability from other
known probabilities (e.g., conditional from joint)

m we usually compute conditional probabilities that
represent the agent’s belief given the evidence

m probabilities change with new evidence,
i.e., the agent’s belief is updated

probabilistic inference example:

m Adam’s initial belief to get mushroom and
salami with special offer I is P(+m, +s) = 0.15
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Probabilistic Inference

m probabilistic inference: compute a desired probability from other
known probabilities (e.g., conditional from joint)

m we usually compute conditional probabilities that
represent the agent’s belief given the evidence

m probabilities change with new evidence,
i.e., the agent’s belief is updated

probabilistic inference example: C

0
=
0
=
0
=
0

m Adam’s initial belief to get mushroom and
salami with special offer I is P(+m, +s) = 0.15

m Adam learns that the used onions were bad and
cannot be sold ~» P(+m, +s | —0) = 0.25
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Probabilistic Inference

m probabilistic inference: compute a desired probability from other
known probabilities (e.g., conditional from joint)

m we usually compute conditional probabilities that
represent the agent’s belief given the evidence

m probabilities change with new evidence,
i.e., the agent’s belief is updated

probabilistic inference example:

m Adam’s initial belief to get mushroom and
salami with special offer I is P(+m, +s) = 0.15

m Adam learns that the used onions were bad and
cannot be sold ~» P(+m, +s | —0) = 0.25

m the neighbor table orders all remaining pieces with
broccoli ~> P(+m,+s | —o0,—b) = %




Probabilistic Inference
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Probabilistic Inference

m probabilistic inference: compute a desired probability from other
known probabilities (e.g., conditional from joint)

m we usually compute conditional probabilities that
represent the agent’s belief given the evidence

m probabilities change with new evidence,
i.e., the agent’s belief is updated

we consider three probabilistic inference methods:
m using the full joint distribution
B using Bayes' rule

B using Bayesian networks
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Probabilistic Inference Using Full Joint Distribution

How can we answer a query from the full joint distribution?

0] M S B P
+0 | +m | -s | +b 0.1
+0 | +m | -s | -b 0.3

-0 | +m | +s | +b | 0.05

-0 | +m | +s | -b 0.1

-0 | +m | -s | +b | 0.05

-0 | -m | +s | +b 0.1

-0 | -m | +s | -b 0.2

-0 | -m | -s | +b 0.1

m given: full joint distribution P(0, M, S, B) and query P(S, B | m)
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Probabilistic Inference Using Full Joint Distribution

How can we answer a query from the full joint distribution?

0} M S B P
+0 | +m | -s | +b 0.1
+0 | +m | -s | -b 0.3

-0 | +m | +s | +b | 0.05

-0 | +m | +s | -b 0.1

-0 | +m | -s | +b | 0.05

-0 | -m | +s | +b 0.1

-0 | -m | +s | -b 0.2

-0 | -m | -s | +b 0.1

m given: full joint distribution P(0, M, S, B) and query P(S, B | m)
m step 1: partition variables in query, evidence and hidden variables
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Probabilistic Inference Using Full Joint Distribution

How can we answer a query from the full joint distribution?

0} M S B P 0 M S B P
+0 | +m | -s | +b 0.1 +0 | *m | -s | +b 01
+0 | +m | -s | -b 0.3 +0 | +m | -s | -b 0.3
-0 | +m | +s | +b | 0.05 -0 | +m | +s | +b | 0.05
-0 | +m | +s | -b 0.1 -0 | +m | +s | -b 01
-0 | +m | -s | +b | 0.05 -0 | +m | -s | +b | 0.05
-0 | -m | +s | +b 0.1
-0 | -m | +s | -b 0.2
-0 | -m | -s | +b 0.1

m given: full joint distribution P(0, M, S, B) and query P(S, B | m)
m step 1: partition variables in query, evidence and hidden variables
m step 2: select entries consistent with evidence
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Probabilistic Inference
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Probabilistic Inference Using Full Joint Distribution

How can we answer a query from the full joint distribution?

oO| M| S| B P oO| M| S| B p
+0 | *m | -s | +b 01 +0 | +m | -s | +b 0.1
+0 | +m | -s | -b 0.3 +0 | *m | s | -b | 0.3
-0 | *m | +s | +b | 0.05 -0 | *m | +s | +b | 0.05
0 | +m | +s | -b 01 -0 | *m | +s | -b 01
-0 | *m | -s | +b | 0.05 -0 | +m | -s | +b | 0.05
-0 | -m | +s | +b 0.1
0| -m|+s | -b 0.2 M]S| B P
o | -m| -s | +b 01 +m | -s | +b | 015

+m | -s | -b 0.3
+m | +s | +b | 0.05
+m | +s | -b 01

m given: full joint distribution P(0, M, S, B) and query P(S, B | m)

m step 1: partition variables in query, evidence and hidden variables
m step 2: select entries consistent with evidence

m step 3: sum out hidden variables
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Probabilistic Inference Using Full Joint Distribution

How can we answer a query from the full joint distribution?

0} M S B P 0 M S B P

+0 | +m | -s | +b 0.1 +0 | *m | -s | +b 0.1

+0 | +m | -s | -b 0.3 +0 | +m | -s | -b 0.3

-0 | +m | +s | +b | 0.05 -0 | +m | +s | +b | 0.05

-0 | +m | +s | -b 0.1 -0 | +m | +s | -b 0.1

-0 | +m | -s | +b | 0.05 -0 | +m | -s | +b | 0.05

-0 | -m | +s | +b 0.1

-0 | -m | +s | -b 0.2 M S B P ° 5 P

o | -m| -s| +b 011 +m | -s | +b | 015 -s | +b | 0.25
+m | -s | -b 0.3 -s | -b 0.5
+m | +s | +b | 0.05 +s | +b %
+m | +s | -b 01 +s | -b %

given: full joint distribution P(0, M, S, B) and query P(S, B | m)
step 1: partition variables in query, evidence and hidden variables
step 2: select entries consistent with evidence
step 3: sum out hidden variables
P(+s,4+b,+m) _ 0.15 1

step 4: normalize (e.g., P(+s,+b | +m) = PCm) = 0i5r03+0.05701 = ) s




Probabilistic Inference
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Bayes’ Rule

m recall product rule:
P(x,y) = P(x|y) - P(y)
m x and y are symmetrical in P(x, y):
P(x |y) - P(y) = P(x,y) = P(y | X) - P(x)
m from this, we can derive Bayes' rule (or Bayes' theorem):

P(y | x) - P(x)
P(y)

m allows to compute conditional probability from its reverse

P(x|y) =
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Probabilistic Inference

[e]ele] lo]

Bayes’ Rule

m recall product rule:

P(x,y) = P(x|y) - P(y)
m x and y are symmetrical in P(x, y):
P(x|y)-P(y) =P(xy) = P(y | x) - P(x)
m from this, we can derive Bayes' rule (or Bayes' theorem):

P(y | x) - P(x)
P(y)

m allows to compute conditional probability from its reverse

P(x|y) =

Why is this useful?

~> often hard to obtain one conditional while the reverse is simple
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Probabilistic Inference With Bayes’ Rule
a typical use case for Bayes' rule is medical diagnosis, where

P(symptom | illness) - P(illness)

P(illness | symptom) = P(symptom)
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Probabilistic Inference

[e]ele]e] )

Probabilistic Inference With Bayes’ Rule
a typical use case for Bayes' rule is medical diagnosis, where

P(symptom | illness) - P(illness)

P(illness | symptom) = P(symptom)

example
m variables M (meningitis) and S (stiff neck)
m (statistical) evidence:

m 1in 10000 patients suffers from meningitis ~» P(+m) = 0.0001
m 80% of meningitis patients suffer from a stiff neck

~» P(+s | +m) =0.8
= 1in 100 patients have a stiff neck but no meningitis

~> P(+s | —=m) = 0.01

P(+s|+m)P(+m) _ P(+s|+m)P(+m)

P+s) = P(aslrm)P(xm)+p(xsl-m)p(=m) ~ 0-008

P(+m | +s) =

~» only 0.8% of patients with stiff neck have meningitis
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