Lab 2: Adversarial search

Adversarial search is a particular type of search, that applies to games with multiple
players that are competing against each others. The main challenge lies in anticipating the
opposing player’s (or players’) moves, with the assumption that they will try to thwart our
progress to the best of their abilities.

This lab’s objective is to use adversarial search algorithms to create a basic Al player for
the two-player game of Kalah. You will implement in Python the MinMax algorithm, as well
as an optimization that relies on Alpha-Beta pruning. By the end of the session, you should
have a better understanding of the dynamics of adversarial search, and the limitations of the
algorithms seen in class.

Section 1 presents the setting of the game we will work with, and Section 2 the interface
of the code you will have to complete. Sections 3 and 4 contain the first questions and
coding assignments.

1 The Game of Kalah

In this lab, we will play with the game of Kalah, which is a deterministic two-players game
with perfect information. On their respective side of the board, each player has n pits, as
well as one special pit on their right called “store” or “Kalah”. Initially, all pits (that are
not stores) are filled with m seeds.

The standard game usually involves n = 6 pits and m = 4 seeds. With these dimensions,
the game is usually hard to handle for the algorithm, which is why we will start by playing
with smaller values of n and m, such as n =m = 3.

Rules of the game Players take turns moving. On your turn, you select one of your pits
and distribute its seeds counterclockwise.



Lab 2: Adversarial Search TDDC17 - Artificial Intelligence

e Extra turn: If the last seed lands in your store, you get another turn.

e Capture: If the last seed lands in an empty pit on your side and the opposite pit is
non-empty, you capture both the seed and the contents of the opposite pit and place
them in your store.

e Ending conditions: The game ends when all pits on one player’s side are empty.
The remaining seeds on the opponent’s side go into the store of the opponent. The
player who gathered the most seeds in their store wins.

With the code provided, you can try the game against another human player, or against
an Al that plays randomly.

2 Interface

You will implement the algorithms in file ai.py, where the skeleton is already provided. An
example Al player is provided as class Random, which implements a player that randomly
chooses an action among those available.

Al player Each Al player should extend class Al. It has to implement the static method
best_move, which outputs the move chosen by the Al player. Its signature is as follows:

best_move (current_state: State, objective: Objective) —> int

where
e current_state is the state on which the AI has to make a decision;

e objective is either Objective. MAX or Objective. MIN, depending on whether the Al is
player 0 (and has to maximize the score) or player 1 (and has to minimize the score).

e The return value, an integer, is the identifier of the pit that must be played.

Note that the method is static, but you can implement additional auxiliary methods if
need be. More generally, only file ai.py should be modified by you (with a single exception,
mentioned later).

Representation of a state Class State (in file game.py) represents a state of the game.
It contains all the game logic that you need to implement the algorithm. Notably, you will
need the following methods:

e next_state(pit: int) —> State: return the state that results of the given pit being
played. The state the function is called on is untouched.

e available_moves() —> List[int]: return a list of integers, which are the pits that can
be played by the current player. Note that a state where the game has ended has no
available move, and the function returns the empty list.

e check_victory() —> [None|int]: return None if the game is not over, 0 (resp. 1) if
player 0 (resp. player 1) won, or -1 if the game resulted in a tie.

2



Lab 2: Adversarial Search TDDC17 - Artificial Intelligence

e copy() —> State: return a copy of the state.

In addition, you also have access to the following attribute, whose logic you will implement
later:

e score: a property that returns the score of the state.

Settings In file settings.py, you can change a few parameters of the game, including the
dimensions of the board. In file main.py, you can change the algorithms behind each Al
player.

3 MinMax

3.1 First implementation

Recall that MinMax simulates all possible developments of the game in a depth-first search
fashion. It then selects the move with the best outcome, assuming that the opponent plays
optimally.

Tasks

e Implement MinMax using a recursive function. The function should return the utility
of each available move, so that in function best_move, you can implement the logic to
choose the move with the best utility for the current player.

e Add a counter for the number of expanded states to decide on a single move, and
output its value in the command line.

Questions
1. Suppose that we allow 5 seconds for the Al player to choose its next move.

(a) What are the maximum dimensions of the board (number of pits and seeds) that
allow this?

(b) How many nodes are then expanded?
2. For a small game, let the algorithm you implemented play against itself.

(a) Which player won?

(b) What does it mean? Do you think that, as player 1, you could beat MinMax as
player 07



Lab 2: Adversarial Search TDDC17 - Artificial Intelligence

3.2 Depth-bounded MinMax

As seen in the previous section, the basic MinMax algorithm can not scale up to the size
of the original board. This is due to the complete exploration of the search tree that the
algorithm performs. However, good moves can still be found by cutting the search earlier on
each branch, up to a certain depth.

In practice, this is done by treating states at a fixed depth as terminal, and comput-
ing their heuristic value, or score. In the course’s slides, this technique is detailed in the
“Heuristic Alpha-Beta Search” section, but can readily be applied for MinMax as well.

Tasks

e Implement a function computing the score of each state, in class State, in file game.py.
The more positive (resp. negative) the score is, the more the state should be favorable
to player 0 (resp. player 1).

e Modify your implementation so that each branch is explored up to a constant depth.
For now, we will set that maximum depth to 8.

Questions
1. What score function did you choose? Justify the intuition behind it.

2. Just like before, suppose that we allow 5 seconds for the Al player to choose its next
move.

(a) What are the maximum dimensions of the board (number of pits and seeds) that
allow this?
(b) How many nodes are then expanded?

3. Find some dimensions of the board such that, on your machine, the original (non-
depth-bounded) algorithm takes 30 to 40 seconds to compute the first few moves.

(a) At which (minimum) value should the cutoff be set so that depth-bounded Min-
Max achieves comparable results to MinMax?

(b) How many nodes do the algorithms then expand, respectively? How much faster
is the depth-bounded algorithm?

4. Suppose that we set the cutoff to depth 1. How is that search then called?

4 Alpha-Beta Pruning

With each player having (at most) n pits to choose from, the search tree has a branching
factor of about n. Cutting a branch early can then result in the pruning of a significant
amount of nodes.



Lab 2: Adversarial Search TDDC17 - Artificial Intelligence

Alpha-Beta pruning is a technique that extends the MinMax algorithm, and that prunes
branches whose exploration can not influence the final decision anymore, given the informa-
tion gained by the previous exploration of other branches.

The key idea is to maintain, during the exploration of a branch, two values, Alpha and
Beta, which are the best values that the Max and Min players can guarantee on that branch,
respectively. When exploring a branch, if at any time, we have that Alpha > Beta, then the
exploration of the branch can be cut short.

Tasks

e Starting from the code that you wrote previously, implement MinMax with Alpha-Beta
pruning in a separate class.

e Add a counter that outputs the number of branches that have been cut during search.

Questions

1. When the value for the depth cutoff is the same for both algorithms, how do the
outputs of Alpha-Beta compare to the ones of MinMax? Justify.

2. Find some dimensions of the board such that, on your machine, depth-bounded Min-
Max takes 30 to 40 seconds to compute the first few moves.

(a) How long does Alpha-Beta take to perform the same moves?
(b) How many nodes are expanded?
Bonus questions
e How could the difficulty /strength of the AI should be tuned?

e Is it a good idea to simply limit the search time, and cut the search of the unbounded
algorithm when it runs out of time?



	The Game of Kalah
	Interface
	MinMax
	First implementation
	Depth-bounded MinMax

	Alpha-Beta Pruning

