Artificial Intelligence

Probability: Introduction

Jendrik Seipp

Linköping University

based on slides by Thomas Keller

Discuss Feedback

post feedback and ask questions anonymously at

https://padlet.com/jendrikseipp/tddc17

Unconditional Probability

Uncertainty Example I

Adam is in the pizzeria.

Today's special offer I is to get a random piece of the depicted pizza.

- with salami?
- without salami?
- with salami and broccoli?
- with salami or brocoli?

Uncertainty Example I

Adam is in the pizzeria.

Today's special offer I is to get a random piece of the depicted pizza.

- with salami? $\rightarrow \frac{9}{20} = 0.45$
- without salami?
- with salami and broccoli?
- with salami or brocoli?

Uncertainty Example I

Adam is in the pizzeria.

Today's special offer I is to get a random piece of the depicted pizza.

- with salami? $\rightarrow \frac{9}{20} = 0.45$
- without salami? $\rightarrow \frac{11}{20} = 0.55$
- with salami and broccoli?
- with salami or brocoli?

Uncertainty Example I

Adam is in the pizzeria.

Today's special offer I is to get a random piece of the depicted pizza.

- with salami? $\rightarrow \frac{9}{20} = 0.45$
- without salami? $\rightarrow \frac{11}{20} = 0.55$
- with salami and broccoli? $\rightarrow \frac{3}{20} = 0.15$
- with salami or brocoli?

Uncertainty Example I

Adam is in the pizzeria.

Today's special offer I is to get a random piece of the depicted pizza.

- with salami? $\rightarrow \frac{9}{20} = 0.45$
- without salami? $\rightarrow \frac{11}{20} = 0.55$
- with salami and broccoli? $\rightarrow \frac{3}{20} = 0.15$
- with salami or brocoli? $\rightarrow \frac{14}{20} = 0.7$

Worlds and Sample Space

- a world ω is one possible state of the agent's environment
- often described as assignments to (propositional or finite-domain) variables

Worlds and Sample Space

- a world ω is one possible state of the agent's environment
- often described as assignments to (propositional or finite-domain) variables

e.g., $\omega_{1,1}$ or $\omega_{3,4}$ are worlds

Worlds and Sample Space

- a world ω is one possible state of the agent's environment
- often described as assignments to (propositional or finite-domain) variables

e.g., $\omega_{1,1}$ or $\omega_{3,4}$ are worlds

the sample space Ω is the (finite) set of all possible worlds

$$\rightsquigarrow \Omega = \{\omega_{x,y} \mid 1 \le x \le 4 \text{ and } 1 \le y \le 5\}$$

Probability Model

a probability model associates probability $P(\omega)$ to each $\omega \in \Omega$ s.t.

•
$$0 \leq P(\omega) \leq 1$$
 for all $\omega \in \Omega$

•
$$\sum_{\omega \in \Omega} P(\omega) = 1$$

each slice is picked with equal probability:

$$P(\omega) = rac{1}{20}$$
 for all $\omega \in \Omega$

Events

- **an event** φ is a subset of Ω , e.g.:
 - $\varphi = \{ \omega_{x,y} \mid 1 \le x \le 4 \text{ and } 1 \le y \le 2 \}$
 - we also describe \u03c6 verbally, e.g., as the event that the slice "has onions on it"
- probability of an event is the sum of probabilities over its worlds

$$P(\varphi) = \sum_{1 \le x \le 4} \sum_{1 \le y \le 2} P(\omega_{x,y}) = \frac{8}{20}$$

Random Variables

- a random variable X is a property of the world about which we may be uncertain
- formally: $X : \Omega \mapsto dom(X)$, where dom(X) is the domain (also range) of X
- by convention:
 - random variables use upper-case names
 - values use lower-case names (if possible)
 - dom(X) = $\{+x, -x\}$ if X can be true (+x) or false (-x)

Random Variables

- a random variable X is a property of the world about which we may be uncertain
- formally: $X : \Omega \mapsto dom(X)$, where dom(X) is the domain (also range) of X
- by convention:
 - random variables use upper-case names
 - values use lower-case names (if possible)
 - dom(X) = $\{+x, -x\}$ if X can be true (+x) or false (-x)
- examples:
 - O (for Onion) with $dom(O) = \{+o, -o\}$ $O(\omega_{1,1}) = +o, O(\omega_{2,3}) = -o$
 - NumTops with dom(NumTops) = {1, 2, 3}
 NumTops(ω_{1,1}) = 2, NumTops(ω_{2,3}) = 3

(Probability) Distributions

How likely are the values of a random variable?

0	P(0)	\odot	C	\odot	•	\odot	•	\odot	•	М	P(M)
+0	0.4									+m	0.6
-0	0.6	\odot	C	\odot	C	\odot	\odot	\odot		-m	0.4
		٩		٩							
			C		()		0				
		٩		٩	9						
В	P(B)	٩		٩	•		1		0	S	P(S)
+b	0.4									+S	0.45
-b	0.6	1		٩)	0		0		0	-s	0.55

(Probability) Distributions

How likely are the values of a random variable?

0	P(O)	\odot	0	\odot	0	\odot	•	\odot	•	М	P (M)	
+0	0.4									+m	0.6	_
-0	0.6	\odot	C	\odot	C	\odot	\odot	\odot		-m	0.4	
		٩.		٩.								
			1		()		0					
		1		٩	•				0			
B	Р(В)	٩		٩	0				0	S	P(S)	
+b	0.4									+S	0.45	
-b	0.6	٩		٩)	0		0		0	-s	0.55	

$$=\sum_{\omega\in\Omega:S(\omega)=+s}P(\omega)$$

(Probability) Distributions

How likely are the values of a random variable?

equivalent alternatives:

P(B = +b) = 0.4, P(B = -b) = 0.6

$$P(+b) = 0.4, P(-b) = 0.6$$

P(B) = (0.4, 0.6) (requires ordered domain)

(Probability) Distributions

How likely are the values of a random variable?

equivalent alternatives:

•
$$P(B = +b) = 0.4, P(B = -b) = 0.6$$

$$P(+b) = 0.4, P(-b) = 0.6$$

• $P(B) = \langle 0.4, 0.6 \rangle$ (requires ordered domain)

 $= \sum_{\omega \in \Omega: S(\omega) = +s} P(\omega)$

(Probability) Distributions

How likely are the values of a random variable?

equivalent alternatives:

• P(B = +b) = 0.4, P(B = -b) = 0.6

$$P(+b) = 0.4, P(-b) = 0.6$$

■ $P(B) = \langle 0.4, 0.6 \rangle$ (requires ordered domain)

 $= \sum_{\omega \in \Omega: S(\omega) = +s} P(\omega)$

Joint Distributions

How likely are all value combinations of a set of random variables?

В	P(S,	B)
+b	0	.15
-b	(0.3
+b	0.	.25
-b	(0.3
0	М	P(S, O, M)
+0	+m	0.0
+0	-m	0.0
-0	+m	0.15
-0	-m	0.3
+0	+m	0.4
+0	-m	0.0
-0	+m	0.05
-0	-m	0.1
	B +b -b +b -b +0 +0 +0 +0 +0 +0 +0 +0 -0 -0	B P(S, +b 0 -b 0 +b 0. -b 0 +b 0. -b 0 -b 0 +b 0. -b 0 +b 0. -b 0 +o +m +o -m -o +m +o -m -o +m -o -m -o -m -o -m

0 0	0 🕤	• •	0 🕈
ତ ବ କ	ି ଦ ଝ	0 🕤	•
ି ବ୍	~ •	0 0	ு இ
۹)	۹ ۵	0	ø

Joint Distributions

How likely are all value combinations of a set of random variables?

S	В	P(S,	B) =	$\sum_{\omega \in \Omega: S(\omega) = +s}$	and E	8(w)	=-b	P(ω)			
+S	+b	0	.15									
+S	-b		0.3									-
-S	+b	0.	.25		\odot	C	\odot	P	\odot	1	\odot	0
-S	-b	(0.3		•	•	0	C	\odot	C	\odot	9
S	0	М	P(S, O, M)		٩		٩)					
+S	+0	+m	0.0	_		•		-		~		9
+S	+0	-m	0.0		9			0		0		(
+S	-0	+m	0.15		-							
+S	-0	-m	0.3									4
-S	+0	+m	0.4				N	•		•		0
-S	+0	-m	0.0					-				4
-S	-0	+m	0.05									C
-S	-0	-m	0.1									

Joint Distributions

How likely are all value combinations of a set of random variables?

	S	В	P(S,	B) =	$\sum_{\omega \in \Omega: S(\omega) = +s}$	and E	B(w)	=-b	P(w)			
	+S	+b	0	.15									
	+S	-b		0.3							-	-	-
	-S	+b	0.	.25		\odot	^o	\odot	C	\odot	9	\odot	C
	-S	-b	(0.3			_						
						\odot	P	\odot	C	\odot		\odot	5
	S	0	М	P(S, O, M)		٩		٩)					
-	+S	+0	+m	0.0	_		•		1		•		1
	+S	+0	-m	0.0		9			0		0		0
	+S	-0	+m	0.15		_							
	+S	-0	-m	0.3									0
<	-S	+0	+m	0.4	\supset			N	•		-		
	-S	+0	-m	0.0					-				0
	-s	-0	+m	0.05									
	-s	-0	-m	0.1				- (``		
					not	ατιο	n: F	イー:	s, +	o, +	m)	= (J.4

Full Joint Distribution

0	C	•	C	•	C	•	°
0 (ĉ	• •	•	•	Ŷ	•	C
٩	°	٩	0 0		○◎		○●
٩		٩.	@		@		9
		4	9		0		9

0	М	S	В	P(O, M, S, B)
+0	+m	+S	+b	0.0
+0	+m	+s	-b	0.0
+0	+m	-s	+b	0.1
+0	+m	-s	-b	0.3
+0	-m	+s	+b	0.0
+0	-m	+S	-b	0.0
+0	-m	-s	+b	0.0
+0	-m	-s	-b	0.0
-0	+m	+s	+b	0.05
-0	+m	+s	-b	0.1
-0	+m	-s	+b	0.05
-0	+m	-s	-b	0.0
-0	-m	+s	+b	0.1
-0	-m	+s	-b	0.2
-0	-m	-s	+b	0.1
-0	-m	-s	-b	0.0

11/23

Full Joint Distribution

	0	М	S	В	P(O, M, S, B)
size with <i>n</i> variables and maximal do-	+0	+m	+S	+b	0.0
main size k?	+0	+m	+s	-b	0.0
	+0	+m	-s	+b	0.1
	+0	+m	-s	-b	0.3
	+0	-m	+s	+b	0.0
	+0	-m	+s	-b	0.0
4 4	+0	-m	-s	+b	0.0
	+0	-m	-s	-b	0.0
	-0	+m	+s	+b	0.05
	-0	+m	+S	-b	0.1
	-0	+m	-s	+b	0.05
	-0	+m	-s	-b	0.0
	-0	-m	+S	+b	0.1
	-0	-m	+S	-b	0.2
	-0	-m	-s	+b	0.1

-o -m -s -b

11/23

0.0

Full Joint Distribution

	0	М	S	В	P(O, M, S, B)
size with <i>n</i> variables and maximal do-	+0	+m	+S	+b	0.0
main size $k? \rightsquigarrow O(k^n)$	+0	+m	+S	-b	0.0
	+0	+m	-s	+b	0.1
	+0	+m	-s	-b	0.3
	+0	-m	+S	+b	0.0
	+0	-m	+S	-b	0.0
 	+0	-m	-s	+b	0.0
<u> </u>	+0	-m	-s	-b	0.0
< < Ø Ø Ø	-0	+m	+S	+b	0.05
	-0	+m	+S	-b	0.1
	-0	+m	-s	+b	0.05
	-0	+m	-s	-b	0.0
	-0	-m	+S	+b	0.1
	-0	-m	+S	-b	0.2
	-0	-m	-s	+b	0.1
	-0	-m	-s	-b	0.0

11/23

Full Joint Distribution

•	0	Ô	•	Ŷ	0	Ŷ
0 4	₽	¢	0	Ŷ	•	°
•	•	0 0		○⊘		○●
٩	4	@		@		0
	٩	0		0		0

too big even for this small example

0	М	S	В	P(O, M, S, B)
+0	+m	+S	+b	0.0
+0	+m	+S	-b	0.0
+0	+m	-S	+b	0.1
+0	+m	-S	-b	0.3
+0	-m	+S	+b	0.0
+0	-m	+S	-b	0.0
+0	-m	-S	+b	0.0
+0	-m	-S	-b	0.0
-0	+m	+S	+b	0.05
-0	+m	+S	-b	0.1
-0	+m	-s	+b	0.05
-0	+m	-S	-b	0.0
-0	-m	+S	+b	0.1
-0	-m	+S	-b	0.2
-0	-m	-S	+b	0.1
-0	-m	-S	-b	0.0

11/23

Full Joint Distribution

too big even for this small example

ightarrow omit 0.0 entries in the following (no solution for size problem!)

0	C	•	C	•	¢	\odot	•
• •	ĉ	• •	•	•	•	•	Ŷ
٩	Ŷ	٩	0 0		0 0		 ⊘
٩)		٩	@		9		0
٩)		٩)	0		9		0

0	М	S	В	Р
+0	+m	-S	+b	0.1
+0	+m	-s	-b	0.3
-0	+m	+S	+b	0.05
-0	+m	+S	-b	0.1
-0	+m	-s	+b	0.05
-0	-m	+S	+b	0.1
-0	-m	+S	-b	0.2
-0	-m	-s	+b	0.1

S +s -s

- full joint distribution "contains" all (joint) distributions
- What if we don't care about some variables?
- retrieve by summing out irrelevant variables Y₁,..., Y_m:

$$P(X_1,\ldots,X_n)=\sum_{y_1,\ldots,y_m}P(X_1,\ldots,X_n,y_1,\ldots,y_m)$$

		0	М	S	В	Р
	-	+0	+m	-S	+b	0.1
		+0	+m	-s	-b	0.3
Р	_	-0	+m	+S	+b	0.05
?		-0	+m	+S	-b	0.1
?		-0	+m	-s	+b	0.05
		-0	-m	+S	+b	0.1
		-0	-m	+S	-b	0.2
		-0	-m	-s	+b	0.1

S

+S

-s

- full joint distribution "contains" all (joint) distributions
- What if we don't care about some variables?
- retrieve by summing out irrelevant variables Y₁,..., Y_m:

$$P(X_1,\ldots,X_n)=\sum_{y_1,\ldots,y_m}P(X_1,\ldots,X_n,y_1,\ldots,y_m)$$

	0	M	S	В	P
	+0	+m	-S	+b	0.1
	+0	+m	-S	-b	0.3
Р	-0	+m	+S	+b	0.05
0.45	-0	+m	+S	-b	0.1
0.55	-0	+m	-S	+b	0.05
	-0	-m	+S	+b	0.1
	-0	-m	+S	-b	0.2
	-0	-m	-s	+b	0.1

S

+S

-s

- full joint distribution "contains" all (joint) distributions
- What if we don't care about some variables?
- retrieve by summing out irrelevant variables Y₁,..., Y_m:

$$P(X_1,\ldots,X_n) = \sum_{y_1,\ldots,y_m} P(X_1,\ldots,X_n,y_1,\ldots,y_m)$$

	0	М	S	В	P				
	+0	+m	-S	+b	0.1	-			
	+0	+m	-s	-b	0.3		S	В	P
Р	-0	+m	+S	+b	0.05		+S	+b	?
0.45	-0	+m	+S	-b	0.1		+S	-b	?
0.55	-0	+m	-s	+b	0.05		-s	+b	?
	-0	-m	+S	+b	0.1		-S	-b	?
	-0	-m	+S	-b	0.2	-			
	-0	-m	-s	+b	0.1				

- full joint distribution "contains" all (joint) distributions
- What if we don't care about some variables?

Т

retrieve by summing out irrelevant variables Y₁,..., Y_m:

$$P(X_1,\ldots,X_n)=\sum_{y_1,\ldots,y_m}P(X_1,\ldots,X_n,y_1,\ldots,y_m)$$

т

			0	
			+0	+1
			+0	+1
S	Р	_	-0	+1
+S	0.45	-	-0	+1
-s	0.55		-0	+1
			-0	-1

0	M	S	В	P
+0	+m	-S	+b	0.1
+0	+m	-S	-b	0.3
-0	+m	+S	+b	0.05
-0	+m	+S	-b	0.1
-0	+m	-S	+b	0.05
-0	-m	+S	+b	0.1
-0	-m	+S	-b	0.2
-0	-m	-s	+b	0.1

S	В	P
+S	+b	0.15
+S	-b	0.3
-S	+b	0.25
-s	-b	0.3

Uncertainty Example I Revisited

Adam is in the pizzeria.

Today's special offer I is to get a random piece of the depicted pizza.

- with salami? \rightarrow 0.45
- without salami? ightarrow 0.55
- with salami and broccoli? ightarrow 0.15
- with salami or broccoli? ightarrow 0.7

Uncertainty Example I Revisited

0	М	S	В	Р
+0	+m	-S	+b	0.1
+0	+m	-s	-b	0.3
-0	+m	+S	+b	0.05
-0	+m	+S	-b	0.1
-0	+m	-s	+b	0.05
-0	-m	+S	+b	0.1
-0	-m	+S	-b	0.2
-0	-m	-S	+b	0.1

Adam is in the pizzeria.

Today's special offer I is to get a random piece of the depicted pizza.

What are his chances to get a slice

- with salami? \rightarrow 0.45
- without salami? ightarrow 0.55
- with salami and broccoli? ightarrow 0.15
- with salami or broccoli? ~> 0.7

ightarrow full joint distribution sufficient for all (unconditional) queries

Uncertainty Example II

•	•	•	C	•	C	•	Ŷ
⊙ ≪)	C	• •	6	•	6	•	•
٩,	•	٩)	0		() () ()		~ Ø
٩,		٩.	9		@		0
٩		4	•				0

Adam is in the pizzeria and still undecided.

Special offer II is to name one topping and get a random piece among those with the topping.

- onions
- mushrooms
- salami
- broccoli

Uncertainty Example II

Adam is in the pizzeria and still undecided.

Special offer II is to name one topping and get a random piece among those with the topping.

- onions $\rightarrow \frac{0}{8}$
- mushrooms
- salami
- broccoli

Uncertainty Example II

Adam is in the pizzeria and still undecided.

Special offer II is to name one topping and get a random piece among those with the topping.

- onions $\rightarrow \frac{0}{8}$
- mushrooms $\rightarrow \frac{1}{12}$
- salami
- broccoli

Uncertainty Example II

Adam is in the pizzeria and still undecided.

Special offer II is to name one topping and get a random piece among those with the topping.

- onions $\rightarrow \frac{0}{8}$
- mushrooms $\rightarrow \frac{1}{12}$
- salami $\rightarrow \frac{1}{3}$
- broccoli

Uncertainty Example II

Adam is in the pizzeria and still undecided.

Special offer II is to name one topping and get a random piece among those with the topping.

Which topping should he name to maximize the probability to get salami and broccoli?

• onions
$$\sim \frac{0}{8}$$

- mushrooms $\rightarrow \frac{1}{12}$
- salami $\rightarrow \frac{1}{3}$

• broccoli $\rightarrow \frac{3}{8}$

- P(x) is called prior probability of x because it assumes no additional information
- if we learn that variable Y has value y (i.e., we obtain evidence), our belief on x changes
- \rightarrow we can update to conditional probability $P(x \mid y)$, which is defined in terms of joint probabilities:

$$P(x \mid y) = \frac{P(x, y)}{P(y)}$$

- P(x) is called prior probability of x because it assumes no additional information
- if we learn that variable Y has value y (i.e., we obtain evidence), our belief on x changes
- \rightarrow we can update to conditional probability $P(x \mid y)$, which is defined in terms of joint probabilities:

$$P(x \mid y) = \frac{P(x, y)}{P(y)}$$

does this match our intuition?

■ name mushrooms to get salami and broccoli: $P(+s, +b \mid +m) = \frac{1}{12}$

P(x) is called prior probability of x because it assumes no additional information

Conditional

- if we learn that variable Y has value y (i.e., we obtain evidence), our belief on x changes
- \rightarrow we can update to conditional probability $P(x \mid y)$, which is defined in terms of joint probabilities:

$$P(x \mid y) = \frac{P(x, y)}{P(y)}$$

does this match our intuition?

■ name mushrooms to get salami and broccoli:

$$P(+s,+b \mid +m) = \frac{1}{12} = \frac{1/20}{12/20} = \frac{P(+s,+b,+m)}{P(+m)} \checkmark$$

- P(x) is called prior probability of x because it assumes no additional information
- if we learn that variable Y has value y (i.e., we obtain evidence), our belief on x changes
- \rightarrow we can update to conditional probability $P(x \mid y)$, which is defined in terms of joint probabilities:

$$P(x \mid y) = \frac{P(x, y)}{P(y)}$$

does this match our intuition?

- name mushrooms to get salami and broccoli: $P(+s,+b \mid +m) = \frac{1}{12} = \frac{1/20}{12/20} = \frac{P(+s,+b,+m)}{P(+m)} \checkmark$
- name broccoli to get salami and broccoli: $P(+s, +b \mid +b) = \frac{3}{8}$

- P(x) is called prior probability of x because it assumes no additional information
- if we learn that variable Y has value y (i.e., we obtain evidence), our belief on x changes
- \rightarrow we can update to conditional probability $P(x \mid y)$, which is defined in terms of joint probabilities:

$$P(x \mid y) = \frac{P(x, y)}{P(y)}$$

does this match our intuition?

■ name mushrooms to get salami and broccoli: $P(+s,+b \mid +m) = \frac{1}{12} = \frac{1/20}{12/20} = \frac{P(+s,+b,+m)}{P(+m)} \checkmark$

■ name broccoli to get salami and broccoli:

$$P(+s, +b \mid +b) = \frac{3}{8} = \frac{3/20}{8/20} = \frac{P(+s, +b, +b)}{P(+b)} \checkmark$$

- $\mathbf{P}(x)$ is called prior probability of x because it assumes no additional information
- if we learn that variable Y has value y (i.e., we obtain evidence), our belief on x changes
- \rightarrow we can update to conditional probability $P(x \mid y)$, which is defined in terms of joint probabilities:

$$P(x \mid y) = \frac{P(x, y)}{P(y)}$$

does this match our intuition?

name mushrooms to get salami and broccoli: $P(+s, +b | +m) = \frac{1}{12} = \frac{1/20}{12/20} = \frac{P(+s, +b, +m)}{P(+m)} \checkmark$

■ name broccoli to get salami and broccoli:

$$P(+s, +b \mid +b) = \frac{3}{8} = \frac{3/20}{8/20} = \frac{P(+s,+b,+b)}{P(+b)} \checkmark$$

16/23

S

+S

+5

-s

-S

Conditional

Conditional Distributions

Product and Chain Rule

two important rules that are often used can be derived:

definition of conditional probability:

$$P(x \mid y) = \frac{P(x, y)}{P(y)}$$

reorder to obtain product rule:

$$P(x, y) = P(x \mid y) \cdot P(y)$$

recursive application yields chain rule:

$$P(x_1, \dots, x_n) = P(x_n \mid x_1, \dots, x_{n-1}) \cdot P(x_1, \dots, x_{n-1})$$

= $P(x_n \mid x_1, \dots, x_{n-1}) \cdot P(x_{n-1} \mid x_1, \dots, x_{n-2}) \cdot P(x_1, \dots, x_{n-2})$
= $P(x_n \mid x_1, \dots, x_{n-1}) \cdot P(x_{n-1} \mid x_1, \dots, x_{n-2}) \cdot \dots \cdot P(x_2 \mid x_1) \cdot P(x_1)$
= $\prod_{i=1}^n P(x_i \mid x_1, \dots, x_{i-1})$

- probabilistic inference: compute a desired probability from other known probabilities (e.g., conditional from joint)
- we usually compute conditional probabilities that represent the agent's belief given the evidence
- probabilities change with new evidence, i.e., the agent's belief is updated

- probabilistic inference: compute a desired probability from other known probabilities (e.g., conditional from joint)
- we usually compute conditional probabilities that represent the agent's belief given the evidence
- probabilities change with new evidence, i.e., the agent's belief is updated

probabilistic inference example:

 Adam's initial belief to get mushroom and salami with special offer I is P(+m, +s) = 0.15

- probabilistic inference: compute a desired probability from other known probabilities (e.g., conditional from joint)
- we usually compute conditional probabilities that represent the agent's belief given the evidence
- probabilities change with new evidence, i.e., the agent's belief is updated

probabilistic inference example:

- Adam's initial belief to get mushroom and salami with special offer I is P(+m, +s) = 0.15
- Adam learns that the used onions were bad and cannot be sold $\rightarrow P(+m, +s \mid -o) = 0.25$

- probabilistic inference: compute a desired probability from other known probabilities (e.g., conditional from joint)
- we usually compute conditional probabilities that represent the agent's belief given the evidence
- probabilities change with new evidence, i.e., the agent's belief is updated

probabilistic inference example:

- Adam's initial belief to get mushroom and salami with special offer I is P(+m, +s) = 0.15
- Adam learns that the used onions were bad and cannot be sold $\rightarrow P(+m, +s \mid -o) = 0.25$
- the neighbor table orders all remaining pieces with broccoli $\rightarrow P(+m, +s \mid -o, -b) = \frac{1}{3}$

- probabilistic inference: compute a desired probability from other known probabilities (e.g., conditional from joint)
- we usually compute conditional probabilities that represent the agent's belief given the evidence
- probabilities change with new evidence,
 i.e., the agent's belief is updated
- we consider three probabilistic inference methods:
 - using the full joint distribution
 - using Bayes' rule
 - using Bayesian networks

How can we answer a query from the full joint distribution?

0	М	S	В	Р
+0	+m	-S	+b	0.1
+0	+m	-s	-b	0.3
-0	+m	+S	+b	0.05
-0	+m	+S	-b	0.1
-0	+m	-S	+b	0.05
-0	-m	+S	+b	0.1
-0	-m	+S	-b	0.2
-0	-m	-s	+b	0.1

given: full joint distribution P(O, M, S, B) and query P(S, B | m)

How can we answer a query from the full joint distribution?

0	М	S	В	Р
+0	+m	-S	+b	0.1
+0	+m	-S	-b	0.3
-0	+m	+S	+b	0.05
-0	+m	+S	-b	0.1
-0	+m	-S	+b	0.05
-0	-m	+S	+b	0.1
-0	-m	+S	-b	0.2
-0	-m	-S	+b	0.1

- **given:** full joint distribution P(O, M, S, B) and query $P(S, B \mid m)$
- step 1: partition variables in query, evidence and hidden variables

How can we answer a query from the full joint distribution?

0	М	S	В	Р
+0	+m	-S	+b	0.1
+0	+m	-S	-b	0.3
-0	+m	+S	+b	0.05
-0	+m	+S	-b	0.1
-0	+m	-S	+b	0.05
-0	-m	+S	+b	0.1
-0	-m	+S	-b	0.2
-0	-m	-S	+b	0.1

0	М	S	В	Р
+0	+m	-S	+b	0.1
+0	+m	-S	-b	0.3
-0	+m	+S	+b	0.05
-0	+m	+S	-b	0.1
-0	+m	-S	+b	0.05

- **given:** full joint distribution P(O, M, S, B) and query P(S, B | m)
- step 1: partition variables in query, evidence and hidden variables
- step 2: select entries consistent with evidence

How can we answer a query from the full joint distribution?

0	М	S	В	Р
+0	+m	-S	+b	0.1
+0	+m	-S	-b	0.3
-0	+m	+S	+b	0.05
-0	+m	+S	-b	0.1
-0	+m	-S	+b	0.05
-0	-m	+S	+b	0.1
-0	-m	+S	-b	0.2
-0	-m	-S	+b	0.1

0	М	S	В	P
+0	+m	-S	+b	0.1
+0	+m	-S	-b	0.3
-0	+m	+S	+b	0.05
-0	+m	+S	-b	0.1
-0	+m	-S	+b	0.05
М	S	В	P	
+m	-S	+b	0.15	
+m	-S	-b	0.3	
+m	+S	+b	0.05	
+m	+S	-b	0.1	

- **given:** full joint distribution P(O, M, S, B) and query P(S, B | m)
- step 1: partition variables in query, evidence and hidden variables
- step 2: select entries consistent with evidence
- step 3: sum out hidden variables

How can we answer a query from the full joint distribution?

0	М	S	В	Р
+0	+m	-S	+b	0.1
+0	+m	-S	-b	0.3
-0	+m	+S	+b	0.05
-0	+m	+S	-b	0.1
-0	+m	-S	+b	0.05
-0	-m	+S	+b	0.1
-0	-m	+S	-b	0.2
-0	-m	-S	+b	0.1

0	М	S	В	P			
+0	+m	-S	+b	0.1	-		
+0	+m	-s	-b	0.3			
-0	+m	+S	+b	0.05			
-0	+m	+S	-b	0.1			
-0	+m	-S	+b	0.05			
							I
М	S	В	P		S	В	Р
+m	-S	+b	0.15	_	-S	+b	0.25
+m	-s	-b	0.3		-S	-b	0.5
+m	+S	+b	0.05		+s	+b	$\frac{1}{12}$
+m	+S	-b	0.1	_	+S	-b	1 <u>1</u> 6

- **given:** full joint distribution P(O, M, S, B) and query P(S, B | m)
- step 1: partition variables in query, evidence and hidden variables
- step 2: select entries consistent with evidence
- step 3: sum out hidden variables

step 4: normalize (e.g., $P(+s, +b \mid +m) = \frac{P(+s,+b,+m)}{P(+m)} = \frac{0.15}{0.15+0.3+0.05+0.1} = \frac{1}{4}$) 21/23

Bayes' Rule

recall product rule:

$$P(x,y) = P(x \mid y) \cdot P(y)$$

• x and y are symmetrical in P(x, y):

$$P(x \mid y) \cdot P(y) = P(x, y) = P(y \mid x) \cdot P(x)$$

■ from this, we can derive Bayes' rule (or Bayes' theorem):

$$P(x \mid y) = \frac{P(y \mid x) \cdot P(x)}{P(y)}$$

allows to compute conditional probability from its reverse

Bayes' Rule

recall product rule:

$$P(x,y) = P(x \mid y) \cdot P(y)$$

• x and y are symmetrical in P(x, y):

$$P(x \mid y) \cdot P(y) = P(x, y) = P(y \mid x) \cdot P(x)$$

from this, we can derive Bayes' rule (or Bayes' theorem):

$$P(x \mid y) = \frac{P(y \mid x) \cdot P(x)}{P(y)}$$

allows to compute conditional probability from its reverse

Why is this useful?

ightarrow often hard to obtain one conditional while the reverse is simple

Probabilistic Inference With Bayes' Rule

a typical use case for Bayes' rule is medical diagnosis, where

 $P(\text{illness} \mid \text{symptom}) = \frac{P(\text{symptom} \mid \text{illness}) \cdot P(\text{illness})}{P(\text{symptom})}$

Probabilistic Inference With Bayes' Rule

a typical use case for Bayes' rule is medical diagnosis, where

 $P(\text{illness} \mid \text{symptom}) = \frac{P(\text{symptom} \mid \text{illness}) \cdot P(\text{illness})}{P(\text{symptom})}$

example

- variables M (meningitis) and S (stiff neck)
- (statistical) evidence:
 - 1 in 10000 patients suffers from meningitis $\rightarrow P(+m) = 0.0001$
 - 80% of meningitis patients suffer from a stiff neck

$$\rightarrow$$
 P(+s | +m) = 0.8

■ 1 in 100 patients have a stiff neck but no meningitis $\rightarrow P(+s \mid -m) = 0.01$

$$P(+m \mid +s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m)+P(+s|-m)P(-m)} \approx 0.008$$

ightarrow only 0.8% of patients with stiff neck have meningitis