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Points:
The exam consists of exercises worth 41 points.
To pass the exam you need 21 points.

Auxiliary help items:
Hand calculators.

Directions:
You can answer the questions in English or Swedish.
Use notations and methods that have been discussed in the course.
In particular, use the definitions, notations and methods in appendices 1-3.
Make reasonable assumptions when an exercise has been under-specified.
State these assumptions explicitly in your answer.
Begin each exercise on a new page.
Write only on one side of the paper.
Write clearly and concisely.

Jourhavande: Piotr Rudol, 070 0895340. Piotr will arrive for questions around 16.00.
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1. Alan Turing proposed the Turing Test as an operational definition of intelligence.

(a) Describe the Turing Test using your own diagram and explanations.[2p]

(b) Do you believe this is an adequate test for machine intelligence? Justify your answer.[1p]

2. Consider the following logical theory about registered voters (where hilary, bernie and donald are con-
stants) and we view grounded atomic formulas as propositional atoms. (In this case unification of two
grounded atomic formulas is successful when they are identical.):

Democrat(hilary) (1)

Dislikes(hilary, bernie) (2)

Dislikes(bernie, donald) (3)

(Dislikes(hilary, bernie) ∧Dislikes(bernie, donald))→ Dislikes(hilary, donald) (4)

¬(¬Republican(donald) ∧ ¬Democrat(donald)) (5)

¬Democrat(donald) (6)

We would like to show using resolution that a registered Democrat dislikes a registered Republican.
To do this, answer the following questions:

(a) Convert formulas (1) - (6) into conjunctive normal form (CNF) with the help of appendix 1. [1p]

(b) Prove that (Democrat(hilary) ∧ Republican(donald) ∧Dislikes(hilary, donald)) is a logical conse-
quence of (1) - (6) using the resolution proof procedure. [3p]

• Your answer should be structured using one or more resolution refutation trees (as used in
the book or course slides).

2



3. Based on the material in Chapter 2 of the course book, define succinctly in your own words, the
following terms:

(a) Agent, Agent Function, Agent Program [1p]

(b) Performance Measure, Rationality, Autonomy [1p]

(c) Reflex Agent. Also provide a schematic diagram of such an agent. [1p]

(d) Model-based Agent. Also provide a schematic diagram of such an agent. [1p]

(e) Goal-based Agent. Also provide a schematic diagram of such an agent. [1p]

4. Constraint satisfaction (CS) problems consist of a set of variables, a value domain for each variable
and a set of constraints. A solution to a CS problem is a consistent set of bindings to the variables
that satisfy the constraints.

(a) Suppose there are 5 territories T1, T2, T3, T4, and T5, each with a sensor that monitors the area
associated with that territory. Each sensor has three possible radio frequencies, F1,F2, F3. Sensors
overlap if they are in adjacent areas. The adjacency relation between two territories is symmet-
ric. Let Adj(x, y) represent the adjacency relation where Adj(T1, T2), Adj(T1, T3),Adj(T2, T3),
Adj(T3, T4). If two sensors overlap, they can not use the same frequency.

1. Define a constraint satisfaction problem for this scenario. [1p]

2. Provide a constraint graph for the CS problem. [1p]

3. Provide one solution for the CS problem. [1p]

5. The following questions pertain to automated planning.

(a) Explain the main ideas underlying landmark heuristics. [2p]

i. For example, what is a fact landmark for a state s in a planning problem P? That is,
what type of entity is it that may or may not qualify as a fact landmark, and what are the
requirements for this entity to actually be a fact landmark for s given the problem P?

ii. Also, explain at least one way in which landmarks can be used to define a heuristic function
h(s) in a planning problem P . Make sure to clearly specify how the value of the heuristic
function would be calculated given the state and problem.

(b) The following pertains to partial-order planning. [3p]

i. In partial-order planning, what is a flaw? Name two distinct types of flaw and provide a
clear explanation of each type. These explanations should be sufficiently clear for someone
to understand how a partial plan can be analyzed and all flaws can be extracted.

ii. For each type of flaw, explain at least one way of resolving it.
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6. A∗ search is the most widely-known form of best-first search. The following questions pertain to A∗

search:

(a) Explain what an admissible heuristic function is using the notation and descriptions in (c). [1p]

(b) In the course book, we considered the 8-puzzle. This consists of a 3x3 game board with 8 tiles
(and one empty space) in the 9 slots. Each tile is numbered from 1 to 8. The start state of the
game places the 8 numbered tiles arbitrarily on the board. The goal state is for the tiles to be
numbered in numerical order from top to bottom, left to right. There is one action in the game.
A tile can be moved from slot A to slot B if slot B is empty.

i. The Hamming distance measures the number of misplaced tiles in a board configuration. Is
this an admissible heuristic? Explain why this is the case. [1p]

ii. Provide an additional admissible heuristic for this problem and explain why it is an admissible
heuristic. [1p]

iii. Compare your heuristic with the Hamming distance heuristic and state what heuristic domi-
nates the other. Why is the more dominant heuristic better? [2p]

(c) Let h(n) be the estimated cost of the cheapest path from a node n to the goal. Let g(n) be the
path cost from the start node n0 to n. Let f(n) = g(n) + h(n) be the estimated cost of the
cheapest solution through n.

Provide a sufficiently rigid proof that A∗ is optimal if h(n) is admissible. You need only provide
a proof for either tree-search (seminar slides) or graph-search (in course book). If possible, use a
diagram to structure the contents of the proof to make it more readable. [2p]

7. The following questions pertain to machine learning. Give detailed answers.

(a) Explain how a loss function is used during training in supervised learning. [1p]

(b) Describe an exploration strategy in the context of reinforcement learning. [1p]

(c) Consider a Q-learning agent with the update equation shown below.

Q(st, at)← Q(st, at) + α(R(st) + γ max
at+1∈A

Q(st+1, at+1)−Q(st, at)) (7)

i. How would the overall behavior of the agent change if the value of γ was reduced? [1p]

ii. What is the purpose of α? [1p]
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8. The following questions pertain to Answer Set Programming. Appendix 3 may be useful to use:

(a) Given the program Π1, consisting of the following rules (where r1 is a constant):

r1: rocket(r1).

r2: launches(r1)← rocket(r1),not ab(r1).

r3: defect(r1).

r4: ab(r1)← defect(r1).

1 what is the reduct ΠS
1 for Π1 given that S = {rocket(r1), ab(r1)}? [1p]

2 what is the reduct ΠS
1 for Π1 given that S = {rocket(r1), defect(r1)}? [1p]

(b) Given the program Π2 consisting of the following two rules (where republican, democrat are con-
stants):

r1: color(blue)← not color(red)

r2: color(red)← not color(blue).

What are the possible answer sets for Π2? [1p]

(c) Given the possible answer sets for Π2 above, which of those possible answer sets are in fact answer
sets for program Π2? [2p]

When answering this question be sure to show why, by using the reducts, ΠSi
2 , where Si is

instantiated to each possible answer set, and the consequence operator TΠ described in appendix
3.

(d) Why is Answer Set Programming considered to be a nonmonotonic reasoning formalism? [1p]

9. Use the Bayesian network in Figure 1 below together with the associated conditional probability tables
to answer the following questions. Appendix 2 may be helpful to use. If you do not have a hand-held
calculator with you, make sure you set up the solution to the problems appropriately for partial credit.

The conditional probability tables (CPT) should be interpreted as follows: For each row in a CPT,
the left-hand side enumerates the values of the evidence variables, and each column in the right-hand
side provides the probability of the query variable for each possible value of the query variable. For
instance, for the CPT associated with the random variable SP , the first row denotes that P (SP =
High | SM = Good, OI = Good, ) = 0.80 and P (SP = Low, | SM = Good, , OI = Good, ) = 0.20.

(a) Given the Bayesian network below, write down the full joint distribution it represents. In other
words, define P (SP, SM,OI, IR) as a product of the conditional relationships that can be derived
from the network below. [1p]

(b) What is P (SP = High, SM = Bad, OI = Bad, IR = High)? [1p]

(c) What is P (SP = Low | SM = Good, IR = High)? [2p]
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Figure 1: Bayesian Network Example

Appendix 1

Converting arbitrary wffs to CNF form:
(Propositional/grounded 1st-order formula case)

1. Eliminate implication signs using the equivalence: α→ β ≡ ¬α ∨ β.

2. Reduce scopes of negation signs using De Morgan’s Laws:

• ¬(ω1 ∨ ω2) ≡ ¬ω1 ∧ ¬ω2

• ¬(ω1 ∧ ω2) ≡ ¬ω1 ∨ ¬ω2

3. Remove double negations using the equivalence: ¬¬α ≡ α.

4. Put the remaining formula into conjunctive normal form. Two useful rules are:

• ω1 ∨ (ω2 ∧ ω3) ≡ (ω1 ∨ ω2) ∧ (ω1 ∨ ω3)

• ω1 ∧ (ω2 ∨ ω3) ≡ (ω1 ∧ ω2) ∨ (ω1 ∧ ω3)

5. Eliminate ∧ symbols so only clauses remain.
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Appendix 2

A generic entry in a joint probability distribution is the probability of a conjunction of particular assignments
to each variable, such as P (X1 = x1 ∧ . . . ∧ Xn = xn). The notation P (x1, . . . , xn) can be used as an
abbreviation for this.

The chain rule states that any entry in the full joint distribution can be represented as a product of conditional
probabilities:

P (x1, . . . , xn) =

n∏
i=1

P (xi | xi−1, . . . , x1) (8)

Given the independence assumptions implicit in a Bayesian network a more efficient representation of entries
in the full joint distribution may be defined as

P (x1, . . . , xn) =
n∏

i=1

P (xi | parents(Xi)), (9)

where parents(Xi) denotes the specific values of the variables in Parents(Xi).

Recall the following definition of a conditional probability:

P(X | Y ) =
P(X ∧ Y )

P(Y )
(10)

The following is a useful general inference procedure:

Let X be the query variable, let E be the set of evidence variables, let e be the observed values for them,
let Y be the remaining unobserved variables and let α be the normalization constant:

P(X | e) = αP(X, e) = α
∑
y

P(X, e,y) (11)

where the summation is over all possible y’s (i.e. all possible combinations of values of the unobserved
variables Y).

Equivalently, without the normalization constant:

P(X | e) =
P(X, e)

P(e)
=

∑
y P(X, e,y)∑

x

∑
y P(x, e,y)

(12)
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Appendix 3: Answer Set Programming

Computing Answer Sets for a program Π:

Given a program Π:

1. Compute the possible answer sets for Π:

(a) Powerset 2Π of all atoms in the heads of rules in Π.

2. For each S ∈ 2Π:

(a) Compute the reduct ΠS of Π.

(b) If Cn(ΠS) = S then S is an answer set for Π.

(c) If Cn(ΠS) 6= S then S is not an answer set for Π.

The following definitions may be useful:

Definition 1 A program Π consists of a signature Σ
and a collection of rules of the form:

l0 ∨, . . . ,∨ li ← li+1, . . . , lm,not lm+1, . . . ,not ln

where the l’s are literals in Σ. 2

Definition 2 [Satisfiability]
A set of (ground) literals satisfies:

1. l if l ∈ S;

2. not l if l 6∈ S;

3. l1 ∨ . . . ln if for some 1 ≤ i ≤ n, li ∈ S;

4. a set of (ground) extended literals if S
satisfies every element of this set;

5. rule r if , whenever S satisfies r’s body, it satisfies r’s head. 2

Definition 3 [Answer Sets, Part I]
Let Π be a program not containing default negation
(i.e., consisting of rules of the form):

l0 ∨, . . . ,∨ li ← li+1, . . . , lm.

An answer set of Π is a consistent set S of (ground) literals
such that

1. S satisfies the rules of Π and

2. S is minimal (i.e., there is no proper subset of S that
satisfies the rules of Π. 2

Appendix 3 is continued on the next page.
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Definition 4 [Answer Sets, Part II]
Let Π be an arbitrary program and S be a set
of ground literals. By ΠS we denote the program
obtained from Π by

1. removing all rules containing not l
such that l ∈ S;

2. removing all other premises of the remaining
rules containing not .

S is an answer set of Π if S is an answer set of ΠS .
We refer to ΠS as the reduct of Π with respect to S. 2

Definition 5 [Consequence operator TΠ]
The smallest model, Cn(Π), of a positive program Π can be computed
via its associated consequence operator TΠ. For a set of atoms X
we define,

TΠX = {head(r) | r ∈ Π and body(r) ⊆ X}.
Iterated applications of TΠ are written as T j

Π for j ≥ 0, where

T 0
ΠX = X

T i
ΠX = TΠT

i−1
Π X for i ≥ 1.

For any positive program Π, we have Cn(Π) =
⋃

i≥0 T
i
Π∅.

Since TΠ is monotonic, Cn(Π) is the smallest fixpoint of TΠ. 2
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