Artificial Intelligence Logic 4: First-Order Logic

Jendrik Seipp

Linköping University

First-Order Logic

What is First-Order Logic?

- First-order logic (FOL) is a formal system used in mathematics, philosophy, linguistics, and computer science.
- It allows for the expression of statements involving objects and their relationships.
- FOL extends propositional logic by introducing quantifiers, predicates, and functions.

Example 1: Universal Quantification

- Statement: "All humans are mortal."
- Formalization: $\forall x(\text{Human}(x) \rightarrow \text{Mortal}(x))$

Syntax of First-Order Logic

Definition (Formulas)

- Every constant and variable is a term.
- If t_1, t_2, \ldots, t_n are terms and f is an n-ary function symbol, then $f(t_1, t_2, \ldots, t_n)$ is a term.
- If t_1, t_2, \ldots, t_n are terms, then $P(t_1, t_2, \ldots, t_n)$ is an atomic formula.
- If φ is a formula, then $\neg \varphi$ is a formula (negation).
- If φ and ψ are formulas, then so are:
 - $(\varphi \land \psi)$ (conjunction)
 - $(\varphi \lor \psi)$ (disjunction)
 - $(\varphi \rightarrow \psi)$ (implication)
 - $(\varphi \leftrightarrow \psi)$ (biconditional)
- If φ is a formula and x is a variable, then the following are formulas:
 - $\forall x \phi$ (universal quantifier)
 - $\exists x \phi$ (existential quantifier)

Semantics of First-Order Logic

Let I be an interpretation for a first-order language \mathcal{L} , including:

- A domain *D* of discourse (a non-empty set).
- An interpretation c^l, f^l, P^l for each constant symbol c, n-ary function symbol f, and n-ary predicate symbol P over D.

Definition ($I \models \varphi$)

$$\blacksquare I \models P(t_1, t_2, \ldots, t_n) \text{ iff } (t_1^l, t_2^l, \ldots, t_n^l) \in P^l.$$

$$\blacksquare \ I \models \neg \varphi \text{ iff } I \not\models \varphi.$$

I
$$\models \varphi \land \psi$$
 iff $I \models \varphi$ and $I \models \psi$.

$$I \models \varphi \lor \psi \text{ iff } I \models \varphi \text{ or } I \models \psi.$$

$$\blacksquare \ \mathit{I} \models \varphi \rightarrow \psi \text{ iff } \mathit{I} \not\models \varphi \text{ or } \mathit{I} \models \psi.$$

■
$$I \models \varphi \leftrightarrow \psi$$
 iff $I \models \varphi$ and $I \models \psi$, or $I \not\models \varphi$ and $I \not\models \psi$.

■ $I \models \forall x \varphi$ iff for every $d \in D$, $I[x \mapsto d] \models \varphi$.

■ $I \models \exists x \varphi$ iff there exists $d \in D$ such that $I[x \mapsto d] \models \varphi$.

Comparison with Propositional Logic

Propositional Logic vs. First-Order Logic

Propositional Logic:

- Deals with propositions that are either true or false.
- Example: $P \land Q$, where P and Q are propositions.

First-Order Logic:

- Deals with predicates, quantifiers, and functions.
- Example: $\forall x (P(x) \rightarrow Q(x))$, where P and Q are predicates.

Why Use First-Order Logic?

- FOL is more expressive than propositional logic.
- Allows for reasoning about the properties of objects and their relationships.
- Essential for formalizing mathematical theorems, computer programs, and linguistic statements.

Grounding First-Order Logic to Propositional Logic

We can convert FOL formulas into propositional logic by replacing variables with all possible values from the domain.

Example

- **FOL Statement:** $\forall x (\text{Human}(x) \rightarrow \text{Mortal}(x))$
- Domain: {a, b} (representing specific humans)
- Grounding Steps:
 - Replace x by each element in the domain.
 - Human $(a) \rightarrow Mortal(a)$
 - Human $(b) \rightarrow Mortal(b)$
- Grounded Propositional Logic:
 - $P \rightarrow Q$ where P = Human(a) and Q = Mortal(a)
 - $R \rightarrow S$ where R = Human(b) and S = Mortal(b)

Examples

Example 2: Existential Quantification

Statement: "There exists a person who is a genius."

Example 2: Existential Quantification

- Statement: "There exists a person who is a genius."
- Formalization: $\exists x (Person(x) \land Genius(x))$

Example 3: Relations

Statement: "Some people love everyone."

Example 3: Relations

- Statement: "Some people love everyone."
- Formalization: $\exists x \forall y (Loves(x, y))$

Example 4: Combining Quantifiers

Statement: "Every student in the class has submitted an answer."

Example 4: Combining Quantifiers

- Statement: "Every student in the class has submitted an answer."
- Formalization:

 $\forall x(\text{Student}(x) \rightarrow \exists y(\text{Answer}(y) \land \text{Submitted}(x, y)))$

Example 5: Multiple Relations

Statement: "Every dog has a master who loves it."

Example 5: Multiple Relations

- Statement: "Every dog has a master who loves it."
- Formalization:

 $\forall x (\text{Dog}(x) \rightarrow \exists y (\text{Human}(y) \land \text{MasterOf}(y, x) \land \text{Loves}(y, x)))$

Example 6: Negation with Quantifiers

Statement: "Not every student likes math."

Example 6: Negation with Quantifiers

- Statement: "Not every student likes math."
- Formalization: $\neg \forall x (Student(x) \rightarrow LikesMath(x))$
- **Equivalent:** $\exists x (\text{Student}(x) \land \neg \text{LikesMath}(x))$

Example 7: Using Functions

Statement: "The mother of every child is a woman."

Example 7: Using Functions

- Statement: "The mother of every child is a woman."
- Formalization: $\forall x (Child(x) \rightarrow Woman(motherOf(x)))$