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Points:
The exam consists of exercises worth 39 points.
To pass the exam you need 23. points.

Auxiliary help items:
Hand calculators.

Directions:
You can answer the questions in English or Swedish.
Use notations and methods that have been discussed in the course.
In particular, use the definitions, notations and methods in appendices 1-4.
Make reasonable assumptions when an exercise has been under-specified.
State these assumptions explicitly in your answer.
Begin each exercise on a new page.
Write only on one side of the paper.
Write clearly and concisely.

Jourhavande: Mariusz Wzorek, 070-3887122. Mariusz will arrive for questions around 15.00.
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1. Consider the following logical theory about ancient Rome (where marcus and caesar are constants) and
we view grounded atomic formulas as propositional atoms. (In this case unification of two grounded
atomic formulas is successful when they are identical.):

Man(marcus) (1)

Pompeian(marcus) (2)

Pompeian(marcus)→ Roman(marcus) (3)

Ruler(caesar) (4)

[Roman(marcus) ∧ ¬LoyalTo(marcus, caesar)]→ Hate(marcus, caesar) (5)

[Man(marcus) ∧Ruler(caesar) ∧ TryAssasinate(marcus, caesar)]→ ¬LoyalTo(marcus, caesar) (6)

TryAssasinate(marcus, caesar) (7)

We would like to show using resolution that marcus really does not like ceasar. In fact, he hates him.
To do this, answer the following questions:

(a) Convert formulas (1) - (7) into conjunctive normal form (CNF) with the help of appendix 1. [1p]

(b) Prove that Hate(marcus, caesar) is a logical consequence of (1) - (7) using the resolution proof
procedure. [3p]

• Your answer should be structured using one or more resolution refutation trees (as used in
the book or course slides).

2. The following questions pertain to Answer Set Programming. Appendix 3 may be useful to use:

(a) Given the program Π1, consisting of the following rules (where a1 is a constant):

r1: apple(a1).

r2: tasty(a1)← apple(a1),not ab(a1).

r3: rotten(a1).

r4: ab(a1)← rotten(a1).

1 what is the reduct ΠS
1 for Π1 given that S = {apple(a1), ab(a1)}? [1p]

2 what is the reduct ΠS
1 for Π1 given that S = {apple(a1), rotten(a1)}? [1p]

(b) Given the program Π2 consisting of the following two rules (where short, tall are constants):

r1: height(tall)← not height(short)

r2: height(short)← not height(tall).

What are the possible answer sets for Π2? [1p]

(c) Given the possible answer sets for Π2 above, which of those possible answer sets are in fact answer
sets for program Π2? [2p]

When answering this question be sure to show why, by using the reducts, ΠSi
2 , where Si is

instantiated to each possible answer set, and the consequence operator TΠ described in appendix
3.

(d) Why is Answer Set Programming considered to be a nonmonotonic reasoning formalism? [1p]
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3. The following questions pertain to Bayesian Networks. Figure 1 below provides a Bayesian network
for a satellite monitoring problem. Conditional tables for the problem are also provided. Appendix 2
may be useful in answering this question.

(a) Provide an equivalent equation for the joint distribution P(B,S,E,D,C), as a product of condi-
tional distributions based on the independence assumptions associated with the Bayesian network
in Figure 1. [2p]

(b) Suppose the battery and electric system do not fail, the solar panel does and there is trajectory
deviation, but no communication loss: P (¬b, s,¬e, d,¬c). What is the probability that this can
happen? [1p]

(c) Suppose the battery fails, but we observe no communication loss. What is the probability of a
trajectory deviation: P (d | b,¬c) ? [2p]

B S

CD

E Electrical System Failure 

Battery Failure Solar Panel  Failure

Trajectory Deviation Communication Loss

Figure 1: Bayesian Network Example

S P(S)
T 0.02

B P(B)
T 0.05

B S P (E)
T T 0.99
T F 0.87
F T 0.85
F F 0.10

E P (D)
T 0.99
F 0.10

E P (C)
T 0.99
F 0.15
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4. Alan Turing proposed the Turing Test as an operational definition of intelligence.

(a) Describe the Turing Test using your own diagram and explanations.[2p]

(b) Do you believe this is an adequate test for machine intelligence? Justify your answer.[1p]

5. The following question pertains to automated planning:

(a) Recall that partial-order planning generates plans where actions are not necessarily constrained
to be ordered in a sequence but can (at least during search) be placed “in parallel”. This requires
a completely different search space than the one used for forward-chaining state space search. The
standard partial-order causal-link search space gives rise to the concept of a flaw.

Name two distinct types of flaw that can arise when a partial-order causal-link planner searches
for a plan and explain each type of flaw clearly. [2p]

The explanations should be sufficiently clear that someone who has not seen the definitions in
the book or lecture notes can take a partial plan, analyze it, and identify the flaws it contains (if
any). Feel free to include examples of partial plans that illustrate each flaw type, but be aware
that examples in themselves are not sufficient to define the exact boundaries between flaws and
non-flaws.

For each type of flaw, describe at least one way that one may be able to resolve it. [2p]

6. A∗ search is the most widely-known form of best-first search. The following questions pertain to A∗

search:

(a) Explain what an admissible heuristic function is using the notation and descriptions in (d). [1p]

(b) Can a consistent heuristic function be inadmissible? Explain why or why not. [1p]

(c) Suppose a robot is searching for a path from one location to another in a rectangular grid of
locations in which there are arcs between adjacent pairs of locations and the arcs only go in
north-south (south-north) and east-west (west-east) directions. Furthermore, assume that the
robot can only travel on these arcs and that some of these arcs have obstructions which prevent
passage across such arcs.

Provide an admissible heuristic for this problem. Explain why it is an admissible heuristic and
justify your answer explicitly. [2p]

(d) Let h(n) be the estimated cost of the cheapest path from a node n to the goal. Let g(n) be the
path cost from the start node n0 to n. Let f(n) = g(n) + h(n) be the estimated cost of the
cheapest solution through n.

Provide a sufficiently rigid proof that A∗ is optimal if h(n) is admissible. You need only provide
a proof for either tree-search (seminar slides) or graph-search (in course book). If possible, use a
diagram to structure the contents of the proof to make it more readable. [2p]
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7. Constraint satisfaction problems consist of a set of variables, a value domain for each variable and a
set of constraints. Figure 2 depicts a constraint graph with variables A,B and C, each with a value
domain {1, 2, 3, 4}. Binary constraints are associated with each arc. The graph it not arc-consistent.
Appendix 4 provides the AC3 algorithm which makes a constraint graph arc-consistent.

A solution to a CS problem is a consistent set of bindings to the variables that satisfy the constraints. A
standard backtracking search algorithm can be used to find solutions to CS problems. Constraint prop-
agation is the general term for propagating constraints on one variable onto other variables. Constraint
propagation may be integrated with a backtracking algorithm or used for preprocessing.

Describe the following:

(a) What is the Forward Checking technique? [1p]

(b) What is arc consistency? Provide a definition. [1p]

(c) Provide a constraint graph that is arc consistent but globally inconsistent. [1p]

(d) Make the constraint graph in figure 2 arc consistent using the AC3 algorithm in Appendix 4. For
the answer, only the resulting consistent bindings for each variable in the constraint graph output
by the AC3 algorithm are required although you may show more of the process. As stated above,
the value domain for each of the variables, A,B and C is {1, 2, 3, 4}. [2p]

A B C
A < B B < C

Figure 2: Constraint graph

8. The following questions pertain to machine learning. Give short and informative answers.

(a) Assume you want to learn a climate model to predict temperature (degrees) from examples.

i. What would a suitable loss function be to use for such output examples? [1p]

ii. Assume you chose a neural network model with p parameters (weights, biases), and you want
to train it using gradient descent on n examples. What would the computational complexity
be of computing the parameter gradients? [1p]

(b) Consider a Q-learning agent with the update equation shown below. Explain how decreasing γ
will change agent behavior. [2p]

Q(st, at)← Q(st, at) + α(R(st) + γ max
at+1∈A

Q(st+1, at+1)−Q(st, at))

(c) This question pertains to deep learning.

i. How can deep representations be more effective than shallow ones? [1p]

ii. Assume you want to classify images with neural networks, using the pixels as inputs to the
network. What type of network layers would be suitable to include to make learning more
effective than just using fully-connected multi-layer networks? [1p]
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Appendix 1

Converting arbitrary wffs to CNF form:
(Propositional/grounded 1st-order formula case)

1. Eliminate implication signs using the equivalence: α→ β ≡ ¬α ∨ β.

2. Reduce scopes of negation signs using De Morgan’s Laws:

• ¬(ω1 ∨ ω2) ≡ ¬ω1 ∧ ¬ω2

• ¬(ω1 ∧ ω2) ≡ ¬ω1 ∨ ¬ω2

3. Remove double negations using the equivalence: ¬¬α ≡ α.

4. Put the remaining formula into conjunctive normal form. Two useful rules are:

• ω1 ∨ (ω2 ∧ ω3) ≡ (ω1 ∨ ω2) ∧ (ω1 ∨ ω3)

• ω1 ∧ (ω2 ∨ ω3) ≡ (ω1 ∧ ω2) ∨ (ω1 ∧ ω3)

5. Eliminate ∧ symbols so only clauses remain.
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Appendix 2

A generic entry in a joint probability distribution is the probability of a conjunction of particular assignments
to each variable, such as P (X1 = x1 ∧ . . . ∧ Xn = xn). The notation P (x1, . . . , xn) can be used as an
abbreviation for this.

The chain rule states that any entry in the full joint distribution can be represented as a product of conditional
probabilities:

P (x1, . . . , xn) =

n∏
i=1

P (xi | xi−1, . . . , x1) (8)

Given the independence assumptions implicit in a Bayesian network a more efficient representation of entries
in the full joint distribution may be defined as

P (x1, . . . , xn) =
n∏

i=1

P (xi | parents(Xi)), (9)

where parents(Xi) denotes the specific values of the variables in Parents(Xi).

Recall the following definition of a conditional probability:

P(X | Y ) =
P(X ∧ Y )

P(Y )
(10)

The following is a useful general inference procedure:

Let X be the query variable, let E be the set of evidence variables, let e be the observed values for them,
let Y be the remaining unobserved variables and let α be the normalization constant:

P(X | e) = αP(X, e) = α
∑
y

P(X, e,y) (11)

where the summation is over all possible y’s (i.e. all possible combinations of values of the unobserved
variables Y).

Equivalently, without the normalization constant:

P(X | e) =
P(X, e)

P(e)
=

∑
y P(X, e,y)∑

x

∑
y P(x, e,y)

(12)
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Appendix 3: Answer Set Programming

Computing Answer Sets for a program Π:

Given a program Π:

1. Compute the possible answer sets for Π:

(a) Powerset 2Π of all atoms in the heads of rules in Π.

2. For each S ∈ 2Π:

(a) Compute the reduct ΠS of Π.

(b) If Cn(ΠS) = S then S is an answer set for Π.

(c) If Cn(ΠS) 6= S then S is not an answer set for Π.

The following definitions may be useful:

Definition 1 A program Π consists of a signature Σ
and a collection of rules of the form:

l0 ∨, . . . ,∨ li ← li+1, . . . , lm,not lm+1, . . . ,not ln

where the l’s are literals in Σ. 2

Definition 2 [Satisfiability]
A set of (ground) literals satisfies:

1. l if l ∈ S;

2. not l if l 6∈ S;

3. l1 ∨ . . . ln if for some 1 ≤ i ≤ n, li ∈ S;

4. a set of (ground) extended literals if S
satisfies every element of this set;

5. rule r if , whenever S satisfies r’s body, it satisfies r’s head. 2

Definition 3 [Answer Sets, Part I]
Let Π be a program not containing default negation
(i.e., consisting of rules of the form):

l0 ∨, . . . ,∨ li ← li+1, . . . , lm.

An answer set of Π is a consistent set S of (ground) literals
such that

1. S satisfies the rules of Π and

2. S is minimal (i.e., there is no proper subset of S that
satisfies the rules of Π. 2

Appendix 3 is continued on the next page.
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Definition 4 [Answer Sets, Part II]
Let Π be an arbitrary program and S be a set
of ground literals. By ΠS we denote the program
obtained from Π by

1. removing all rules containing not l
such that l ∈ S;

2. removing all other premises of the remaining
rules containing not .

S is an answer set of Π if S is an answer set of ΠS .
We refer to ΠS as the reduct of Π with respect to S. 2

Definition 5 [Consequence operator TΠ]
The smallest model, Cn(Π), of a positive program Π can be computed
via its associated consequence operator TΠ. For a set of atoms X
we define,

TΠX = {head(r) | r ∈ Π and body(r) ⊆ X}.
Iterated applications of TΠ are written as T j

Π for j ≥ 0, where

T 0
ΠX = X

T i
ΠX = TΠT

i−1
Π X for i ≥ 1.

For any positive program Π, we have Cn(Π) =
⋃

i≥0 T
i
Π∅.

Since TΠ is monotonic, Cn(Π) is the smallest fixpoint of TΠ. 2
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Appendix 4: Arc-Consistency algorithm

Figure 3: AC3 Arc Consistency Algorithm
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