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• Basic Probability Theory from a logical perspective

• Bayesian Networks

• An “efficient” means for doing probabilistic reasoning.

• Bayes’ Rule

• Naive Bayes Model





Any propositional formula can be equivalently represented in Disjunctive 
Normal Form(DNF) based on its truth table characterisation

Observe that:

𝑇𝑟𝑢𝑒 ≡ 1 ∨ 2 ∨ 3 ∨ 4 ∨ 5 ∨ 6 ∨ 7 ∨ 8

𝐹𝑎𝑙𝑠𝑒 ≡ ¬𝑇𝑟𝑢𝑒

For example:

𝐶𝑎𝑣 ∨ 𝑇𝑜𝑜𝑡ℎ ≡ 1 ∨ 2 ∨ 3 ∨ 4 ∨ 5 ∨ 6

≡ (𝐶𝑎𝑣 ∧ 𝑇𝑜𝑜 ∧ 𝐶𝑎𝑡) ∨ (𝐶𝑎𝑣 ∧ 𝑇𝑜𝑜 ∧ ¬𝐶𝑎𝑡) ∨ (𝐶𝑎𝑣 ∧ ¬𝑇𝑜𝑜 ∧ 𝐶𝑎𝑡) ∨

(𝐶𝑎𝑣 ∧ ¬𝑇𝑜𝑜 ∧ ¬𝐶𝑎𝑡) ∨ (¬𝐶𝑎𝑣 ∧ 𝑇𝑜𝑜 ∧ 𝐶𝑎𝑡) ∨ (¬𝐶𝑎𝑣 ∧ 𝑇𝑜𝑜 ∧ ¬𝐶𝑎𝑡) ∨

(¬𝐶𝑎𝑣 ∧ ¬𝑇𝑜𝑜 ∧ 𝐶𝑎𝑡) ∨ (¬𝐶𝑎𝑣 ∧ ¬𝑇𝑜𝑜 ∧ ¬𝐶𝑎𝑡)

The lines in the table that
make the formula true



• Truth Table Method: 

• Can be used to evaluate the Truth or Falsity of a formula

• Requires a table with 2𝑛 rows, where 𝑛 is the number of propositional variables in the language

• Propositional logic:

• Allows the representation of propositions about the world which are True or False

• In this case, a proposition has a degree of truth, either true or false

• Suppose our knowledge about the truth or falsity of a proposition is uncertain

• In this case we might want to attach a degree of belief in the propositions truth status

• Observe that the degree of belief is subjective, in the sense that

• the proposition in question is still considered to be true or false about the world

• We simply do not have enough information to determine this.

• So, there is a distinction between degrees of truth and degrees of belief

World

Degree of Belief

Degree of Truth

Beliefs about Propositions

Propositions
Propositional
Logic

Probability 
Theory



• Just as propositional atoms provide the primitive vocabulary for propositions in 
propositional logic, random variables will provide the primitive vocabulary for our 
probabilistic language.

• Random variables:

• Boolean: 𝐶𝑎𝑣𝑖𝑡𝑦: {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}

• Discrete: 𝑊𝑒𝑎𝑡ℎ𝑒𝑟: {𝑠𝑢𝑛𝑛𝑦, 𝑟𝑎𝑖𝑛𝑦, 𝑐𝑙𝑜𝑢𝑑𝑦, 𝑠𝑛𝑜𝑤}

• Continuous: 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒: {𝑥 ∣ −43.0 ≤ 𝑥 ≤ 100.0}

• A random variable may be viewed as an aspect/feature of the world that is initially 
unknown

• A degree of belief may be attached to a variable/value pair

• Complex formulas may be formed using Boolean combinations of variable/value pairs



𝑃(𝐶𝑎𝑣𝑖𝑡𝑦 = 𝑡𝑟𝑢𝑒) = 𝑃(𝑐𝑎𝑣𝑖𝑡𝑦) = 0.4

𝑃(𝐶𝑎𝑣𝑖𝑡𝑦 = 𝑓𝑎𝑙𝑠𝑒) = 𝑃(¬𝑐𝑎𝑣𝑖𝑡𝑦) = 0.6

𝐏(𝐶𝑎𝑣𝑖𝑡𝑦) = ⟨0.4,0.6⟩

𝑃(𝑊𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑠𝑢𝑛𝑛𝑦) = 0.7

𝑃(𝑊𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑟𝑎𝑖𝑛𝑦) = 0.2

𝑃(𝑊𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑐𝑙𝑜𝑢𝑑𝑦) = 0.08

𝑃(𝑊𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑠𝑛𝑜𝑤) = 0.02

𝐏(𝑊𝑒𝑎𝑡ℎ𝑒𝑟) = ⟨0.7,0.2,0.08,0.02⟩

𝐏 Notation

𝐏(𝑋) is the Probability Distribution (Unconditional or Prior Probability of the random variable 𝑋



𝐏(𝐶𝑎𝑣𝑖𝑡𝑦,𝑊𝑒𝑎𝑡ℎ𝑒𝑟) = ⟨0.30,0.05,0.145,0.005,0.30,0.05,0.145,0.005⟩      (2 x 4)

Assume a domain of random variables: {𝑋1, … , 𝑋𝑛}

A full joint probability distribution 𝐏(𝑋1, … , 𝑋𝑛), assigns

a probability to each of the possible combinations of variable/value pairs

𝐏(𝑐𝑎𝑣𝑖𝑡𝑦,𝑊𝑒𝑎𝑡ℎ𝑒𝑟) = ⟨0.30,0.05,0.145,0.005⟩                    (1 x 4)

𝐏(𝐶𝑎𝑣𝑖𝑡𝑦,𝑊𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑟𝑎𝑖𝑛𝑦) = ⟨0.05,0.05⟩                               (2 x 1)

𝐏  notation: can also mix variables and specific values:



Each logical model is
an atomic event



Using a full joint probability distribution, arbitrary Boolean combinations of 
variable value pairs can be interpreted by taking the sum of the beliefs attached 
to each interpretation (atomic event) which satisfies the formula.

𝑃(𝑐𝑎𝑣 ∨ 𝑡𝑜𝑜) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28
𝑃(𝑐𝑎𝑣 → 𝑡𝑜𝑜) = 0.108 + 0.012 + 0.016 + 0.064 + 0.144 + 0.576 = 0.2
𝑃(¬𝑡𝑜𝑜) = 0.072 + 0.008 + 0.144 + 0.576 = 0.8
𝑃(¬𝑡𝑜𝑜) = 1 − 𝑃(𝑡𝑜𝑜) = 1 − (0.108 + 0.012 + 0.016 + 0.064) = 0.8

Recall our DNF
characterisation
of logical formulas!



In classical logic, our main focus is often: Γ ⊧ 𝛼

In probability theory, our main focus is often: 𝑃(𝐗 ∣ 𝐘)

Prior probabilities are not adequate once additional evidence concerning previously 
unknown random variables is introduced:
• One must condition any random variable(s) of interest relative to the new evidence.
• Conditioning is represented using conditional or posterior probabilities. 

The probability of 𝑋 = 𝑥𝑖  given 𝑌 = 𝑦𝑗  is denoted 𝑃(𝑋 = 𝑥𝑖 ∣ 𝑌 = 𝑦𝑗)

𝑃(𝑋 = 𝑥𝑖 ∣ 𝑌 = 𝑦𝑗) =
𝑃(𝑋 = 𝑥𝑖 ∧ 𝑌 = 𝑦𝑗)

𝑃(𝑌 = 𝑦𝑗)

Another way to write this is in the form of the product rule:

𝑃(𝑋 = 𝑥𝑖 ∧ 𝑌 = 𝑦𝑗) = 𝑃(𝑋 = 𝑥𝑖 ∣ 𝑌 = 𝑦𝑗) ∗ 𝑃(𝑌 = 𝑦𝑗)

𝑃(𝑋 = 𝑥𝑖 ∧ 𝑌 = 𝑦𝑗) = 𝑃(𝑌 = 𝑦𝑗 ∣ 𝑋 = 𝑥𝑖) ∗ 𝑃(𝑋 = 𝑥𝑖)

This rule can be generalised
using  the chain rule



𝐏
𝐏(𝑋 ∣ 𝑌) denotes the set of equations 𝑃(𝑋 = 𝑥𝑖 ∣ 𝑌 = 𝑦𝑗) for each possible i, 𝑗.

For example: 𝐏(𝑋 ∧ 𝑌) = 𝐏(𝑋, 𝑌) = 𝐏(𝑋 ∣ 𝑌) ∗ 𝐏(𝑌)
𝑃(𝑋 = 𝑥1 ∧ 𝑌 = 𝑦1) = 𝑃(𝑋 = 𝑥1 ∣ 𝑌 = 𝑦1) ∗ 𝑃(𝑌 = 𝑦1)
𝑃(𝑋 = 𝑥1 ∧ 𝑌 = 𝑦2) = 𝑃(𝑋 = 𝑥1 ∣ 𝑌 = 𝑦2) ∗ 𝑃(𝑌 = 𝑦2)

⋮
𝑃(𝑋 = 𝑥𝑖 ∧ 𝑌 = 𝑦𝑗) = 𝑃(𝑋 = 𝑥𝑖 ∣ 𝑌 = 𝑦𝑗) ∗ 𝑃(𝑌 = 𝑦𝑗)

Note also that: 𝐏(𝑋 ∧ 𝑌) = 𝐏(𝑋, 𝑌) Conjunction is abbreviated as a “,”

𝐏(𝑋, 𝑌) is also a distribution so it is equal to a vector

if we have the distribution



Recall our discussions about logical theories, Δ, consisting
of a set of axioms and our interest in Δ ⊧ 𝛼

Probability Theory can be built up from three axioms:

1. All probabilities are between 0 and 1.

• For any proposition 𝑎, 0 ≤ 𝑃(𝑎) ≤ 1.

2. Necessarily true (i.e. valid) propositions have 
probability 1, and necessarily false propositions
have probability 0.

• 𝑃(𝑇𝑟𝑢𝑒) = 1 and 𝑃(𝐹𝑎𝑙𝑠𝑒) = 0.

3. The probability of a disjunction  is given by:

• 𝑃(𝑎 ∨ 𝑏) = 𝑃(𝑎) + 𝑃(𝑏) − 𝑃(𝑎 ∧ 𝑏)



In probability theory, the set of all possible worlds is called the 
sample space, Ω. Let 𝜔 refer to elements of the sample space 
(models/interpretations). Assume Ω is a discrete countable set of worlds.

0 ≤ 𝑃(𝜔) ≤ 1, for all 𝜔.

For any proposition 𝜙, 𝑃(𝜙) = ∑
𝜔∈𝜙

𝑃(𝜔)

∑
𝜔∈Ω

𝑃(𝜔) = 1 𝑃(𝑇𝑟𝑢𝑒) = 1



Joint probability distribution 𝐏(𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒, 𝐶𝑎𝑣𝑖𝑡𝑦, 𝐶𝑎𝑡𝑐ℎ):

Marginalization is about extracting the distribution over
some subset of variables or a single variable

The marginal probability of 𝑐𝑎𝑣𝑖𝑡𝑦 is:

𝑃(𝑐𝑎𝑣𝑖𝑡𝑦) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2

0.2

Let 𝐘 and 𝐙 be sets of variables,  and where  ∑
𝐳

 sums over all possible  combinations

of values of the set of variables 𝐙. Then the general marginalization rule is:

𝐏(𝐘) = ∑
𝐳
𝐏(𝐘, 𝐳)



𝐏(𝐘) = ∑
𝐳
𝐏(𝐘, 𝐳)

Let 𝐘 = {𝐶𝑎𝑣𝑖𝑡𝑦, 𝐶𝑎𝑡𝑐ℎ} and 𝐙 = {𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒}

𝐏(𝐘) = 𝐏(𝐘, 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) + 𝐏(𝐘,¬𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)

𝑃(𝑐𝑎𝑣𝑖𝑡𝑦, 𝑐𝑎𝑡𝑐ℎ) = 𝑃(𝑐𝑎𝑣𝑖𝑡𝑦, 𝑐𝑎𝑡𝑐ℎ, 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) + 𝑃(𝑐𝑎𝑣𝑖𝑡𝑦, 𝑐𝑎𝑡𝑐ℎ, ¬𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)

= 0.108 + 0.072 = 0.18

Marginal probability of 𝐶𝑎𝑣𝑖𝑡𝑦 ∧ 𝐶𝑎𝑡𝑐ℎ

Let 𝐘 = {𝐶𝑎𝑣𝑖𝑡𝑦} and 𝐙 = {𝐶𝑎𝑡𝑐ℎ, 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒}

𝐏(𝐘) = 𝐏(𝐘, 𝑐𝑎𝑡𝑐ℎ, 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) + 𝐏(𝐘,¬𝑐𝑎𝑡𝑐ℎ, 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) +

𝐏(𝐘, 𝑐𝑎𝑡𝑐ℎ, ¬𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) + 𝐏(𝐘,¬𝑐𝑎𝑡𝑐ℎ, ¬𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)

Marginal probability of 𝐶𝑎𝑣𝑖𝑡𝑦

𝑃(𝑐𝑎𝑣𝑖𝑡𝑦) = 𝑃(𝑐𝑎𝑣𝑖𝑡𝑦, 𝑐𝑎𝑡𝑐ℎ, 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) + 𝑃(𝑐𝑎𝑣𝑖𝑡𝑦, ¬𝑐𝑎𝑡𝑐ℎ, 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) +

𝑃(𝑐𝑎𝑣𝑖𝑡𝑦, 𝑐𝑎𝑡𝑐ℎ,¬𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) + 𝑃(𝑐𝑎𝑣𝑖𝑡𝑦, ¬𝑐𝑎𝑡𝑐ℎ, ¬𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)

= 0.108 + 0.012 + 0.072 + 0.008 = 0.2



Given the general marginalisation rule: 𝐏(𝐘) = ∑
𝐳
𝐏(𝐘, 𝐳)

Applying the product rule to the right 
hand side results in the conditioning rule: 𝐏(𝐘) = ∑

𝐳
𝐏(𝐘 ∣ 𝐳) ∗ 𝑃(𝐳)

Both are useful in all kind of derivations of probability expressions

An example of conditioning:

Let 𝐘 = {𝐶𝑎𝑣𝑖𝑡𝑦} and 𝐙 = {𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒}

𝐏(𝐘) = 𝐏(𝐘 ∣ 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) ∗ 𝑃(𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) + 𝐏(𝐘 ∣ ¬𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) ∗ 𝑃(¬𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)

𝑃(𝑐𝑎𝑣𝑖𝑡𝑦) = 𝑃(𝑐𝑎𝑣𝑖𝑡𝑦 ∣ 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) ∗ 𝑃(𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) + 𝑃(𝑐𝑎𝑣𝑖𝑡𝑦 ∣ ¬𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) ∗ 𝑃(¬𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)



The main form of inference with probabilities is to compute the probability 
of some variables given evidence of others.

What is the probability I have a cavity given evidence I have a toothache?

𝑃(𝑐𝑎𝑣𝑖𝑡𝑦 ∣ 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) =
𝑃(𝑐𝑎𝑣𝑖𝑡𝑦 ∧ 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)

𝑃(𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)
=

0.108 + 0.012

0.108 + 0.012 + 0.016 + 0.064
= 0.6

𝑃(¬𝑐𝑎𝑣𝑖𝑡𝑦 ∣ 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) =
𝑃(¬𝑐𝑎𝑣𝑖𝑡𝑦 ∧ 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)

𝑃(𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)
=

0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4

𝐏(𝐶𝑎𝑣𝑖𝑡𝑦 ∣ 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) = ⟨0.6,0.4⟩

Unconditional
Probabilities

From the 
joint distribution

Marginalization



Given the conditional distribution: 𝐏(𝐶𝑎𝑣𝑖𝑡𝑦 ∣ 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)

𝑃(𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) (in the denominator) can be viewed as a normalization constant
to make sure the distribution adds up to 1.

𝐏(𝐶𝑎𝑣𝑖𝑡𝑦 ∣ 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) = 𝛼𝐏(𝐶𝑎𝑣𝑖𝑡𝑦, 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)

= 𝛼[𝐏(𝐶𝑎𝑣𝑖𝑡𝑦, 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒, 𝑐𝑎𝑡𝑐ℎ) + 𝐏(𝐶𝑎𝑣𝑖𝑡𝑦, 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒,¬𝑐𝑎𝑡𝑐ℎ)

= 𝛼[⟨0.108,0.016⟩ + ⟨0.012,0.064⟩]

𝑐𝑎𝑣𝑖𝑡𝑦 𝑐𝑎𝑣𝑖𝑡𝑦¬𝑐𝑎𝑣𝑖𝑡𝑦 ¬𝑐𝑎𝑣𝑖𝑡𝑦

= 𝛼⟨0.12,0.08⟩ = ⟨0.6,0.4⟩
𝑐𝑎𝑣𝑖𝑡𝑦 ¬𝑐𝑎𝑣𝑖𝑡𝑦

𝛼 =
1

𝑃(𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)
=

1

0.12 + 0.08
=

1

0.2
= 5

Useful shortcut in many probability derivations. Can proceed
when the denominator is unknown.



Let 𝑋 be the query variable, 𝐄  be the evidence variables, 𝐞 be the observed
values for them,  𝐘 be the remaining unobserved (hidden) variables and 𝐲 be
the exhaustive set of sequences of distinct variable/value pairs of the
unobserved variables 𝐘.

Note that {𝑋} ∪ 𝐄 ∪ 𝐘 is the set of all variables in the full joint distribution. 

𝐏(𝑋 ∣ 𝐞) = 𝛼 ∗ 𝐏(𝑋, 𝐞) = 𝛼 ∗ ∑
𝐲
𝐏(𝑋, 𝐞, 𝐲)

Subset of probabilities from
the full joint distribution



𝐏(𝑋 ∣ 𝐞) = 𝛼 ∗ 𝐏(𝑋, 𝐞) = 𝛼 ∗ ∑
𝐲
𝐏(𝑋, 𝐞, 𝐲)

𝑋 = {𝐶𝑎𝑣𝑖𝑡𝑦}, 𝐄 = {𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒}, 𝐞 = {𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒}, 𝐘 = {𝐶𝑎𝑡𝑐ℎ}, 𝐲 = {{𝑐𝑎𝑡𝑐ℎ}{¬𝑐𝑎𝑡𝑐ℎ}}

𝐏(𝐶𝑎𝑣𝑖𝑡𝑦 ∣ 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) = 𝛼 ∗ 𝐏(𝐶𝑎𝑣𝑖𝑡𝑦, 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)

= 𝛼 ∗ ∑
𝐲
𝐏(𝐶𝑎𝑣𝑖𝑡𝑦, 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒, 𝐲)

= 𝛼 ∗ 𝐏(𝐶𝑎𝑣𝑖𝑡𝑦, 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒, 𝑐𝑎𝑡𝑐ℎ) + 𝐏(𝐶𝑎𝑣𝑖𝑡𝑦, 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒, ¬𝑐𝑎𝑡𝑐ℎ)

= 𝛼 ∗ [⟨0.108,0.016⟩ + ⟨0.012 + 0.064⟩]

= 𝛼 ∗ ⟨0.12,0.08⟩ = ⟨0.6,0.4⟩

Marginalize

Normalize



𝐏(𝑋 ∣ 𝐞) = 𝛼 ∗ 𝐏(𝑋, 𝐞) = 𝛼 ∗ ∑
𝐲
𝐏(𝑋, 𝐞, 𝐲)

• The equation above can serve as a basis for an implementation of an 
inference procedure. 

• Unfortunately, it is not efficient:

• It requires an input table for the full joint distribution. Assuming 𝑛 variables, 

this would require a table size of 𝐎(2𝑛) and 𝐎(2𝑛) time to run the 

algorithm.
• It could be viewed as the theoretical foundation for development of more 

efficient reasoning techniques.

Truth Table Method 
TT-Entails

DPLL

𝐏(𝑋 ∣ 𝐞) = 𝛼 ∗ 𝐏(𝑋, 𝐞)
= 𝛼 ∗ ∑

𝐲
𝐏(𝑋, 𝐞, 𝐲)

?



A standard problem-solving heuristic in any area is to
break a larger problem up into smaller independent components

Divide and Conquer!

Suppose we extend out  joint distribution 𝐏(𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒, 𝐶𝑎𝑡𝑐ℎ, 𝐶𝑎𝑣𝑖𝑡𝑦)
with a new variable: 𝑊𝑒𝑎𝑡ℎ𝑒𝑟: {𝑠𝑢𝑛𝑛𝑦, 𝑟𝑎𝑖𝑛𝑦, 𝑐𝑙𝑜𝑢𝑑𝑦, 𝑠𝑛𝑜𝑤} 

𝐏(𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒, 𝐶𝑎𝑡𝑐ℎ, 𝐶𝑎𝑣𝑖𝑡𝑦,𝑊𝑒𝑎𝑡ℎ𝑒𝑟)

This would extend the joint distribution table from 8 to 32 values

(2 ∗ 2 ∗ 2 ∗ 4)

Given any values of the 4 variables, the product rule tells us: 

𝑃(𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ, 𝑐𝑎𝑡𝑐ℎ, 𝑐𝑎𝑣𝑖𝑡𝑦,𝑊𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑐𝑙𝑜𝑢𝑑𝑦) =

𝑃(𝑊𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑐𝑙𝑜𝑢𝑑𝑦 ∣ 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ, 𝑐𝑎𝑡𝑐ℎ, 𝑐𝑎𝑣𝑖𝑡𝑦) ∗ 𝑃(𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ, 𝑐𝑎𝑡𝑐ℎ, 𝑐𝑎𝑣𝑖𝑡𝑦)



𝑃(𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ, 𝑐𝑎𝑡𝑐ℎ, 𝑐𝑎𝑣𝑖𝑡𝑦,𝑊𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑐𝑙𝑜𝑢𝑑𝑦) =

𝑃(𝑊𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑐𝑙𝑜𝑢𝑑𝑦 ∣ 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ, 𝑐𝑎𝑡𝑐ℎ, 𝑐𝑎𝑣𝑖𝑡𝑦) ∗ 𝑃(𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ, 𝑐𝑎𝑡𝑐ℎ, 𝑐𝑎𝑣𝑖𝑡𝑦)

It would be intuitively correct to assume that weather has nothing to do with dentistry!

𝑃(𝑊𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑐𝑙𝑜𝑢𝑑𝑦 ∣ 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ, 𝑐𝑎𝑡𝑐ℎ, 𝑐𝑎𝑣𝑖𝑡𝑦) = 𝑃(𝑊𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑐𝑙𝑜𝑢𝑑𝑦)

From this we can infer:

𝑃(𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ, 𝑐𝑎𝑡𝑐ℎ, 𝑐𝑎𝑣𝑖𝑡𝑦,𝑊𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑐𝑙𝑜𝑢𝑑𝑦) = 𝑃(𝑊𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑐𝑙𝑜𝑢𝑑𝑦) ∗ 𝑃(𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ, 𝑐𝑎𝑡𝑐ℎ, 𝑐𝑎𝑣𝑖𝑡𝑦)

𝐏(𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ, 𝐶𝑎𝑡𝑐ℎ, 𝐶𝑎𝑣𝑖𝑡𝑦,𝑊𝑒𝑎𝑡ℎ𝑒𝑟) = 𝐏(𝑊𝑒𝑎𝑡ℎ𝑒𝑟) ∗ 𝐏(𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ, 𝐶𝑎𝑡𝑐ℎ, 𝐶𝑎𝑣𝑖𝑡𝑦)

More generally:

8 element table4 element table

Via partitioning/independence the joint table can be specified using 12 parameters instead of 32.

Independence assumptions might be a basis for more efficient inference techniques!



Independence assertions can both reduce the size of the domain 
representation and make the inferencing problem more efficient.

Coin Flipping DomainDentristry Domain



Independence between variables 𝑋, 𝑌 can be written as follows:

𝑃(𝑋 ∣ 𝑌) = 𝑃(𝑋) or 𝑃(𝑌 ∣ 𝑋) = 𝑃(𝑌) or 𝑃(𝑋, 𝑌) = 𝑃(𝑋) ∗ 𝑃(𝑌)

• Independence assumptions are domain dependent
• If the set of variables can be divided into independent subsets, 

then the full joint probability distribution can be factored into separate 
distributions  on those subsets

• This in turn implies a reduction in the size of the domain representation 
and in the complexity of the inference problem



The conditional independence of two variables 𝑋 and 𝑌, given a third variable 𝑍 is,

𝑃(𝑋, 𝑌 ∣ 𝑍) = 𝑃(𝑋 ∣ 𝑍) ∗ 𝑃(𝑌 ∣ 𝑍)

Equivalently,

𝑃(𝑋 ∣ 𝑌, 𝑍) = 𝑃(𝑋 ∣ 𝑍) and 𝑃(𝑌 ∣ 𝑋, 𝑍) = 𝑃(𝑌 ∣ 𝑍)

Suppose 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 and 𝐶𝑎𝑡𝑐ℎ are independent given 𝐶𝑎𝑣𝑖𝑡𝑦, then 

𝑃(𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒, 𝐶𝑎𝑡𝑐ℎ ∣ 𝐶𝑎𝑣𝑖𝑡𝑦) = 𝑃(𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 ∣ 𝐶𝑎𝑣𝑖𝑡𝑦) ∗ 𝑃(𝐶𝑎𝑡𝑐ℎ ∣ 𝐶𝑎𝑣𝑖𝑡𝑦) 

Each is directly caused by 𝐶𝑎𝑣𝑖𝑡𝑦, but neither has a direct effect on the other

They are not absolutely  independent because if a probe catches in
a tooth, it probably has a cavity and that probably causes a toothache.



• Conditional independence assertions allow probabilistic systems 
to scale up by permitting compact representation of full joint 
distributions.

• This insight will be used to advantage with Bayesian Networks

• The decomposition of large probabilistic domains into weakly 
connected subsets via conditional independence assumptions is 
one of the most important developments before the deep
learning breakthrough.



• Full joint probability distributions can answer any question about 
a modelled domain.

• Intractably large as the number of variables grows

• Specifying probabilities for all atomic events is difficult to do

• Independence and conditional independence assumptions greatly 
reduce the number of probabilities/parameters needed to be 
specified in order to define  full joint probability distributions

• Bayesian Networks are data structures that represent 
dependencies among variables and give precise specifications of 
any full joint probability distribution in a concise manner. 



• A Bayesian Network is a directed graph where each node is 
annotated with quantitative probability information:

1. A set of random variables makes up the nodes in the network

2. A set of directed arrows connects pairs of nodes. If there is 
an arrow from 𝑋 to 𝑌, 𝑋 is said to be the parent of 𝑌

3. Each node 𝑋𝑖 has a conditional probability distribution 𝑃(𝑋𝑖
∣ 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) that quantifies the effect of the parents on the 
node

4. The graph has no cycles. It is a DAG (directed, acyclic graph)



𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 and 𝐶𝑎𝑡𝑐ℎ are conditionally independent of 𝐶𝑎𝑣𝑖𝑡𝑦

𝑊𝑒𝑎𝑡ℎ𝑒𝑟 is independent of the other three variables



• A person installs a new burglar alarm at home. It responds to burglaries, but may 
also respond to earthquakes on occasion.

• The person has two neighbors, John and Mary, who promise to call you at work 
when the alarm goes off.

• John always calls when he hears the alarm, but sometimes confuses the 
telephone ringing with the alarm sound.

• Mary, who likes loud music sometimes misses the alarm altogether

• Queries

• Given evidence of who has or has not called, estimate the probability of a 
burglary: 

• P(burglary | john, mary)



.95

.94

.29

.001

𝑃(𝐴 = 𝑓𝑎𝑙𝑠𝑒 ∣ 𝑏, 𝑒) = 0.05

𝑃(𝐸 = 𝑓𝑎𝑙𝑠𝑒) = 0.998

Note: Conditional table for 𝐴𝑙𝑎𝑟𝑚 

is from 4th Ed (Global Edition).
In R&N:4th Ed (standard), It is different.



We are interested in computing entries in the joint probability distribution:

𝑃(𝑋1 = 𝑥1 ∧ ⋯∧ 𝑋𝑛 = 𝑥𝑛) abbreviated 𝑃(𝑥1, … , 𝑥𝑛)

This is defined as: 𝑃(𝑥1, … , 𝑥𝑛) = ∏
𝑖=1

𝑛

𝑃(𝑥𝑖 ∣ 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) 

where 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖) denotes the specific values of variables in 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖) 

For example, what is the probability that the alarm has sounded, but neither 
earthquake nor burglary has occurred and both John and Mary call?

= 0.998 ∗ 0.999 ∗ 0.001 ∗ 0.70 ∗ 0.90 

= 0.00062811126 ≈ 0.0006 ≈ 0.06% 

𝑃(¬𝑒,¬𝑏, 𝑎,𝑚, 𝑗) = 𝑃(¬𝑒) ∗ 𝑃(¬𝑏) ∗ 𝑃(𝑎 ∣ ¬𝑒,¬𝑏) ∗ 𝑃(𝑚 ∣ 𝑎) ∗ 𝑃(𝑗 ∣ 𝑎)

.95

.94

.29

.001



The chain rule can be used to factor a joint distribution into a product of conditional distributions:

𝐏(𝑋1, … , 𝑋𝑛) = 𝐏(𝑋𝑛 ∣ 𝑋𝑛−1, … , 𝑋1) ∗ 𝐏(𝑋𝑛−1 ∣ 𝑋𝑛−2, … , 𝑋1) ∗ ⋯∗ 𝐏(𝑋2 ∣ 𝑋1) ∗ 𝐏(𝑋1)

𝐏(𝑋1, … , 𝑋𝑛) = ∏
𝑖=1

𝑛

𝐏(𝑋𝑖 ∣ 𝑋𝑖−1, …𝑋1)

From the semantics of Bayesian Networks, we know:

𝑃(𝑥1, … , 𝑥𝑛) = ∏
𝑖=1

𝑛

𝑃(𝑥𝑖 ∣ 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) 

In general: 

𝐏(𝑋1, … , 𝑋𝑛) = ∏
𝑖=1

𝑛

𝐏(𝑋𝑖 ∣ 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) 



Chain Rule: 𝐏(𝑋1, … , 𝑋𝑛) = ∏
𝑖=1

𝑛

𝐏(𝑋𝑖 ∣ 𝑋𝑖−1, … 𝑋1) 

Semantics of BN: 𝐏(𝑋1, … , 𝑋𝑛) = ∏
𝑖=1

𝑛

𝐏(𝑋𝑖 ∣ 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) 

From the above, for every variable 𝑋𝑖  in the network:

𝐏(𝑋𝑖 ∣ 𝑋𝑖−1, …𝑋1) = 𝐏(𝑋𝑖 ∣ 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) provided 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖) ⊆ {𝑋𝑖−1, … , 𝑋1} 

This is satisfied by ordering the nodes in topological order relative to graph structure: 

𝑋1: 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒, 𝑋2: 𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦, 𝑋3: 𝐴𝑙𝑎𝑟𝑚, 𝑋4:𝑀𝑎𝑟𝑦𝐶𝑎𝑙𝑙𝑠, 𝑋5: 𝐽𝑜ℎ𝑛𝐶𝑎𝑙𝑙𝑠 

Causes precede Effects

The Bayesian Network is a correct representation of the domain only if each
node is conditionally independent of other predecessors in the node ordering, given its parents.

𝑋𝑖 ⊥⊥ {𝑋𝑖−1, …𝑋1} ∖ 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖) ∣ 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)



Let 𝑋 be the query variable, 𝐄  be the evidence variables, 𝐞 be the observed

values for them,  𝐘 be the remaining unobserved (hidden) variables and 𝐲 be

The exhaustive set of sequences of distinct variable/value pairs of the

unobserved variables 𝐘.

Note that {𝑋} ∪ 𝐄 ∪ 𝐘 is the set of all variables in the full joint distribution. 

𝐏(𝑋 ∣ 𝐞) = 𝛼 ∗ 𝐏(𝑋, 𝐞) = 𝛼 ∗ ∑
𝐲
𝐏(𝑋, 𝐞, 𝐲)
Subset of probabilities from
the full joint distribution

We know that the terms 𝐏(𝑋, 𝐞, 𝐲) in the joint distribution can be written 

as products of conditional probabilities from the network. So, a query is 
answered by computing the sums of products of conditional probabilities 
from the network.



Query: 𝐏(𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦 ∣ 𝑗𝑜ℎ𝑛𝑐𝑎𝑙𝑙𝑠,𝑚𝑎𝑟𝑦𝑐𝑎𝑙𝑙𝑠)

𝐏(𝑋 ∣ 𝐞) = 𝛼 ∗ 𝐏(𝑋, 𝐞) = 𝛼 ∗ ∑
𝐲
𝐏(𝑋, 𝐞, 𝐲)

𝑋 = {𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦}
𝐄 = {𝐽𝑜ℎ𝑛𝐶𝑎𝑙𝑙𝑠,𝑀𝑎𝑟𝑦𝐶𝑎𝑙𝑙𝑠}
𝐞 = {𝑗𝑜ℎ𝑛𝑐𝑎𝑙𝑙𝑠,𝑚𝑎𝑟𝑦𝑐𝑎𝑙𝑙𝑠}
𝐘 = {𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒, 𝐴𝑙𝑎𝑟𝑚}

𝐏(𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦 ∣ 𝑗𝑜ℎ𝑛𝑐𝑎𝑙𝑙𝑠,𝑚𝑎𝑟𝑦𝑐𝑎𝑙𝑙𝑠) = 𝛼𝐏(𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦, 𝑗𝑜ℎ𝑛𝑐𝑎𝑙𝑙𝑠,𝑚𝑎𝑟𝑦𝑐𝑎𝑙𝑙𝑠)

= 𝛼∑
𝐲
𝐏(𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦, 𝑗𝑜ℎ𝑛𝑐𝑎𝑙𝑙𝑠,𝑚𝑎𝑟𝑦𝑐𝑎𝑙𝑙𝑠, 𝐲)

= 𝛼[𝐏(𝐵, 𝑗,𝑚, 𝑒, 𝑎) + 𝐏(𝐵, 𝑗,𝑚, 𝑒, ¬𝑎) + 𝐏(𝐵, 𝑗,𝑚,¬𝑒, 𝑎) + 𝐏(𝐵, 𝑗,𝑚,¬𝑒,¬𝑎)]

= 𝛼∑
𝐞
∑
𝐚
𝐏(𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦, 𝑗𝑜ℎ𝑛𝑐𝑎𝑙𝑙𝑠,𝑚𝑎𝑟𝑦𝑐𝑎𝑙𝑙𝑠, 𝐞, 𝐚)



= 𝛼∑
𝐞
∑
𝐚
𝐏(𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦, 𝑗𝑜ℎ𝑛𝑐𝑎𝑙𝑙𝑠,𝑚𝑎𝑟𝑦𝑐𝑎𝑙𝑙𝑠, 𝐞, 𝐚)

= 𝛼[𝐏(𝐵, 𝑗,𝑚, 𝑒, 𝑎) + 𝐏(𝐵, 𝑗,𝑚, 𝑒, ¬𝑎) + 𝐏(𝐵, 𝑗,𝑚,¬𝑒, 𝑎) + 𝐏(𝐵, 𝑗,𝑚,¬𝑒,¬𝑎)]

𝑃(𝑏, 𝑗,𝑚, 𝑒, 𝑎) = 𝑃(𝑒) ∗ 𝑃(𝑏) ∗ 𝑃(𝑎 ∣ 𝑒, 𝑏) ∗ 𝑃(𝑚 ∣ 𝑎) ∗ 𝑃(𝑗 ∣ 𝑎)

𝑃(¬𝑏, 𝑗,𝑚, 𝑒, 𝑎) = 𝑃(𝑒) ∗ 𝑃(¬𝑏) ∗ 𝑃(𝑎 ∣ 𝑒, ¬𝑏) ∗ 𝑃(𝑚 ∣ 𝑎) ∗ 𝑃(𝑗 ∣ 𝑎)

= 0.002 ∗ 0.001 ∗ 0.95 ∗ 0.70 ∗ 0.90 = 1.197 ∗ 10−6

= 0.002 ∗ 0.999 ∗ 0.29 ∗ 0.70 ∗ 0.90 = 0.0003650346

𝐏(𝐵, 𝑗,𝑚, 𝑒, 𝑎) = ⟨𝑃(𝑏, 𝑗,𝑚, 𝑒, 𝑎), 𝑃(¬𝑏, 𝑗, 𝑚, 𝑒, 𝑎)⟩ = ⟨1.197 ∗ 10−6, 0.0003650346⟩

𝑃(𝑏, 𝑗, 𝑚, 𝑒, ¬𝑎) = 𝑃(𝑒) ∗ 𝑃(𝑏) ∗ 𝑃(¬𝑎 ∣ 𝑒, 𝑏) ∗ 𝑃(𝑚 ∣ ¬𝑎) ∗ 𝑃(𝑗 ∣ ¬𝑎)

𝑃(¬𝑏, 𝑗,𝑚, 𝑒, ¬𝑎) = 𝑃(𝑒) ∗ 𝑃(¬𝑏) ∗ 𝑃(¬𝑎 ∣ 𝑒, ¬𝑏) ∗ 𝑃(𝑚 ∣ ¬𝑎) ∗ 𝑃(𝑗 ∣ ¬𝑎)
= 0.002 ∗ 0.001 ∗ 0.71 ∗ 0.01 ∗ 0.05 = 7.1 ∗ 10−10

= 0.002 ∗ 0.001 ∗ 0.05 ∗ 0.01 ∗ 0.05 = 5 ∗ 10−11

𝐏(𝐵, 𝑗,𝑚, 𝑒, ¬𝑎) = ⟨𝑃(𝑏, 𝑗,𝑚, 𝑒, ¬𝑎), 𝑃(¬𝑏, 𝑗, 𝑚, 𝑒, ¬𝑎)⟩ = ⟨5 ∗ 10−11, 7.1 ∗ 10−10⟩



𝐏(𝐵, 𝑗,𝑚, ¬𝑒, 𝑎) = ⟨𝑃(𝑏, 𝑗, 𝑚,¬𝑒, 𝑎), 𝑃(¬𝑏, 𝑗, 𝑚, ¬𝑒, 𝑎)⟩ = ⟨0.0005910156,0.00062811126⟩

𝑃(𝑏, 𝑗,𝑚,¬𝑒, 𝑎) = 𝑃(¬𝑒) ∗ 𝑃(𝑏) ∗ 𝑃(𝑎 ∣ ¬𝑒, 𝑏) ∗ 𝑃(𝑚 ∣ 𝑎) ∗ 𝑃(𝑗 ∣ 𝑎)

𝑃(¬𝑏, 𝑗,𝑚,¬𝑒, 𝑎) = 𝑃(¬𝑒) ∗ 𝑃(¬𝑏) ∗ 𝑃(𝑎 ∣ ¬𝑒,¬𝑏) ∗ 𝑃(𝑚 ∣ 𝑎) ∗ 𝑃(𝑗 ∣ 𝑎)

= 0.998 ∗ 0.001 ∗ 0.94 ∗ 0.70 ∗ 0.90 = 0.0005910156

= 0.998 ∗ 0.999 ∗ 0.001 ∗ 0.70 ∗ 0.90 = 0.0062811126

𝐏(𝐵, 𝑗,𝑚,¬𝑒, ¬𝑎) = ⟨𝑃(𝑏, 𝑗, 𝑚,¬𝑒, ¬𝑎), 𝑃(¬𝑏, 𝑗, 𝑚,¬𝑒, ¬𝑎)⟩ = ⟨2.99 ∗ 10−8, 0.00049351599⟩

𝑃(𝑏, 𝑗,𝑚,¬𝑒,¬𝑎) = 𝑃(¬𝑒) ∗ 𝑃(𝑏) ∗ 𝑃(¬𝑎 ∣ ¬𝑒, 𝑏) ∗ 𝑃(𝑚 ∣ ¬𝑎) ∗ 𝑃(𝑗 ∣ ¬𝑎)

𝑃(¬𝑏, 𝑗, 𝑚,¬𝑒,¬𝑎) = 𝑃(¬𝑒) ∗ 𝑃(¬𝑏) ∗ 𝑃(¬𝑎 ∣ ¬𝑒,¬𝑏) ∗ 𝑃(𝑚 ∣ ¬𝑎) ∗ 𝑃(𝑗 ∣ ¬𝑎)

= 0.998 ∗ 0.001 ∗ 0.06 ∗ 0.01 ∗ 0.05 = 2.99 ∗ 10−8

= 0.998 ∗ 0.999 ∗ 0.99 ∗ 0.01 ∗ 0.05 = 0.00049351599

𝛼[⟨0.0006032851,0.001486669⟩] = ⟨0.288659,0.711340⟩

𝛼[⟨1.197 ∗ 10−6, 0.0003650346⟩ + ⟨5 ∗ 10−11, 7.1 ∗ 10−10⟩ + ⟨0.0005910156,0.00062811126⟩ + ⟨2.99 ∗ 10−8, 0.00049351599⟩

28.9%chance of a burglary. An increase from the prior chance of 0.1% 



Evaluating Car Insurance Applications



The product rule states: 𝑃(𝑥, 𝑦) = 𝑃(𝑥 ∣ 𝑦) ∗ 𝑃(𝑦) = 𝑃(𝑦 ∣ 𝑥) ∗ 𝑃(𝑥)

From this we can derive:
𝑃(𝑦 ∣ 𝑥) =

𝑃(𝑥 ∣ 𝑦) ∗ 𝑃(𝑦)

𝑃(𝑥)

The more general case for multi-valued variables: 

𝐏(𝑌 ∣ 𝑋) =
𝐏(𝑋 ∣ 𝑌) ∗ 𝐏(𝑌)

𝐏(𝑋)

A generalized version conditionalized on some evidence 𝐞: 

𝐏(𝑌 ∣ 𝑋, 𝐞) =
𝐏(𝑋 ∣ 𝑌, 𝐞) ∗ 𝐏(𝑌 ∣ 𝐞)

𝐏(𝑋 ∣ 𝐞)



Bayes’ Rule has widespread applications:

𝐏(𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 ∣ 𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒) =
𝐏(𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒 ∣ 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠) ∗ 𝐏(𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠)

𝐏(𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒)

Scientific Theories

𝐏(𝐶𝑎𝑢𝑠𝑒 ∣ 𝐸𝑓𝑓𝑒𝑐𝑡) =
𝐏(𝐸𝑓𝑓𝑒𝑐𝑡 ∣ 𝐶𝑎𝑢𝑠𝑒) ∗ 𝐏(𝐶𝑎𝑢𝑠𝑒)

𝐏(𝐸𝑓𝑓𝑒𝑐𝑡)

Causal Reasoning

𝐏(𝐷𝑖𝑠𝑒𝑎𝑠𝑒 ∣ 𝑆𝑦𝑚𝑝𝑡𝑜𝑚𝑠) =
𝐏(𝑆𝑦𝑚𝑝𝑡𝑜𝑚𝑠 ∣ 𝐷𝑖𝑠𝑒𝑎𝑠𝑒) ∗ 𝐏(𝐷𝑖𝑠𝑒𝑎𝑠𝑒)

𝐏(𝑆𝑦𝑚𝑝𝑡𝑜𝑚𝑠)

Diagnosis



𝐏(𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 ∣ 𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒) =
𝐏(𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒 ∣ 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠) ∗ 𝐏(𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠)

𝐏(𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒)

Given a prior probability for a hypothesis, 𝐏(𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠), upon receiving new evidence, where 

its prior probability has already been given, 𝐏(𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒), what is my revised belief for the 

hypothesis in the context of the new evidence: 𝐏(𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 ∣ 𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒)

𝐏(𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠),  is called the prior probability for the hypothesis and 

𝐏(𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 ∣ 𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒), is called the posterior probability for the hypothesis



Doctors often know how many patients with a given disease exhibit various symptoms:

𝐏(𝑆𝑡𝑖𝑓𝑓𝑁𝑒𝑐𝑘 ∣ 𝑀𝑒𝑛𝑖𝑛𝑔𝑖𝑡𝑖𝑠) = 0.5

Doctors generally also know some unconditional facts:

𝐏(𝑀𝑒𝑛𝑖𝑛𝑔𝑖𝑡𝑖𝑠) =
1

50,000
, 𝐏(𝑆𝑡𝑖𝑓𝑓𝑁𝑒𝑐𝑘) =

1

20

What is the probability a patient has Meningitis given evidence of a stiff neck?

𝐏(𝐷𝑖𝑠𝑒𝑎𝑠𝑒 ∣ 𝑆𝑦𝑚𝑝𝑡𝑜𝑚𝑠) =
𝐏(𝑆𝑦𝑚𝑝𝑡𝑜𝑚𝑠 ∣ 𝐷𝑖𝑠𝑒𝑎𝑠𝑒) ∗ 𝐏(𝐷𝑖𝑠𝑒𝑎𝑠𝑒)

𝐏(𝑆𝑦𝑚𝑝𝑡𝑜𝑚𝑠)

𝐏(𝑀𝑒𝑛𝑖𝑛𝑔𝑖𝑡𝑖𝑠 ∣ 𝑆𝑡𝑖𝑓𝑓𝑁𝑒𝑐𝑘) =
𝐏(𝑆𝑡𝑖𝑓𝑓𝑁𝑒𝑐𝑘 ∣ 𝑀𝑒𝑛𝑖𝑛𝑔𝑖𝑡𝑖𝑠) ∗ 𝐏(𝑀𝑒𝑛𝑖𝑛𝑔𝑖𝑡𝑖𝑠)

𝐏(𝑆𝑡𝑖𝑓𝑓𝑁𝑒𝑐𝑘)

=
0.5 ∗

1
50,000
1
20

= 0.0002 =
1

5000
A marked increase from 

1

50,000
 



𝐏(𝑌 ∣ 𝑋, 𝐞) =
𝐏(𝑋 ∣ 𝑌, 𝐞) ∗ 𝐏(𝑌 ∣ 𝐞)

𝐏(𝑋 ∣ 𝐞)

𝐏(𝑀𝑒𝑛𝑖𝑛𝑔𝑖𝑡𝑖𝑠 ∣ 𝑆𝑡𝑖𝑓𝑓𝑁𝑒𝑐𝑘, 𝑆𝑤𝑜𝑙𝑙𝑒𝑛𝐵𝑟𝑎𝑖𝑛) =
𝐏(𝑆𝑡𝑖𝑓𝑓𝑁𝑒𝑐𝑘 ∣ 𝑀𝑒𝑛𝑖𝑛𝑔𝑖𝑡𝑖𝑠, 𝑆𝑤𝑜𝑙𝑙𝑒𝑛𝐵𝑟𝑎𝑖𝑛) ∗ 𝐏(𝑀𝑒𝑛𝑖𝑛𝑔𝑖𝑡𝑖𝑠 ∣ 𝑆𝑤𝑜𝑙𝑙𝑒𝑛𝐵𝑟𝑎𝑖𝑛)

𝐏(𝑆𝑡𝑖𝑓𝑓𝑁𝑒𝑐𝑘 ∣ 𝑆𝑤𝑜𝑙𝑙𝑒𝑛𝐵𝑟𝑎𝑖𝑛)

Normalized Baye’s Rule

𝐏(𝑌 ∣ 𝑋) =
𝐏(𝑋 ∣ 𝑌) ∗ 𝐏(𝑌)

𝐏(𝑋)
= 𝛼𝐏(𝑋 ∣ 𝑌) ∗ 𝐏(𝑌)

where 𝛼 =
1

𝐏(𝑋)
=

1

∑𝐲𝐏(𝑋∣𝐲)∗𝐏(𝐲)
 

To avoid assessing the evidence (denominator):

All entries 𝐏(𝑌 ∣ 𝑋) should sum to 1.



Suppose we have a model with  single  𝐶𝑎𝑢𝑠𝑒 that influences many 𝐸𝑓𝑓𝑒𝑐𝑡𝑠:

or one 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 that has many 𝑆𝑦𝑚𝑝𝑡𝑜𝑚𝑠:

𝐏(𝐶𝑎𝑢𝑠𝑒, 𝐸𝑓𝑓𝑒𝑐𝑡1, … , 𝐸𝑓𝑓𝑒𝑐𝑡𝑛)

We assume the  𝐸𝑓𝑓𝑒𝑐𝑡′𝑠 variables are independent of each other given 𝐶𝑎𝑢𝑠𝑒

𝐏(𝐷𝑖𝑠𝑒𝑎𝑠𝑒, 𝑆𝑦𝑚𝑝𝑡𝑜𝑚1, … , 𝑆𝑦𝑚𝑝𝑡𝑜𝑚𝑛)

Due to this independence, we can derive:

𝐏(𝐶𝑎𝑢𝑠𝑒, 𝐸𝑓𝑓𝑒𝑐𝑡1, … , 𝐸𝑓𝑓𝑒𝑐𝑡𝑛) = 𝐏(𝐶𝑎𝑢𝑠𝑒) ∗ ∏
𝑖=1

𝑛

𝐏(𝐸𝑓𝑓𝑒𝑐𝑡𝑖 ∣ 𝐶𝑎𝑢𝑠𝑒)



𝐏(𝐶𝑎𝑢𝑠𝑒, 𝐸𝑓𝑓𝑒𝑐𝑡1, … , 𝐸𝑓𝑓𝑒𝑐𝑡𝑛) = 𝐏(𝐶𝑎𝑢𝑠𝑒) ∗ ∏
𝑖=1

𝑛

𝐏(𝐸𝑓𝑓𝑒𝑐𝑡𝑖 ∣ 𝐶𝑎𝑢𝑠𝑒)

We know that: 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 ⊥⊥ 𝐶𝑎𝑡𝑐ℎ ∣ 𝐶𝑎𝑣𝑖𝑡𝑦

𝐏(𝐶𝑎𝑣𝑖𝑡𝑦, 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒, 𝐶𝑎𝑡𝑐ℎ) = 𝐏(𝐶𝑎𝑣𝑖𝑡𝑦) ∗ ∏
𝑖=1

𝑛

𝐏(𝐸𝑓𝑓𝑒𝑐𝑡𝑖 ∣ 𝐶𝑎𝑣𝑖𝑡𝑦)

= 𝐏(𝐶𝑎𝑣𝑖𝑡𝑦) ∗ 𝐏(𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 ∣ 𝐶𝑎𝑣𝑖𝑡𝑦) ∗ 𝐏(𝐶𝑎𝑡𝑐ℎ ∣ 𝐶𝑎𝑣𝑖𝑡𝑦)

Naive Bayes modeling is used even when there are dependencies
 among effects due to its efficiency and correctness of output



We are often in situations where we would like to classify something
given a set of observations ( features, attributes) about that something.

Given a set of random variables 𝑂1, … , 𝑂𝑛  representing a set of observations and a random 

variable 𝐶 representing classes, we are interested in the joint probability distribution 

𝐏(𝐶, 𝑂1, … , 𝑂𝑛), and in  particular, a way to compute 𝐏(𝐶 ∣ 𝑂1:𝑛)

∀𝑖, 𝑗: 𝑖 ≠ 𝑗. 𝑂𝑖 ⊥⊥ 𝑂𝑗 ∣ 𝐶Independence
 assumption



𝐏(𝐶, 𝑂1:𝑛) = 𝐏(𝐶) ∏
𝑖=1

𝑛

𝐏(𝑂𝑖 ∣ 𝐶) Naive Bayes

𝐏(𝐶 ∣ 𝑂1:𝑛) =
𝐏(𝐶, 𝑂1:𝑛)

𝐏(𝑂1:𝑛)
=

𝐏(𝐶, 𝑂1:𝑛)

∑𝑐𝐏(𝑐, 𝑂1:𝑛)
= 𝛼𝐏(𝐶, 𝑂1:𝑛) Conditional 

𝐏(𝐶 ∣ 𝑂1:𝑛) = 𝛼𝐏(𝐶, 𝑂1:𝑛) Normalization

𝐏(𝐶, ∣ 𝑂1:𝑛) = 𝛼𝐏(𝐶) ∏
𝑖=1

𝑛

𝐏(𝑂𝑖 ∣ 𝐶) Substitution



Belief state is a probability distribution on possible worlds

Principle of Maximum Expected Utility (MEU)

An agent chooses the action that yields the highest expected 
utility, averaged over all possible outcomes of the action



Choose: The action that maximises utility in any context!

best−action = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑐𝑡𝑖𝑜𝑛𝐸𝑈(𝑎𝑐𝑡𝑖𝑜𝑛 ∣ 𝐞)

Decision Theoretic Agent

Best-action

e 

𝐸𝑈(𝖺𝖼𝗍𝗂𝗈𝗇 ∣ 𝐞) = ∑
𝑠𝑡𝑎𝑡𝑒′

𝑃(𝑟𝑒𝑠𝑢𝑙𝑡(𝖺𝖼𝗍𝗂𝗈𝗇) = 𝑠𝑡𝑎𝑡𝑒′ ∣ 𝖺𝖼𝗍𝗂𝗈𝗇, 𝐞)𝑈(𝑠𝑡𝑎𝑡𝑒′)

What is my expected utility/goodness when executing an action?

Take the weighted average of the utilities for states an action can cause



www.ida.liu.se/~TDDC17
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